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Abstract. In this paper, a fractional order digital differentiator is de-
signed by using Inverse multiquadric radial basis function (RBF). First,
the RBF interpolation approach is described. Then, the non-integer de-
lay sample estimation is derived by using RBF approach. Next, the
Grünwald-Letnikov derivative and non-integer delay sample delay are
applied to obtain the transfer function of the proposed method i.e. frac-
tional order digital differentiator. The design accuracy of the proposed
method is better then the conventional methods like examples Time do-
main least squares method, Fractional sample delay method and Fre-
quency response approximation method.

Keywords: Digital differentiator, fractional derivative, non-integer
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1 Introduction

During the past three decades, fractional calculus has received a great deal of
attention in many engineering applications and science including fluid flow, auto-
matic control, electrical networks, electromagnetic theory and image processing
[1]-[4]. Fractional dimension is used to measure some real-world data such as
coastline, clouds dust in the air and network of neurons in the body [5]-[6]. We
aim out interests at the digital realization of fractional derivative, which named
as digital fractional order differentiator (FOD). Because digital FOD can deter-
mine and estimate the more characteristic of a given digital signal than integral
order differentiator (IOD), it has been being an especial and useful tool in many
increasing application, such as fractional order controls, radar and sonar process-
ing, nonlinear or chaos time series processing and forecasting, geological signal
detecting and processing, image processing etc. Fractional sample delay has be-
come an important device in the applications of time adjustment in the digital
receiver, antenna array processing, speech coding and synthesis, modelling of
musical instrument, and comb-filter design etc [7]-[10].
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The integer order n of derivative Dnf(x) = (dnf(x)/dxn) of function is gener-
alized to fractional order Dvf(x), where v is a real number. One of the important
research topics in fractional calculus is to implement the fractional operator Dv

in continuous and discrete time domain. An excellent survey of this implemen-
tation has been presented in [11]. Some techniques have been used already for
the rational function approximation of continuous-time case i.e. curve fitting,
evaluation and interpolation. These methods include Carlson’s method, Roy’s
method, Chareff’s method and Oustaloup’s method [12]-[15]. For discrete-time
case, there have been several methods presented to design finite-impulse-response
(FIR) and infinite-impulse-response (IIR) filters for implementing operator Dv,
including fractional differencing formula or Euler method, Tustin method, con-
tinued fraction method, least square method and Prony’s method [16]-[22].

On the other hand, the radial basis function (RBF) has been widely used in mul-
tivariate interpolation, neural network, time series prediction, control of nonlinear
systems, mesh-free approximation, and target tracking in voice data [23]-[26]. The
early work has been done on the designing of fractional order differentiator using
Gaussian radial basis function (RBF) [28]. But in this paper we are using Inverse
multiquadric basis function (RBF). The theory and implementation of radial ba-
sis function(RBF) is surveyed in the book [27]. A radial basis function is defined
as a real valued function φ(t), whose value depends only on the distance from the
origin. The notation | · | denotes the absolute value. Generally the radial basis
function are used i.e. Gaussian, Inverse multiquadric, Raised-Cosine.

Gaussian : φ(t) = exp−t2/σ2 (1)

InverseMultiquadric : φ(t) = σ/
√

t2 + σ2 (2)

Raised− Cosine : φ(t) = 1/2 ∗ σ(1 + cos(π ∗ t/σ)) (3)

where σ is known as the shape parameter, which is used to change the shape of
function φ(t). The purpose of this paper is to use RBF interpolation approach to
design the fractional order digital differentiator. The design error can be reduced
using RBF interpolation approach by varying the shape parameter of radial basis
function.

This paper is organized as follows: In section II, the radial basis interpolation
method is described. By using the radial basis function interpolation the values of
non-integer delay sample estimation of discrete-time sequence is obtained. In sec-
tion III, apply the definition of fractional derivative i.e. Grünwald-Letnikov and
non-integer delay sample estimation for obtaining the transfer function of frac-
tional order differentiator. And, some numerical examples have given in this paper
which show the effectiveness of this design approach. Finally, a conclusion is made.

