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Abstract. In this paper, we analyse existing privacy-transformation
techniques in the field of PPDP that anonymize datasets with Multiple
Sensitive Attributes (MSA). Of these, we present an analysis of Decom-
position, an algorithm which generates a dataset with distinct �-diversity
over MSA using a partitioning approach. We discuss some improvements
which can be made over Decomposition: in the realms of its running time,
its data utility, and its applicability in the case of Multiple Release Pub-
lishing. To this effect, we describe Decomposition+ an algorithm that
implements some of these improvements and is thus more suited for use
in real-life scenarios.

Keywords: Privacy Preserving Data Publishing, �-diversity, Decompo-
sition, Multiple Sensitive Attributes, Multiple Release Publishing.

1 Introduction

The rapidly growing fields of Privacy Preserving Data Mining (PPDM), and its
newer cousin Privacy Preserving Data Publishing(PPDP), essentially deal with
issues that can be stated in very few terms: private data should be leveraged to
infer useful patterns, but not to infer private, sensitive information. However,
this simple statement becomes quite difficult to model as a problem. This is
because, (i) given a dataset, it is difficult to differentiate data which is sensitive
from data which has legitimate purpose of utility, and (ii) as sensitive data
is obscured in the dataset, its general utility for non-nefarious purposes also
diminishes. Indeed, every privacy preserving data publication method will lose
some information; if not, it is equivalent to disclosing the data unprotected[1].
Given the rise of the rate at which personal datasets are being published, the
problem gains significance.

PPDP distinguishes itself from PPDM in the context of the usage of
anonymized data. While PPDM techniques are tailor-made for the use of an
anonymized dataset to a specific data mining purpose, PPDP encompasses
those techniques which a data-publisher may use to secure privacy of data
against a generic data-mining purpose[2]. There are a large number of ap-
proaches and techniques involved in PPDM, such as Synthetic Data Generation,
Perturbation, Micro-Aggregation, Suppression and Anatomization. For a more
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comprehensive survey, the reader is directed to [3,2]. Many privacy models, such
as k -anonymity[4] and �-diversity[5] isolate some attributes in the dataset as
Sensitive Attributes (SA). These are important from a data utility and mining
perspective, and also pose risk if they are linked to a particular individual rep-
resented in the dataset. Most implementations of these algorithms (and many
more) focus on a Single Sensitive Attribute (SSA) for simplicity and conve-
nience, instead of Multiple Sensitive Attributes (MSA), which are more useful
as an anonymization policy and more suitable to real-life datasets. As such,
algorithms implementing MSA are of significant interest.

Another important scenario which modern anonymization techniques should
take into account, is the case of ever improving datasets and anonymization poli-
cies. Over time, datasets are corrected, and published under different anonymiza-
tion techniques. When datasets are re-published, the releases could be combined
to infer sensitive information, unless precautions are built into the anonymiza-
tion techniques to prevent such attacks. Thus we require a privacy-preserving
framework which ensures that (i)the disclosure of sensitive information in pub-
lished datasets are limited to a small and measurable quantity, (ii)Multiple Sen-
sitive Attributes are protected against disclosure, (iii)the disclosure risk does
not escalate when data is published again in the future, and (iv)the utility of
the published dataset is maximized (by a measurable quantity) while enforcing
these constraints.

