

N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 413–423, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

Radix-4 Modified Interleaved Modular Multiplier
Based on Sign Detection

Mohamed A. Nassar and Layla A.A. El-Sayed

Department of Computer and Systems Engineering,
Alexandria University, Alexandria, Egypt

eng.mohamedatif@gmail.com, labohadid@yahoo.com

Abstract. Data Security is the most important issue nowadays. A lot of
cryptosystems are introduced to provide security. Public key cryptosystems are
most common cryptosystems used for securing data communication. Modular
multiplication is the basic operation of a lot of public key cryptosystems such as
RSA, Diffie-Hellman key agreement (DH), ElGamal, and ECC. Abd-el-fatah et
al. introduced an enhanced architecture for computing modular multiplication
of two large numbers X and Y modulo given M. In this paper, a modification on
that architecture is introduced. The proposed design computes modular
multiplication by scanning two bits per iteration instead of one bit. The
proposed design for 1024-bit precision reduced overall time by 38% compared
to the design of Abd-el-fatah et al.

Keywords: efficient architecture, carry-save adder, sign detection, sign
estimation technique, modular multiplication, FPGA, RSA.

1 Introduction

As a result of increasing of data communications over different networks, data
security is the most important issue nowadays. There are a lot of PK (Public Key)
cryptosystems used like RSA [10], Diffie-Hellman key agreement (DH) [7], ElGamal
and ECC [1].

PK cryptosystems are implemented on coprocessor [8] for accelerating cipher
operation and removing overhead of computing modular multiplication
(A * B mod M) from main processor, so a lot of implementations are introduced. The
goal of this implementation is to reduce complexity and improve performance. Most
of PK cryptosystems is based on modular exponentiation which is based on modular
multiplication.

Implementation of modular multiplication can be categorized into classical and
interleaved. Classical implementation tries to solve the multiplication problem by
computing multiplication and then reducing the result. Interleaved implementation
interleaves multiplication with reduction at the same time. Reference [3] has detailed
survey about classical and interleaved algorithms. An Example of interleaved
algorithm is Montgomery modular algorithm [3, 14, 15].

414 M.A. Nassar and L.A.A. El-Sayed

In our proposed architecture, we introduce modification on architecture of
interleaved modular multiplication based on improved sign detection [1]. One of
benefits of modular multiplication based on sign detection is no need to save any
value in a look up table. Another benefit is that the overall time is better than the
architecture with look up table proposed by Amanor [2].

The rest of the paper is organized as follows: section 2 presents back ground and
related work of interleaved Modular multiplication. Section 3 describes in details our
proposed modification based on improved sign detection. It also proves the
correctness of the new architecture. Section 4 summarizes results of the
implementation compared with the architecture of Abd-el-fatah et al. [1]. A
conclusion is given in Section 5.

2 Interleaved Modular Multiplication

The idea of the interleaved modular multiplication is to reduce the intermediate result
produced from multiplication at each iteration to the range [0, M-1]. Let X, Y, M and
R be the multiplicand, the multiplier, the modulus and the result respectively, and let
n be the number of bits in their binary representation. Table 1 shows the standard
algorithm [2, 4].

Table 1. Standard interleaved modular multiplication [2,4]

Input: X = (xn-1 …. x0), Y = (yn-1……y0), M = (mn-1…..m0)
 where 0≤X,Y < M
Output: R = X * Y mod M
0- R = 0;
1- for i = n-1 downto 0
2- R = R * 2;
3- I = yi * X;
4- R = R + I;
5- if (R ≥ M) then R = R – M;
6- if (R ≥ M) then R = R – M;
7- end for;

The algorithm scans Y starting from the MSB. At each iteration, R is incremented

twice per iteration at worst case, once by R (step (2)) and another conditional
increment by X (steps (3) and (4)) which means R after performing step (4) will
satisfy the following inequality: 0 ≤ R < 3M. At the end of each iteration, the
condition (R ≥ M) has to be checked at most twice (steps (5) and (6)) so that R has to
be less than M.