2 Radial Basis Function

In this section the RBF interpolation method is first described [28]. Then, this
interpolation method is applied to solve the non-integer delay sample estimation
problem which is used in the design of fractional order differentiator in next section.
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Radial Basis Function Interpolation The details of Radial basis function
interpolation method can be found in [26]. Now this method is described briefly
below: Given a set of N+1 different points t0, t1, t2, t3, · · · , tN and a correspond-
ing set of N + 1 real numbers s0, s1, s2, · · · , sN , the interpolation problem is to
find a function s(t) that satisfies the interpolation condition

s(tk) = sk k = 0, 1, 2, · · · , N (4)

The RBF interpolation method consists of choosing a function s(t) that has the
following term

s(t) =
N∑

k=0

wkφ(|(t − tk)|) (5)

The above equation can be written in the matrix form as

⎡

⎢
⎢
⎢
⎢⎢
⎣

φ(|(t0 − t0)|) φ(|(t0 − t1)|) φ(|(t0 − t2)|) · · · φ(|(t0 − tN )|)
φ(|(t1 − t0)|) φ(|(t1 − t1)|) φ(|(t1 − t2)|) · · · φ(|(t1 − tN )|)
φ(|(t2 − t0)|) φ(|(t2 − t1)|) φ(|(t2 − t2)|) · · · φ(|(t2 − tN )|)

...
...

...
. . .

...
φ(|(tN − t0)|) φ(|(tN − t1)|) φ(|(tN − t2)|) · · · φ(|(tN − tN )|)

⎤

⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢
⎢⎢
⎣

w0

w1

w2

...
wN

⎤

⎥
⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢
⎣

s0

s1

s2

...
sN

⎤

⎥
⎥
⎥
⎥⎥
⎦

Function s(t) represent a sum of N +1 radial basis function, each associated with
a different center tk and weighted coefficient is wk. substituting interpolation
condition of (4) into (5), we get the following simultaneous linear equation

φ(|(tm − tk)|) = φmk

⎡

⎢
⎢
⎢
⎢
⎢
⎣

φ00 φ01 φ02 · · · φ0N

φ10 φ11 φ12 · · · φ1N

φ20 φ21 φ22 · · · φ2N

...
...

...
. . .

...
φN0 φN1 φN2 · · · φNN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

w0

w1

w2

...
wN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎣

s0

s1

s2

...
sN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(6)

Let vectors S and W be

S =
[
s0 s1 s2 · · · sN

]T (7)

W =
[
w0 w1 w2 · · · wN

]T (8)

Where ϕ denotes an (N + 1) × (N + 1) matrix with the element φmk, then (6)
can be written as

ϕW = S (9)
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if t0, t1, t2, t3, · · · , tN are distinct points, then the matrix ϕ is non-singular ma-
trix. Thus the unknown vector W is given by

W = ϕ−1S (10)

s(t) is computable for the given t and it can be obtained only if the value of W
is known.

2.1 Non-integer Delay Sample Estimation

In the following, we will use the RBF interpolation method to solve the non-
integer delay sample estimation problem because the proposed fractional order
differentiator design method is based on this estimation method. The problem
to be studied is how to estimate the non-integer delay sample s(n− d) from the
given integer delay samples s(n), s(n − 1), s(n − 2), · · · , s(n − N), where N is
an integer and d is a real number in the interval d ∈ [0, N ]. In this paper we
use weighted average approach that is to find the non-integer delay samples is
estimated by

s(n − d) =
N∑

m=0

g(m, d)s(n − m) (11)

Now, the remaining problem is how to use the RBF interpolation method to
determine the weights g(m, d). To solve this problem, let us choose tk = n − k
and sk = s(n − k), then the RBF interpolation in (5) becomes

s(t) =
N∑

k=0

wkφ(|(t − tk)|)

s(t) =
N∑

k=0

wkφ(|(t − (n − k))|) (12)

Because tk = n − k and tm = n − m, are chosen we have

φ(|(tm − tk)|) = φ(|k − m|) = φmk (13)

Using the above expression and sk = s(n − k), the new simultaneous linear
equation in (6) reduces to

⎡

⎢
⎢⎢
⎢
⎢
⎣

φ(0) φ(1) φ(2) · · · φ(N)
φ(1) φ(0) φ(1) · · · φ(N − 1)
φ(2) φ(1) φ(0) · · · φ(N − 2)

...
...