2 Background

Celebrated privacy models, such as k -anonymity[4], �-diversity[5] and closeness[6]
make a preliminary set of common assumptions for the sake of simplicity: (i)the
data to be protected (or anonymized) is considered to be a set of tuples in a
table T = {t1, . . . , tm}, where ti, (1 ≤ i ≤ m) is a tuple, (ii)each tuple ti, having
attributes < c1, . . . , cn >, describes one individual person, (iii)attributes of the
table can be divided into three distinct, disjoint sets of attributes: (a)Explicit
Attributes, such as {Name, Social Security Number}, which individually can link
a record to a person, explicitly. These are usually removed during the process of
anonymization; (b)Quasi Identifiers (QIDs), such as {date of birth, gender, lo-
cation}, which although individually do not identify a person, but considered as
a composite, can be used to link the record with a person; (c)Sensitive Attributes
(SA), such as {Salary} or {Medical Condition}, are needed for analysis but have
potentially sensitive consequences if linked to an individual with strong certainty;
(d)Non-sensitive Attributes which don’t fall into any of the above categories and
can be retained as-is in the anonymized data (called microdata). Importantly,
the choice of partitioning the attributes between SA and QID is crucial in deter-
mining its privacy risk and well as data-utility. This choice however is a matter
of policy[4].

Definition 1: k-anonymity:[4] A set of data is said to be k -anonymous iff each
unique sequence of QIDs appears in T with at least k occurrences. Greater the
value of k (k being a positive integer), greater the protection against of record
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being linked with certitude to a particular person and greater the ambiguity of
the published data.

k -anonymity is usually accomplished through generalization or suppression[7].
In generalization, QIDs of multiple records are replaced with one generalized
value, forming groups called Equivalence Class. In supression values which do
not conform to k -anonymity are not released at all. Newer alternates to general-
ization based on Partitioning such as Anatomy[1] eliminate the information-loss
involved in generalization by generating two projections of the dataset, one con-
taining QIDs and the other the sensitive attributes.

Definition 2: �-diversity principle[5]: An equivalence class is said to be �-diverse
when there are at least � well-represented values for the sensitive attribute. The
�-diversity privacy model overcomes a shortcoming of the k -anonymity: while k -
anonymity does not specify the selection criteria of SA values in the equivalence
class. Well-represented could be construed as distinct �-diversity:

Definition 3: Distinct �-diversity[6]: An equivalence class is said to have distinct
�-diversity if there are at least � distinct values for the sensitive attribute.

2.1 From SSA towards the MSA Case

Real world data-sets, such as the UCI Adult Dataset[8], usually would have a
large number of attributes. Since most established algorithms anonymize datasets
with only a single sensitive attribute, the data publisher is left with the choice
of having to identify which one attribute should be chosen as the sensitive at-
tribute. An alternative to these is to have a model which has multiple SAs. This
scenario is known to be that of Multiple Sensitive Attribute (MSA). MSA has
been widely mentioned in literature[5,9,10] but, as Ye et al.[11] report, there are
few algorithms which implement anonymization in the MSA case. This is be-
cause when algorithms such as �-diversity Incognito[5] are extended to the MSA
case, a large loss of utility[12] occurs. If more work were to be done in the MSA
case, this choice would neither be necessary nor needed. The few works found in
our survey, dealing with MSA, are outlined here:

In [12], the authors showed the difficulty in achieving �-diversity in the MSA
case. At the same time, achieving MSA is trivial for k -anonymity, because k -
anonymity does not restrict the distribution of SAs the equivalence class. Experi-
mental results indicate introduction of significant distortion in the resultant data
and small relative error for random SQL queries. In [13] the authors describe a
privacy model, Multi-Sensitive Bucketization (MSB) and three MSB-based al-
gorithms: maximal-bucket first (MBF), maximal single-dimension-capacity first
(MSDCF), and maximal multi-dimension-capacity first (MMDCF). While they
achieve good data utility, an analysis of privacy guarantees is absent. Ye et
al.[11] apply an existing and well-understood privacy model, �-diversity, in the
MSA case and use an interesting vertical partitioning technique to form �-diverse
groups. Their algorithm, Decomposition is discussed and analysed in the next
section.
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3 Decomposition

The algorithm of Decomposition[11] which satisfies �-diversity in the MSA case,
is of interest. This is in part because it explores an alternate to generalization:
vertical partitioning in achieving �-diversity. Partitioning, which has been imple-
mented in various guises[1,14] can provide better data utility than generalization,
in many cases. For a balanced analysis of partitioning, refer to [15].