At each iteration, three main operations are performed; shift (step (2)), addition,
subtraction (step (4), (5) and (6)) and comparison (steps (5) and (6)). Addition,
subtraction and comparison are complex operations. For large numbers addition and
subtraction, CSAs are used. Comparison (Steps (5) and (6)) needs a comparator

 Radix-4 Modified Interleaved Modular Multiplier Based on Sign Detection 415

between R and M. Worst case comparison will also results in a large propagation
delay, as all bits from both numbers have to be compared [1]. The comparison needs
both numbers to be in their final form, which conflicts with the CSA output form. For
optimizing steps (5) and (6), two recent proposed algorithms and corresponding
architectures [1, 4] were introduced as follows.

2.1 Redundant Interleaved Modular Multiplication

In [4], the authors specified some modifications that can be applied to the standard
algorithm mentioned in Table 1 in order to simplify and significantly speed up the
operations inside the loop. Table 2 shows the proposed algorithm. The authors
showed how to reduce time by further exploiting pre-calculation of values into a
lookup table. LookUp(i) function (steps (1), (8)) returns value of ith

 entry in the look
up table.

Table 2. Redundant interleaved modular multiplication algorithm[4]

Input: X = (xn-1 …. x0), Y = (yn-1……y0), M = (mn-1…..m0)
 where 0≤X,Y < M
Output: P = X * Y Mod M
Precomputing lookup table entries
0- S = 0; C = 0
1- A = LookUp(xn-1)
2- for i=n-1 downto 0
3- S = S mod 2n
4- C = C mod 2n
5- S = 2*S
6- C= 2*C
7- (S,C) = CSA(S,C,A)
8- A=LookUp(2*(sn + 2*cn+1 + cn)+xi-1)
9- end for
10- P = (S + C) mod M

2.2 Modified Interleaved Modular Multiplication Based on Sign Detection

Modified Interleaved Modular Multiplication based on Sign Detection (MIMM)
algorithm replaced comparisons (steps (5), (6)) in standard algorithm mentioned in
Table 1 by determining the sign of the quantity (R − M). The Sign determination is
performed using the “Sign Detection” technique. This technique is explained in the
next sub-section [1, 16].

2.2.1 Sign Detection
Previous work [16] proposed a technique for the sign estimation of a number. This
technique uses a window of only two bits taken from a number represented in (sum,
carry) pair. The window count starts from the MSB and moving downwards. The
technique produces three possible results: positive (+ve), negative (-ve) and

416 M.A. Nassar and L.A.A. El-Sayed

unsure (+/-ve). The unsure (+/-ve) result is reached when the number is either too
large or too small [16]. Frequently reaching the unsure (+/-ve) result is the drawback
of this technique [1].

AbdelFattah et al. [1] has enhanced the sign estimation technique, so that an exact
sign can be determined for any number. A window of length (W) is taken from a
number represented in (sum, carry) pair.

The detect-sign technique DS(S, C) can be defined as follows [1]:
Let X be an n-bit number represented in (S, C) pair:

1. Let W(s), W(c) be the windows taken from S, C respectively.
2. Let Temp = W(s) +W(c).
3. If the MSB of Temp is ’0’ then P is positive.
4. Else if Temp != “11….11” then P is negative.
5. Else(Temp is all ones) request another carry-save addition, update (S, C) and Go to
(1).

In case of the unsure (+/-ve) result (step (5)), S and C are fed back again to CSA, and
CSA will produce a new permutation of S and C for the same result. The detailed
proof of the correctness of detect-sign technique is provided in [1].

2.2.2 Algorithm
The proposed algorithm is shown in Table 3. DS(R - M) function (steps (5) and (6))
applies sign detection technique for the number (R - M).