...
. . .

...
φ(N) φ(N − 1) φ(N − 2) · · · φ(0)

⎤

⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢
⎣

w0

w1

w2

...
wN

⎤

⎥
⎥⎥
⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢
⎣

s(n)
s(n − 1)
s(n − 2)

...
s(n − N)

⎤

⎥
⎥⎥
⎥
⎥
⎦

(14)
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This equation can be shortened as the form of ϕW = S as described in (9).
Clearly, ϕ is an Symmetric matrix and Toeplitz matrix. Let the inverse of matrix
ϕ be denoted by

ϕ−1 =

⎡

⎢
⎢
⎢
⎢⎢
⎣

α00 α01 α02 · · · α0N

α10 α11 α12 · · · α1N

α20 α21 α22 · · · α2N

...
...

...
. . .

...
αN0 αN1 αN2 · · · αNN

⎤

⎥
⎥
⎥
⎥⎥
⎦

(15)

We know that, W = ϕ−1S

⎡

⎢
⎢
⎢
⎢⎢
⎣

w0

w1

w2

...
wN

⎤

⎥
⎥
⎥
⎥⎥
⎦

= ϕ−1

⎡

⎢
⎢
⎢
⎢⎢
⎣

s(n)
s(n − 1)
s(n − 2)

...
s(n − N)

⎤

⎥
⎥
⎥
⎥⎥
⎦

=

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

∑N
m=0 α0ms(n − m)∑N
m=0 α1ms(n − m)∑N
m=0 α2ms(n − m)

...∑N
m=0 αNms(n − m)

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

(16)

Above expression implies that

wk =
N∑

m=0

αkms(n − m) k = 0, 1, 2, · · · , N (17)

substituting (17) into (12)

s(t) =
N∑

k=0

wkφ(|(t − (n − k))|)

s(t) =
N∑

k=0

(
N∑

m=0

αkms(n − m))φ(|(t − (n − k))|
)

s(t) =
N∑

m=0

(
N∑

k=0

αkmφ(|(t − (n − k))|)
)

s(n − m) (18)

Taking t = n − d for the expression in the discrete form

s(n − d) =
N∑

m=0

(
N∑

k=0

αkmφ(|(k − d)|)
)

s(n − m) (19)

After comparing the eq.(19) with (11),we get the weights g(m,d)

g(m, d) =
N∑

k=0

αkmφ(|(k − d)|) (20)
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Finally, given the radial basis function φ(t) and estimate the non-integer de-
lay sample s(n − d) from the given integer delay samples s(n), s(n − 1), s(n −
2), · · · , s(n − N) is summarized below:

Step 1) Compute the matrix ϕ whose matrix elements are given by φmk =
φ(|k − m|).

Step 2) Calculate the inverse matrix ϕ−1 with element αkm.
Step 3) Use (20) to compute the weights g(m,d).
Step 4) The non-integer delayed sample is estimated by

s(n − d) =
N∑

m=0

g(m, d)s(n − m)

In the next section with the help RBF based non-integer delay estimation method
to design the fractional order differentiator.

3 Design of Fractional Order Differentiator

In this section fractional derivative will be explained and then apply RBF based
non-integer delay sample estimation method to obtain the transfer function of
the fractional order differentiator.

3.1 Fractional Derivative

There are several definiton for fractional integral and fractional derivative to
obtain the transfer function of the fractional order differentiator such as the
Riemann-Liouville, the Grünwald-Letnikov and Caputo definitions [1]-[4]. But
in this paper we will use the Grünwald-Letnikov definition which is given by

Dvs(t) = lim
h→0

∞∑

k=0

(−1)kCv
k

hv
s(t − kh) (21)

Where coefficient Cv
k is given by

Cv
k = Γ (v+1)

Γ (k+1)Γ (n−k+1)

=

{
1 k = 0
v(v−1)(v−2)···(v−k+1)

1.2.3···k k ≥ 1
(22)

The above notation Γ (.) is gamma function. Based on this definition, the frac-
tional derivative of exponential and sinusoidal signals are given by

Dveαt = αveαt (23)

DvA sin(wt + φ) = Awv cos(wt + φ) = Awv sin(wt + φ +
π

2
v) (24)



38 N. Kumar and T.K. Rawat

The fourier transform of Dvs(t) is (jw)vS(w). This means that when a signal
s(t) passes through a differentiator with frequency response (jw)v , then the
output of the differentiator is the fractional derivative Dvs(t). Thus the ideal
frequency response of fractional order differentiator is (jw)v. So we will use the
Grünwald-Letnikov derivative method in (21) and RBF-based non-integer delay
sample estimation method to design fractional order differentiator.