Partitioning usually implies that a table T with attributes A1, . . . , Am is ver-
tically partitioned into two or more sub-tables T1, . . . , Tn such that any table
Ti, 1 > i ≥ n has attributes Aj , . . . , Ak where 1 ≥ j ≥ k ≥ n. The join of two or
more sub-tables forms a lossy view of the underlying data. Decomposition works
by partitioning T vertically into sensitive attributes and non-sensitive attributes.
The SA-table (see Table 3) are further partitioned horizontally into SA-groups
of records such that each group contains at least � distinct sensitive attribute
instances for each sensitive attribute. Every tuple in the QID-table is associated
with one SA-group (see Table 4). Apart from this, the sensitive attributes are
released in a separate table which cannot be linked with the other released table.
To reduce information loss, the number of SA-groups created are maximized by
Ye et al. through a largest-� group forming procedure, which they prove creates
the maximum number of groups possible.1:

The largest-� group forming procedure applies to creating SA-groups with
respect to only one SA. To extend it to the MSA case, the authors have desig-
nated one of the many sensitive attributes as Primary Sensitive Attribute Spri

with corresponding diversity requirement of �pri, which is chosen by the pub-
lisher as a matter of policy. Once SA-groups are formed by applying the largest-�
group forming procedure with respect to Sp r i, the SA-table may still not satisfy
�1, . . . , �d-diversity with respect to all the non-primary sensitive attributes.To
rectify this, Ye et al. introduce a noise addition step. To add noise, in every
tuple in the SA-table, for every sensitive attribute Si which does not satisfy �i-
diversity, the value of Si is replaced from a set defined as the Linkable Sensitive
Value[11].

Adding noise causes distortion. However, the use of Diversity Penalty in the
partitioning stage ensures that each SA-group conforms to �1, . . . , �d-diversity as
much as possible. Thus minimal amount of noise is added in this stage. Thus,
Decomposition generates three tables for publishing from the original data. Ta-
ble 1 shows a dataset, which has not been anonymized. Table 4 (QID-table), 3
(SA- table G) and 2 (Marginals TS) show the published microdata when De-
composition is applied.

3.1 Discussion

Decomposition ensures distinct �-diversity in the MSA case, which is a well
understood privacy model and can thwart attribute-linking and record-linking
attacks. It also gives better data utility than generalization. However, Decompo-
sition has certain weaknesses: (i)using partitioning only to form �-diverse data
1 Theorem 2 in [11].
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Table 1. The Microdata table

Tuple # Gender ZipCode Birthday Occupation Salary

1 (Alice) F 10078 1988-04-17 Nurse 1

2 (Betty) F 10077 1984-03-21 Nurse 4

3 (Carl) M 10076 1985-03-01 Police 8

4 (Diana) F 10075 1983-02-14 Cook 9

5 (Ella) F 10085 1962-10-03 Actor 2

6 (Finch) M 10085 1988-11-04 Actor 7

7 (Gavin) M 20086 1958-06-06 Clerk 8

8 (Helen) F 20087 1960-07-11 Clerk 2

Table 2. Marginals

Occupation Salary

Nurse 1

Nurse 4

Police 8

Cook 9

Actor 2

Actor 7

Clerk 8

Clerk 2

Table 3. Sensitive attributes of Ta-
ble 1 after Decomposition

Group Occupation Salary

1 Police 1
1 Nurse 2
1 Actor 8
1 Clerk 4

2 Nurse 2
2 Actor 4
2 Cook 7
2 Clerk 9

Table 4. QIDs and non-sensitive at-
tributes of Table 1 after Decomposition

Group Gender ZipCode Birthday

1 F 10078 1988/04/17

F 10085 1962/10/03

M 20086 1958/06/06

M 10076 1985/03/01

2 F 10077 1984/03/21

M 10085 1988/11/04

F 10075 1983/02/14

F 20087 1960/07/11

over the primary sensitive attribute, not other SAs, (ii)the choice of noise values
could further be improved to reduce information loss, (iii)is not suitable in cases
where records could be added later, which is a practical, real-life requirement.