Table 3. Modified interleaved modular multiplication [1]

Input: X = (xn-1 …. x0), Y = (yn-1……y0), M = (mn-1…..m0)
 where 0≤ X,Y < M
Output: R = X * Y mod M
0- R = 0
1- for i = n-1 downto 0
2- R = R * 2
3- I = yi * X
4- R = R + I;
5- if DS(R - M)=+ve R = R – M
6- if DS(R - M)=+ve R = R – M
7- end for

2.2.3 The Architecture
Fig. 1 shows the architecture of MIMM [1]. The main modules of the architectures
are:

1. Carry-Save Adder;
2. Detect-Sign Module (DS);
3. Controller;
4. Registers (SavedSum, SavedCarry);
5. Multiplexers (MUX1, MUX2, MUX3).

 Radix-4 Modified Interleaved Modular Multiplier Based on Sign Detection 417

Fig. 1. Modified interleaved modular multiplier [1]

MIMM computes modular multiplication without a pre-computational phase, or
predefined sets for moduli [1, 9].

3 Radix-4 Modified Interleaved Modular Multiplier Based on
Sign Detection

The idea is to enhance the performance of MIMM by scanning two bits instead of one
bit at each iteration. Let X, Y, M and R be the multiplicand, the multiplier, the
modulus and the result of modular multiplication respectively (R = X * Y mod M),
and let n be an even number of bits in their binary representation as follows.

 ܺ ൌ 2ିଵୀݔ , Y ൌ y୧ 2୧୬ିଵ୧ୀ ܯ , ൌ ݉ 2ିଵୀ

The algorithm is shown in Table 4. Steps (5), (6) and (7) are performed at each
iteration to ensure that intermediate result R satisfies the following inequality:
0≤ R < M.

418 M.A. Nassar and L.A.A. El-Sayed

Table 4. Radix-4 modified interleaved modular multiplication based on sign detection
algorithm

Input: X = (xn-1 …. x0), Y = (yn-1……y0), M = (mn-1…..m0)
 where 0≤X,Y < M and n mod 2 = 0
Output: R = X*Y mod M
0- R = 0
1- for i = n/2 - 1 downto 0
2- R = R * 4
3- I = [yn-1 yn-2] * X
4- R = R + I
5- if DS(R - 4M)= +ve R = R - 4M
6- if DS(R - 2M)= +ve R = R - 2M
7- if DS(R - M)= +ve R= R - M
8- Y = Y << 2
9- end for

3.1 Proof of Correctness

It is required to prove that the final result R is correct, i.e. 0 ≤ R < M. First we prove
that the upper bound of the intermediate result R (step (4) of the algorithm mentioned
in Table 4) is less than 7M as follows:

For the first iteration:

• At step (4), R = [yn-1 yn-2] * X < 3M.
• Steps (5), (6) and (7) guarantee that M satisfies the following inequality:

0 ≤ R < M.

For the ith iteration where i > 0:

• At step (4), R = R * 4 + [yn-1 yn-2] * X < 7M.
• Steps (5), (6) and (7) guarantee that M satisfies the following inequality:

0 ≤ R < M.

Table 5 shows all possible ranges for intermediate result R (Step (4)) and the
corresponding action to reduce it.

Table 5. All possible ranges for R and the corresponding actions

Range Step(s) where subtraction(s) is(are) confirmed

0 ≤ R < M No action

M ≤ R < 2M Step 7 (R – M)

2M ≤ R < 3M Step 6 (R = R –2M)

3M ≤ R < 4M Steps 6 and 7 (R = R –3M)

4M ≤ R < 5M Step 5 (R = R – 4M)

5M ≤ R < 6M Steps 5 and 7 (R = R – 5M)

6M ≤ R < 7M Steps 5 and 6 (R = R – 6M)

 Radix-4 Modified Interleaved Modular Multiplier Based on Sign Detection 419

For example, if the intermediate result R (step (4)) is between 3M and 4M, the
procedure will be:

1. DS(R, 4M) => –ve => 3M ≤ R < 4M;
2. DS(R, 2M) => +ve => R= R – 2M => M≤R<2M;
3. DS(R, M) => +ve => R = R – M => 0≤R<M.