3.2 Design of Fractional Order Differentiator

Now we will use the RBF interpolation method and Grünwald-Letnikov deriva-
tive to design a fractional order digital differentiator that approximates the fol-
lowing frequency domain specification as well as possible:

Hd(w) = (jw)ve−jwI (25)

Where I is a prescribed delay value. First, let us define coefficient a(k) below

a(k) = (−1)kCv
k (26)

Eq.(21) can be written as

Dvs(t) = lim
h→0

∞∑

k=0

(−1)kCv
k

hv
s(t − kh)

Dvs(t) = lim
h→0

∞∑

k=0

a(k)
hv

s(t − kh) (27)

Fig.1 show the coefficient response of a(k) for various order. Figure shows that
a(k) is rapidly decaying sequence for various order v. Thus after truncation the
eq.(27) can be approximated by

Dvs(t) ≈ lim
h→0

L∑

k=0

a(k)
hv

s(t − kh) (28)

Where L is the truncation length. Moreover by removing the limit, the Dvs(t)
can be approximated by

Dvs(t) ≈
L∑

k=0

a(k)
hv

s(t − kh) (29)

Where h is the smaller and the better approximation in (29). By taking t = n−I,
the discrete-time derivative signal Dvs(n − I) can be obtained as

Dvs(n − I) ≈
L∑

k=0

a(k)
hv

s(n − I − kh) (30)
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because s(n−I−kh) are non-integer delay samples of signal s(n), the s(n−I−kh)
needs to be estimated by using the formula (11):

s(n − I − kh) =
N∑

m=0

g(m, I + kh)s(n − m) (31)

Substitute the value of s(n − I − kh) in eq.(30)

Dvs(n − I) ≈
L∑

k=0

a(k)
hv

N∑

m=0

g(m, I + kh)s(n − m)

Dvs(n − I) =
N∑

m=0

[
1
hv

L∑

k=0

a(k)g(m, I + kh)

]

s(n − m) (32)

Defining the coefficients

b(m) =
1
hv

L∑

k=0

a(k)g(m, I + kh) (33)

then eq.(32) can be written as

Dvs(n − I) ≈
N∑

m=0

b(m)s(n − m)

Dvs(n − I) = b(n) ∗ s(n) (34)

Where ∗ denotes the convolution sum operator. Taking the z-transform at both
sides of eq.(34), we get

Y (z) =

(
N∑

m=0

b(m)z−m

)

S(z) (35)

Y(z) is the z-transform of Dvs(n−I) using the property of z-transform and S(z)
is the z-transform of s(n).

The definition of FIR filter can be defined as

B(z) =
N∑

m=0

b(m)z−m (36)

Ideally the frequency response of FIR filter is (jw)ve−jwI and eq.(36) show the
transfer function of fractional order digital differentiator. Now, given the radial
basis function φ(t) with shape parameter σ, integer N , fractional order v, delay
I, integer L and small positive number h, the procedure to design fractional
order digital differentiator B(z) is summarized below:
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Step 1) Compute the matrix ϕ whose elements are given by φmk = φ(|k−m|).
Step 2) Calculate the inverse matrix ϕ−1 with element αnm.
Step 3) Use (20) to compute the weights

g(m, I + kh) =
N∑

n=0

αnmφ(|n − I − kh|).

Step 4) Compute the coefficient of a(k) by using (26).
Step 5) Use (33) to calculate the coefficients of b(m).
Step 6) The transfer function of the designed fractional order differentiator is

given by B(z) =
∑N

m=0 b(m)z−m.