4 Decomposition+

Based on our analysis of Decomposition in the last section, we attempt to im-
prove upon it in the following two broad areas: (i)extending Decomposition to
the continuous release scenario, (ii)Optimizing noise value selection.

(i)Extending Decomposition to the continuous release scenario: From a
practical and long-term view, PPDP would involve the same or related data being
anonymized and published multiple times. For example, a hospital may release
information on a monthly basis, and may have patients who exist in multiple
releases. This extended scenario could occur in the one of these three situations:
(i) Multiple Release, (ii)Sequential Release and (iii)Continuous Release, also
known as the Incremental Dataset Release.

In Continuous Release scenario, different anonymized releases of the same
underlying data are released at different points in time, where records have been
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added, removed, or updated in the underlying data. The attempt is to include
these changes in the published data, while reducing risk of the use of these
changes in infering sensitive information. In order to enable continuous release
in our proposed algorithm, if the anonymized dataset is published as a release
of three tables T̂0 = {T̂M

0 , T̂Q
0 , T̂S

0 } where T̂M
0 is the marginal, T̂Q

0 is the QID-
table, and T̂S

0 is the SA-table, our concern would be that p future releases of
T̂i (0 ≤ i ≤ p) should not be linked to each other to leak sensitive information.
Byun et al.[16] define an Inference Channel which is useful in formalizing this
risk. We extend this to the �1, . . . , �d-diversity2 case:

Definition 4: Inference Channel for �1, . . . , �d-diversity: Let T̂i and T̂j be two
�1, . . . , �d-diverse releases of T. An inference channel exists between T̂i and T̂j ,
denoted by T̂i � T̂i if observing T̂i and T̂j together increases the probability of
attribute disclosure of an attribute Sk in either T̂i or T̂j to a probability greater
than 1/�k, (1 ≤ k ≤ d)

Thus every new release T̂n+1 must be inference-free from all the previous
releases, as defined as:

Definition 5: Inference-free data release for �1, . . . , �d-diversity: Let T̂0, . . . , T̂n

be a sequence of previously releases of T, each of which is �1, . . . , �d-diverse. A
new �1, . . . , �d-diverse release T̂n+1 is said to be inference-free iff �T̂i, i = 1, . . . , n
s.t. T̂i � T̂n+1.

Given the above, Byun, et al. proved that addition of a new equivalence class
(or a new SA-group) to a release does not cause an inference channel to a previous
release3 as long as each SA-group is �1, . . . , �d-diverse. If a tuple is inserted into
an SA-group, the SA group must already be �1, . . . , �d-diverse, and the tuple
must remain in the same SA-group across releases.

Thus, we employ the largest-� group forming procedure to the available records
and unlike Decomposition we retain residual tuples for future anonymization,
and do not add them to existing SA-groups. The rationale for this is to enable
creation of new SA-groups when more tuples are added to the dataset. To avoid
a situation where some tuples are never published at all, we assign, to each tuple
t, a starvation penalty, defined as Ps(t) = b − a, where t is introduced into the
underlying data table T after T̂0, . . . , T̂a releases have been made, and t first
appears in a published release after another T̂a+1 . . . T̂b releases.

When the number of distinct residual tuples becomes greater than �pri, we
attempt to form an SA-group from �pri distinct tuples with tuples with the
highest starvation penalty.