3.2 The Architecture

As shown in Fig.2, the main modules found in the proposed architecture are:

1. Carry-Save Adders (CSA1 and CSA2);
2. Detect-Sign module (DS);
3. Registers (SavedSum, SavedCarry);
4. Two-bit left shifters for shifting Y, 2*SavedSum, 2*SavedCarry, and computing

-4M;
5. One-bit left shifters for computing 2X and -2M;
6. Multiplexers (MUX1, MUX2, MUX3);
7. The Controller.

Our architecture is an adaptation of MIMM architecture [1]. The main differences
between our architecture and MIMM architecture shown in Fig. 1 are:

1. Another CSA called CSA2 was added to compute 3*X;
2. Two-bit left shifters are used to shift the input Y and compute -4*M;
3. MUX1 and MUX2 have different number of inputs as shown in Fig 2;
4. The controller module is more complex than that of MIMM.

Fig. 2. Architecture of radix-4 modified modular multiplication based on sign detection

420 M.A. Nassar and L.A.A. El-Sayed

4 Implementations and Results

Synthesis using Xilinx Synthesis Tool (XST) was performed on a Xilinx FPGA
Vertex XC4VFX12 [6, 11, 12]. The synthesis of the VHDL implementations of the
architectures was performed with speed optimization goal [13]. Architectures are
verified using software library called MIRACL [5] as follows: using MIRACL, three
random numbers are generated (A, B and M where A and B are less than M) and
Result R (R = A * B mod M) is computed. A, B and M are loaded on different
architectures and R΄ (output result from each architectures) is compared with
corresponding R.

The synthesis tool (XST) generated the design reports for each of the implemented
multipliers. The minimum clock period, and total number of slices used for each
implementation are tabulated and graphically analyzed. Number of slices and
Maximum frequency used for the different architectures are shown in Table 6 and
Table 7 respectively.

Table 6. Number of slices used for the different architectures

Table 7. Maximum frequency for the different architectures

Precision MIMM(MHZ)
Radix-4 MIMM

(MHZ)

32 521.38 371.47

64 490.44 333.67

128 491.64 311.24

256 404.69 263.37

512 344.23 311.72

1024 308.83 325.84

Precision MIMM Radix-4 MIMM
Radix-4 MIMM area

increase
32 222 373 68%

64 415 612 47%

128 803 1163 45%

256 1584 2277 44%

512 3117 4493 44%

1024 6221 8930 44%

 Radix-4 Modified I

From Table 6, Radix-4 h
the more logic in controller

For different precisions,
Table 8 and Fig. 3 summ
architectures. Also Table
different precision.

Table 8. Average overall ope
type

Precision
MIMM

32 196.

64 425.

128 792.

256 2074

512 4931

1024 11138

Fig. 3. Average overall opera

Interleaved Modular Multiplier Based on Sign Detection

has on average 48% more area than MIMM; this is due
 and adding other CSAs.
, average improvements were calculated for txt data ty
marize average overall operation time for the differ
8 summarizes average speed up of our architectures

eration time consumed by the different architectures for txt

Average overall operation time

M(ns)
Radix-4
MIMM

(ns)

Relative speed up gain for
Radix-4 MIMM

99 218.74 -10%

73 489.81 -13%

41 921.17 -16%

4.79 2491.75 -17%

.96 4301.25 15%

8.68 8091.18 38%

ation time consumed by the different architecture for txt data ty

421

e to

ype.
rent
for

data

ype

422 M.A. Nassar and L.A.A. El-Sayed

5 Conclusion

In this paper, a new proposed interleaved modular multiplication algorithm and
the corresponding architectures (Radix-4 MIMM) were introduced. The
proposed architecture is based on sign detection technique which is responsible
for determining the sign of a number represented in a (Sum, Carry) pair. Radix-
4 MIMM architecture improved substantially the time requirement compared
with MIMM architecture when the operands size is more than 256 bits. The
relative speedup gain of Radix-4 MIMM architecture compared with MIMM is
up to 38% for 1024-bit precision. Our architecture has not a pre-computational
phase or any restrictions on moduli which make our architectures more efficient
and more flexible than existing architectures. The architectures were
implemented for different precisions 32, 64, 128, 256, 512 and 1024 bits. VHDL
was used to implement different architectures. Simulations were performed on a
Xilinx FPGA XC4VFX12.

