
Hybrid Intrusion Detection

with Rule Generation

V.V. Korde, N.Z. Tarapore, S.R. Shinde, and M.L. Dhore

Department of Computer Engineering, Vishwakarma Institute of Technology, Pune
{korde.vaibhav,ntarapore}@yahoo.com

Abstract. This paper reports a new experimental hybrid intrusion de-
tection system (HIDS). This hybrid system combines the advantages of
Misuse-based intrusion detection system (IDS) having low false-positive
rate and the ability of anomaly detection system (ADS) to detect novel
unknown attacks. This is done by mining Internet connections records
for anomalies. We have built ADS that can detect attacks not detected
by Misuse-based systems like Snort or Bro systems. Rules are extracted
from detected anomalies and then are added to Misuse-based system’s
rule database. Thus Misuse-based intrusion detection system can detect
new attacks. The system is trained and tested using Massachusetts Insti-
tute of Technology/ Lincoln Laboratory (MIT/LL) DARPA 1999 dataset
respectively. Our experimental results show a 69 percent detection rate
of the HIDS, compared with 47 percent in using the Snort. This increase
in detection rate is obtained with around 0.08 percent false alarms. This
approach provides a better way to deal with novel attacks using ADS
along with a trustworthy misuse-based Intrusion detection system.

1 Introduction

The widespread use of Internet and computer networks experienced in the past
years has brought, with all its benefits, another kind of threat: those of people
using illicit means to access, invade and attack computers. One can use a firewall
as a preventive measure to maintain the security goals of computer networks.
But, it simply restricts access to the designated points. A computer network
intrusion is a sequence of related actions by a malicious adversary whose goal is
to violate some policy regarding appropriate use of computer network. Since a
preventive approach such as firewall is not enough to provide sufficient security
for computer system, intrusion detection systems (IDSes) are introduced as a
second line of defense.

IDSes can be distinguished by their differing approaches to event analysis.
Misuse-detection is the most widely used approach in commercial IDS tech-
nology today. But the problem with these systems is that they cannot detect
novel attacks. Another approach is called anomaly detection. It uses rules or
predefined concepts about “normal” and “abnormal” system activity to distin-
guish anomalies from normal system behavior and to monitor, report, or block
anomalies as they occur. Anomaly based Intrusion Detection System has the

N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 345–354, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

346 V.V. Korde et al.

benefit of detecting novel attacks but has high false positive rate. On the other
hand, misuse-based systems are rule-based having higher accuracy. Misuse-based
Intrusion Detection System fails to detect novel attacks. To overcome these lim-
itations, both Anomaly-based and Misuse-based Intrusion Detection Systems
should be combined.

In this paper, a new hybrid intrusion detection system (HIDS) is presented.
This system combines the positive features of both intrusion detection models
to achieve higher detection accuracy, lower false alarms, and thus a raised level
of cyber-trust. Our HIDS is network-based, which should not be confused with
the host-based IDS with the same abbreviation by other.

The rest of the paper is organized as follows: Section 2 reviews related works
and distinguishes the new approach from previous solutions. Section 3 gives
system design internals. We present system implementation details in Section 4.
Experimental performance results are reported in Section 5.

2 Related Works and Our Approach

A significant amount of research has been done and various approaches has been
used for designing an Intrusion Detection System These approaches attempt to
build some kind of a model over the normal data and then check to see how well
new data fits into that model [3],[4],[5]. In the past, data mining techniques such
as using association rules were suggested to build IDS [7].

Daniel Barbara, et al., [3] described the design and experiences with the
ADAM (Audit Data Analysis and Mining) system, which was used as a testbed
to study how useful data mining techniques can be in intrusion detection. L.
Ertoz, et al [4] introduced the Minnesota Intrusion Detection System (MINDS),
which used a suite of data mining techniques to automatically detect attacks
against computer networks and systems. H. Mannila and H. Toivonen [14] have
compared different approaches to intrusion detection systems to supply a norm
for the best-fit system. Snort [9] and Bro [10] are two widely used IDSes that
are based on the misuse mode. The MIT/LL IDS (DARPA) evaluation data
set and reported IDS performance results were analyzed in [12], [13], [11]. This
data set is used to test the effectiveness of proposed HIDS. The concept of fre-
quent episode rules (FERs) was first proposed by Mannila and Toivonen [14].
Tung-Ying Lee, et al [9] made first attempt to study a special episode rule,
named serial episode rule with a time lag in an environment of multiple data
streams.

In this paper, we propose the HIDS architecture. It is tested for its effective-
ness through experiments. The HIDS integrates the flexibility of ADS with the
accuracy of misuse-based IDS. ADS is designed by mining FERs [6], [14], over
connections from Internet traffic. New rules are generated from anomalies de-
tected by ADS. This new approach automatically enables HIDS to detect similar
attacks in the future.