Finally, some remarks are made follows: First, a large integer L needs to be
chosen for reducing errors which occur in (28). Second, a smaller positive number
h needs to be chosen for reducing the approximation error which occur in (29).
Third, if N is large, the designed fractional order digital differentiator is a long
FIR filter. To reduce the calculation complexity and implementation complexity
the Prony Method in [30] can be used to approximate the long-length FIR filter
B(z) by an IIR filter below

B̄(z) =
∑N1

n=0 b1(n)z−n

1 +
∑N1

n=1 b2(n)z−n
(37)

The coefficient of b1(n) and b2(n) can be obtained by putting B(Z) equal to the
B̄(z), then we get an expression.

(
N∑

m=0

b(m)z−m

)(

1 +
N1∑

n=1

b2(n)z−n

)

=
N1∑

n=0

b1(n)z−n

(
N∑

m=0

b(m)z−m

)

+

(
N∑

m=0

N1∑

n=1

b(m)b2(n)z−nz−m

)

=
N1∑

n=0

b1(n)z−n (38)

Using the convolution operator, this equation reduces to

b(n) +
N1∑

k=1

b2(k)b(n − k) =

{
b1(n) 0 ≤ n ≤ N1

0 N1 + 1 ≤ n ≤ N
(39)

The above first N1 + 1 equalities can be written in matrix form as

⎡

⎢
⎢⎢
⎢
⎢
⎣

b(0) 0 0 · · · 0
b(0) b(0) 0 · · · 0
b(2) b(1) b(0) · · · 0

...
...

...
. . .

...
b(N1) b(N1 − 1) b(N1 − 2) · · · b(0)

⎤

⎥
⎥⎥
⎥
⎥
⎦

⎡

⎢
⎢⎢
⎢
⎢
⎣

1
b2(1)
b2(2)

...
b2(N1)

⎤

⎥
⎥⎥
⎥
⎥
⎦

=

⎡

⎢
⎢⎢
⎢
⎢
⎣

b1(0)
b1(1)
b1(2)

...
b1(N1))

⎤

⎥
⎥⎥
⎥
⎥
⎦

(40)
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Eq.(39) for N1 + 1 ≤ n ≤ N can be written in matrix form as

⎡

⎢
⎢
⎢
⎢⎢
⎣

b(N1) b(N1 − 1) b(N1 − 2) · · · b(1)
b(N1 + 1) b(N1) b(N1 − 1) · · · b(2)
b(N1 + 2) b(N1 + 1) b(N1) · · · b(3)

...
b(N − 1) b(N − 2) b(N − 3) · · · b(N − N1)

⎤

⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎢
⎢⎢
⎣

b2(1)
b2(2)
b2(3)

...
b2(N1)

⎤

⎥
⎥
⎥
⎥⎥
⎦

= −

⎡

⎢
⎢
⎢
⎢⎢
⎣

b(N1 + 1)
b(N1 + 2)
b(N1 + 3)

...
b(N)

⎤

⎥
⎥
⎥
⎥⎥
⎦

(41)

In the Prony method, we assume that N > 2N1 + 1. Thus from the eq.(41)
we can get the coefficient of b2(n) using least square method. Once the b2(n)
obtained then we can obtained the coefficient of b1(n) from the eq.(40). Under
the condition N > 2N1+1, we prefer to choose a large N1 for reducing the error.
The complexity of IIR filter implementation B(z) will be increased as increasing
the order N1. So N1 must be chosen by considering the trade-off between the
error and complexity. In our experience N1 must be chosen in the interval [5, 20].

4 Design Example

In this subsection we will study about the design error and compare the per-
formance of RBF-based fractional order digital differentiator with conventional
methods. To evaluate the performance of the RBF, the least squares error of
frequency response is defined by

E =

√∫ λπ

0

|B(ejw) − Hd(w)|2dw (42)

The smaller the error E is, the better performance of the design method has.

Example 1 : In this example, we will study the magnitude and phase response for
the Gaussian radial basis function φ(t) in (1). The design parameters are chosen
as N = 60, I = 30, L = 620, h = 0.05, and λ = 0.9. Moreover, Fig. 2(a),(b) show
the magnitude and phase responses (solid line) for the Gaussian with σ = 2.3
and order v = 0.5. In Fig. 2(a) the dashed line show the ideal magnitude response
wv. Fig. 2(b) show the phase response 90∗ [angleB(ejw)+wI]/0.5π. In Fig. 2(b)
the dashed line show the ideal phase response 90v.