(ii)Improving the noise selection procedure: When the largest �-group
forming procedure is applied to the dataset, non-primary SAs may not conform
to distinct �1, . . . , �d-diversity. Noise is added to remove an offending value, which
is a non-primary sensitive attribute value occurring more than once in the SA-
group. Offending values can be identified during the d-SA-�-diversity checking

2 �1, . . . , �d-diversity is defined in in [11].
3 Section 4.3 of [16].
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process described in our algorithm. Decomposition accomplishes this by adding
a value from the set defined by LSV (Si, G)−G.Si where Si is the non primary
SA, Ts is the Sensitive Table, �� is natural join, and Spri is the primary SA.
If this set contanins more than one element, Decomposition randomly chooses
a value and merges it with the SA-group, assumes that all values in the set
are equally distant from the original offending value and therefore any value
chosen from the set is equally valid. However this may not be the case. For
example, comparing Table 3 and 6, we see that the value ’4’ has been added
as noise because tuple 5 and 8 appear have the same value 2 for salary. Now,
LSV (Salary, G1) = {1, 2, 4, 7, 8} and LSV (Salary, G1) − G1.Salary = {4, 7}.
Now, the offending value is 2. Clearly 4 and 7 are not equally distant from
2. Therefore it is necessary to devise a method to choose a noise value which
is semantically closest to the offending value. To quantify semantic distance
between sensitive attributes, we use the Hierarchical Distance[6], considering
the fact that in �-diversity essentially treats all attributes in the SA-group as
categorical data[5]. Hierarchical Distance is defined as follows: if H be the height
of the domain hierarchy tree, the distance between two attribute values v1 and
v2 is defined to be level(v1, v2)/H, where level(v1, v2) is the height of the lowest
common ancestor node of v1 and v2. Our algorithm, Decomposition+, accepts
as input a hierarchy tree for every non-primary sensitive attribute. In light of
the above discussions, our algorithm Decomposition is as follows:

Table 5. Residual tuples in each group for different
values of �pri

Attribute No. Distinct Values �per

Age (1) 73 n.a
Final-Weight (2) 100 n.a

Marital Status (3) 7 n.a
Race (4) 5 n.a

Gender (5) 2 n.a

Work-class (6) 14 7
Education (7) 16 3

Hours per week (8) 99 2
Relationship (9) 6 3

Table 6. SAs from Table 1
without addition of noise

Group Occupation Salary

1 Police 1
1 Nurse 2
1 Actor 8
1 Clerk

2 Nurse 2
2 Actor 4
2 Cook 7
2 Clerk 9

4.1 Algorithm for Decomposition+

Input: (i)Table T with sensitive attributes S1, S2, S3 . . . Sd, one of them being
the primary: Spri, (ii) Diversity parameters �1, �2, �3 . . . �d, (iii) The hierarchical
category tree Hi of each Si where i �= pri, 1 ≤ i ≤ d, (iv)Penalty Threshold
P threshold

s

Data: (i)B, the set of buckets formed by primary sensitive attributes. B = (Bi),
(ii)G = Φ, G is the set of SA-groups.
Output: the decomposed table T∗ which satisfies (�1, �2, . . . �d)-diversity
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Algorithm:

1. Sort B by decreasing size
2. while |B| ≥ �pri

2.1 Randomly remove one tuple from B0. 2.2 set G = {t1};
2.3 for i← 2 to �pri

2.3.1 Remove one tuple ti from Bi, that minimizes P (ti, G);
2.3.2 G = G

⋃
t;

2.3.3 Mark any attribute values which repeat
2.4 G = G⋃

G;
3 foreach residual tuple t
3.1 if Ps(t) > P threshold

s then
3.1.1 Find SA group G that minimizes P (t, G);
3.1.2 G = G

⋃
t; mark any attribute values which repeat

4 foreach non-primary sensitive attribute Si and each SA-group G
4.1 if G.Si does not satisfy �i-diversity then
4.1.1 LSV (G, Si) =

∏
Si T S �� G.Spri −G.Si;

4.1.2 RV ← repeated value in Si;
4.1.3 Select value N from LSV (G, Si) such that hierarchical distance H(vi, RV )
is minimized (where vi is a member of the set LSV (G, Si))
4.1.4 Merge N into G.Si until G.Si satisfies �i-diversity.