References

1. Fattah, A., et al.: Efficient Implementation of Modular Multiplication on FPGAs Based on
Sign Detection. In: Proc. 4th International Design and Test Workshop (IDT), pp. 1–6
(February 2010),
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&a
rnumber=5404160&openedRefinements%3D*%26filter%3DAND%28NOT%2
84283010803%29%29%26searchField%3DSearch+All%26queryText%3De
fficient+implementation+sign+detection

2. Narh Amanor, D.: Efficient Hardware Architectures for Modular Multiplication. M.S.
thesis, University of Applied Sciences Offenburg, Germany (February 2005)

3. Nedjah, N.: A Review of Modular Multiplication Methods and Respective Hardware
Implementations. Proc. Informatica 30, 111–129 (2006)

4. Narh Amanor, D., Paar, C., Pelzl, J., Bunimov, V., Schimmler, M.: Efficient hardware
architectures for modular multiplication on FPGAs. In: Proc. International Conference on
Field Programmable Logic and Applications, pp. 539–542 (2005)

5. MIRACL, Multi-precision Integer and Rational Arithmetic C/C++ Library,
http://www.shamus.ie/ (last referenced January 20, 2011)

6. Xilinx, Inc. Foundation Series Software, http://www.xilinx.com (last referenced
January 20, 2011)

7. Diffie, W., Hellman, M.E.: New Directions in Cryptography. IEEE Transactions on
Information Theory IT-22(6), 644–654 (1976)

8. Paniandi, A.: A Hardware Implementation of Rivest-Shamir-Adleman Co-processor or
Resource Constrained Embedded Systems. M.S. thesis, University of Technology
Malaysia (April 2008)

9. Knezevic, M.: Faster Interleaved Modular Multiplication Based on Barrett and
Montgomery Reduction Methods. IEEE Transactions on Computers 59(12), 1715–1721
(2010)

10. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and
Public-Key Cryptosystems. Communications of the ACM 21(2) (February 1978)

 Radix-4 Modified Interleaved Modular Multiplier Based on Sign Detection 423

11. Timing Constraints User Guide,
http://www.xilinx.com/support/documentation/sw_manuals/xilin
x12_3/ug612.pdf (last referenced March 20, 2011)

12. Virtex-5 FPGA User Guide,
http://www.xilinx.com/support/documentation/user_guides/ug19
0.pdf (last referenced March 20, 2011)

13. VHDL Reference Manual,
http://www.usna.edu/EE/ee462/manuals/vhdl_ref.pdf
(last referenced March 20, 2011)

14. Tenca, A.F.: A Scalable Architecture for Modular Multiplication Based on Montgomery’s
Algorithm. IEEE Transactions on Computer 52(9) (September 2003)

15. Pinckney, N.: Parallelized Radix-4 Scalable Montgomery Multipliers. Journal of Integrated
Circuits and Systems, 28–30 (2008)

16. Kop, Q.K., Hung, C.Y.: Fast algorithm for modular reduction. IEE Proceedings,
Computers and Digital Techniques 145, 265–271 (1998)

	Radix-4 Modified Interleaved Modular MultiplierBased on Sign Detection
	Introduction
	Interleaved Modular Multiplication
	Redundant Interleaved Modular Multiplication
	Modified Interleaved Modular Multiplication Based on Sign Detection

	Radix-4 Modified Interleaved Modular Multiplier Based onSign Detection
	Proof of Correctness
	The Architecture

	Implementations and Results
	Conclusion
	References