Example 2 : In this example, we will study the magnitude and phase response for
the Inverse multiquadric radial basis function φ(t) in (2). The design parameters
are chosen as N = 60, I = 30, L = 620, h = 0.05, and λ = 0.9. Moreover, Fig.
3(a),(b) show the magnitude and phase responses (solid line) for the Inverse
multiquadric with σ = 6.4 and order v = 0.5. In Fig. 3(a) the dashed line
show the ideal magnitude response wv . Fig. 3(b) show the phase response 90 ∗
[angle(B(ejw)) + wI]/0.5π. In Fig. 3(b) the dashed line show the ideal phase
response 90v.
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Fig. 1. The coefficient sequence a(k) for various order v
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Fig. 2. (a) Magnitude response. (b) Phase response. Solid line show the designed results
and dashed line show the ideal response for Gaussian RBF.
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Fig. 3. (a)Magnitude response. (b) Phase response. Solid line show the designed results
and dashed line show the ideal response for Inverse multiquadric RBF.

Example 3 : In this example, let us compare the proposed method with the
conventional time domain least-squares method in [20] whose design procedure
is described below:
Step 1) Expand the fractional order Tustin differentiator [U(z)]v in [20] as the
following power series form:

[U(z)]v =
(

2
1 − z−1

1 + z−1

)v

[U(z)]v = 2v

[ ∞∑

k=0

Cv
k (−z−1)k

][ ∞∑

k=0

C−v
k z−k

]

[U(z)]v = 2v

(

1 +
∞∑

k=1

u(k)z−k

)

Where filter coefficient u(k) is the convolution sum of (−1)kCv
k and C−v

k . After
truncating the higher order terms, [U(z)]v can be approximated by FIR filter

Ū(z) = 2v

(

1 +
Nc∑

k=1

u(k)z−k

)

(43)

Where Nc is the truncation length.
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Fig. 4. Solid line show the designed results of fractional order IIR differentiator (a),
(b) The results of Û(z) in conventional method (c), (d) The results of B̄(z) in proposed
method. The dashed line is the ideal response.

Step 2) Using the Prony method, the long-length FIR filter Ū(z) can be approx-
imated by IIR filter:

Û(z) =
∑N2

n=0 u1(n)z−n

1 +
∑N2

n=1 u2(n)z−n
(44)

Û(z) = Ū(z)

2v

[

u(n) +
N2∑

k=1

u2(n)u(n − k)

]

=

{
u1(n) 0 ≤ n ≤ N2

0 N2 + 1 ≤ n ≤ N
(45)

Now, one example is used to compare this conventional design method with
the proposed design method in (37). The parameters in conventional design are
chosen as Nc = 60, N2 = 10, v = 0.5. Fig. 4(a),(b) show the magnitude and
phase response (solid line) of the designed differentiator Û(z). The dashed line
is the ideal response. The maximum pole radius is 0.9719, so IIR filter Û(z) is
stable. From this result the error of phase is very small. But the magnitude error
at high frequency band is very large. After B(ejw) in (42) is changed to Û(ejw),
the error with λ = 0.9 is 13.6095 for this traditional design. For comparison,
the designed result of proposed RBF method are reported below. The design
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Fig. 5. The designed results (Solid line) of the fractional order FIR differentiator. (a),
(b) The results of the method in [21]. (c), (d) The results of the proposed method. The
dashed line is the ideal response.

parameter are chosen as N = 60, I = 9, L = 620, h = 0.05, N1 = 10, v = 0.5 and
Inverse Multiquadric RBF with σ = 6.4. Fig. 4(c),(d) show the magnitude and
phase response (solid line) for the designed IIR differentiator B̄(z) in (37). The
dashed line is the ideal response. Compared Fig. 4(a), (b) and Fig. 4(c), (d), it
can be observed that the proposed RBF method has better magnitude response
than conventional method. However, the phase response error of conventional
approach is smaller than the proposed method. After B(ejw) in (42) is changed
to B̄(ejw), the error E with λ = 0.9 is 2.7449 for the proposed RBF design.
Thus, the above result show that the proposed method has smaller error than
the conventional method.