4.2 Discussion

Based on the theoretical improvements proposed, and the algorithm presented,
we may conclude that (i)our algorithm builds upon Decomposition by allowing
tuples to be added to the underlying dataset after it has been anonymized and
published. This facilitates greater flexibility in real life scenarios where tuples
may be added removed or updated and may appear in multiple releases of the
same data, (ii)the addition of new tuples does not dilute the protection offered
in previous releases of the data, (iii)the proposed algorithm Decomposition+
also chooses a better noise value compared to Decomposition, which chooses
randomly over the allowed values, (iv)Decomposition+ chooses noise value as
close to the original value. This provides better utility, especially when the space
of allowed noise values are large and when Decomposition chooses a particularly
distant noise value. This is done while maintaining �-diversity.

5 Experiments

To experimentally evaluate our proposed algorithm, we implemented Decomposi-
tion+ and applied it on the UCI Adult Dataset[8]. Experiments were conducted
on a workstation running Ubuntu 11.04 (32-bit) with 3 GB RAM. Decompo-
sition+ and associated preprocessing tools were implemented in Python v2.7.
Data was supplied to the programs in Comma Separated Values format. Some
analysis was done using Microsoft Excel 2007. The dataset was preprocessed
in the same manner as described in [11] for a level playing field: (i)There were
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32561 tuples in the dataset and after removing tuples with missing attribute in-
stances, 30162 records were left, (ii) out of 14 attributes of the Adult dataset Nine
(9) attributes were retained: Age, Final-Weight, Martial Status, Race, Gender,
Work-class, Education, Hours per Week and Relationship, (iii)Work-class was
used as Primary Sensitive Attribute, (iv)of these, the first four attributes were
deemed as QIDs and the remaining were deemed as MSA, with corresponding
�-diversity parameters of 7, 3, 2, 3 respectively.

Occurrence of residual tuples: In the first instance, in order to study the
effect of the choice of �pri on the number of tuples, we published only those tuples
which are grouped during the largest � group forming procedure for different
input values for �pri between 0 and the maximum permissible value, 7. The
importance of this analysis is that the higher the value of �pri chosen, the greater
will be the protection offered. However, the greater the number of tuples which
remain unpublished, the more the published data will differ from the original (See
Table 7(a)). In the current scenario �pri = 5 would be a good tradeoff between
privacy and future utility. If the data were to have a more even distribution of
primary sensitive attribute instances, a higher value of �pri would be preferable.

Performance: In order to measure how the choice of �pri affects performance, we
used the Python module CProfile to measure running times for different values
of �pri. Results are given in Figure 7(b). The results we recorded are significantly
faster than those reported by Ye et al for Decomposition. However, this could be
because of multiple causes such as CPU speed and implementation dependency.
What is clear is that a smaller value of �pri causes larger number of buckets to
be formed which require exponentially greater CPU seconds to distribute among
SA-groups. We also noticed that the calculation of Diversity Penalty requires a
inordinately large amount of CPU cycles (about 43.7% of total time).

Table 7. Results of our experiments

(a) Residual tuples in each group for dif-
ferent values of �pri

7 6 5 4 3 2 1

929 - - - - - -
1060 117 - - - - -
1265 322 0 - - - -
2053 1110 412 0 - - -
2485 1542 844 1 0 - -
22272 21329 20631 19661 18348 14410 0

(b) �pri versus perfor-
mance (in CPU sec-
onds)

6 Conclusion and Further Work

Decomposition+ is an interesting and practical improvement, albeit one of many
possible improvements, of Decomposition. Other improvements could be targeted
to improve the efficiency of largest � group forming procedure. Ye et al. do not
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specify the nature of how the set of all buckets in Decomposition, are formed. In
our opinion, because buckets are reduced in size by one, a specific optimized data-
structure to represent the collection of buckets can be useful. Further work could
be extended to two interesting directions. One would be to apply decomposition
over MSA to achieve (n, t)-closeness or other privacy models. The second, and
more important work would be to apply Decomposition to very large datasets,
which are known to suffer from the Dimensionality Curse[3].
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