Example 4 : In this example, let us compare the proposed method with the
conventional method in [21] where fractional order FIR differentiator has been
designed by using frequency response approximation approach.

The transfer function for the frequency response approximation is given as

H(ejw) =
N∑

m=0

a(m) cosmw + j

N∑

m=0

b(m) sinmw, w ∈ [−π, π]

H(z) =
N∑

m=0

a(m)
2

(zm + z−m) +
N∑

m=0

b(m)
2

(zm − z−m)
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Fig. 6. The designed results (solid line) of the fractional order FIR differentiator. (a),
(b) The results of the fractional delay method in [22]. (c), (d) The results of the
proposed method. The dashed line is the ideal response.

H(z) = a(0) +
N∑

m=1

a(m) + b(m)
2

zm +
N∑

m=1

a(m) − b(m)
2

z−m

When the design parameters are chosen as N = 10, I = 5 and v = 1.5, the FIR
filter coefficient b(m) in (33) can be obtained from the data in column 3 of Table
1 of [21]. Fig. 5(a),(b) show the magnitude and phase response (solid line) of this
conventional method. The dashed is the ideal response. For comparison under the
same implementation complexity, the design parameters of the proposed method
are chosen as N = 10, I = 5, v = 1.5, L = 620, h = 0.01 and Inverse multiquadric
RBF with σ = 6.4. Fig. 5(c),(d) show the magnitude and phase responses (solid
line) for the designed FIR differentiator B(z) in (36). The dashed line is the
ideal response. Now the error comparison is made. If λ = 0.72 is chosen, the
error E of conventional method in [21] is 0.019 and the error E of proposed
method is 0.0198. Thus, the results show that the error is approximately equal
to the conventional method in the frequency band [0, 0.72π]. When λ = 0.9 is
chosen, the error E of the conventional design method is 0.623, and the error
E of the proposed RBF design method is 0.565. Thus, the above result show
that the proposed method has smaller error than conventional method in the
frequency band [0, 0.9π].

Example 5 : In this example, we will compare the proposed method with the
conventional fractional delay method in [22].
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G(z) =
N∑

k=0

α(k)z−(Ik+fk)

G(z) =
N∑

k=0

α(k)

⎡

⎣
2Ik∑

n=0

⎛

⎝
2Ik∏

m=0,m �=n

Ik + fk − m

n − m

⎞

⎠ z−n

⎤

⎦

When the design parameters are chosen as N = 80, I = 20 and v = 0.5, the con-
ventional fractional order FIR differentiator is designed by Lagrange fractional
delay method used in Fig. 4 of [22]. Fig. 6(a),(b) show the designed results (solid
line) of this method. The dashed line is the ideal response. It can be seen that
the phase response does not fit the ideal response well. Moreover, the design
parameters of the proposed method are chosen as N = 80, I = 20, v = 0.5,
L = 620, h = 0.02 and the Inverse multiquadric RBF with σ = 6.4. Fig. 6(c),(d)
show the magnitude and phase response (solid line) for the designed fractional
order FIR differentiator. The dashed line is the ideal response. If λ = 0.9 is cho-
sen, the error E of conventional fractional delay method in [22] is 0.2587, and
the error E of proposed RBF method is 0.0316. Thus, the above result shows
that the proposed method has a smaller error than the conventional method.

5 Conclusion

In this paper, an fractional order digital differentiator has been designed by
using Inverse multiquadric radial basis function (RBF). First, the RBF inter-
polation approach is described. Then, the non-integer delay sample estimation
is derived by using RBF approach. Next, the Grünwald-Letnikov derivative and
non-integer delay sample delay are applied to obtain the transfer function of the
proposed method i.e. fractional order digital differentiator. The design accuracy
of the proposed method is better then the conventional methods like examples
Time domain least squares method, Fractional sample delay method and Fre-
quency response approximation method. However, only the one-dimensional case
is studied here. Thus, it is interesting to extend the proposed method to design
a two-dimensional fractional order digital differentiator in the future.
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