Hybrid Intrusion Detection with Rule Generation 347

3 System Design Internals

In this section, we introduce the overall system design. Our aim is to combine a
misuse based detection system with an Anomaly Detection System. The misuse
based system used for this experimentation is Snort.

Snort is an open source network intrusion detection system, capable of per-
forming real-time traffic analysis and packet logging on IP networks. Snort has
three primary modes: sniffer, packet logger, and network intrusion detection.
One can write one’s own rules with Snort to suit the particular needs of one’s
network. A Snort rule is composed of two major parts: rule headers and rule
options. The rule header contains information about what action a rule takes. It
also contains criteria for matching a rule against data packets The action part

Fig. 1. Snort rule format

of the rule determines the type of action taken when criteria are met and a rule
is exactly matched against packet. Typical actions are generating an alert or log
message or invoking another rule. The protocol part is used to apply the rule
on packets for a particular protocol only. The address parts define source and
destination addresses. Source and destination addresses are determined based
on direction field. In case of TCP or UDP protocol, the port field determines the
source and destination ports of a packet on which the rule is applied. In case of
network layer protocols like IP and ICMP, port numbers have no significance.

Fig. 2. Anomaly Detection System Architecture

3.1 Anomaly Detection System

Figure 3 explains the Data mining scheme for network anomaly detection. As
shown in the figure, there are following major components.

Feature Extraction: Extracts required features from the audit data.

Episode Rule Mining Engine: This component works in two phases: training
and testing.

348 V.V. Korde et al.

Anomaly Detection Engine: In accordance with normal profile database the
anomaly detection engine checks the newly received rules with that of those
stored in the database. Depending on the results it triggers the Alarm generation
component.

Alarm Generation: This component will generate alarm.

3.2 Episode Rules

An Internet episode is represented by a sequence of connection events. An episode
can be generated by legitimate users or malicious attackers. Frequent episodes are
mostly resulted from normal users. A rare episode is likely caused by intruders.

Let ’T’ be a set of traffic connections and A be a set of attributes defined over
’T’. For example, ’A’ consists of timestamp, duration, service, srchost, desthost
for TCP connections. Let ’I’ be a set of attribute-value pairs defined over ’A’.
For example, I = timestamp = 15 sec, duration = 1 sec, service = http, srchost
= 192.168.1.1, desthost = 192.168.1.10 for a typical http connection.

1. Frequent Episode Rules
In general, an FER is expressed by the expression:

L1, L2,Ln → R1, R2,Rm(c, s, window) (1)

where Li(1 ≤ i ≤ n) and Rj(1 ≤ j ≤ m) are ordered itemsets in a traffic
record set T. We call L1, L2,Ln the LHS (left hand side) episode and
R1, R2,Rm the RHS (right hand side) of episode of the rule. Note that all
itemsets are sequentially ordered, that is L1, L2,Ln, R1, R2,Rm must
occur in the ordering as listed. However, other itemsets could be embedded
within our episode sequence. We define the support and confidence of rule
by the following two expressions:

s = Support(L1 ∪ L2 ∪ ∪ Ln) (2)

c =
Support(L1 ∪ L2 ∪ ∪ Ln ∪ R1 ∪ R2 ∪ ∪ Rm)

Support(L1 ∪ L2 ∪ ∪ Ln)
(3)

2. Axis Attributes
Because the FER generation does not take any domain-specific knowledge
into consideration, many ineffective FERs are generated. How to eliminate
these ineffective rules is a major problem in traffic data mining for effective
rule generation. For example, the association rule:

(srcbytes = 200) → (destbytes = 300)

is of little interest to the intrusion detection process, since the number of
bytes sent by the source (src bytes) and destination (dst bytes) is irrelevant
to the threat conditions. Lee et al [7] had introduced the concepts of axis
attributes to constrain the generation of redundant rules. All Itemsets in an

Hybrid Intrusion Detection with Rule Generation 349

FER must be built only with axis attributes. Axis attributes are indepen-
dent of attacks being detected. The choice of axis attributes will reduce the
number of FERs generated. According to Lee, axis attributes are selected
from essential attributes which are enough to identify a connection. Different
combinations of the essential attributes form the axis attributes. The axis
attributes can easily be chosen with domain knowledge.

3. Pruning of Ineffective Episode Rules
Keeping all rules generated will enlarge the search space and thus the over-
head. The following FER transformation laws will reduce the rule search
space significantly.
– Transposition of Episode Rules: Suppose we have two FERs as and .

Therefore, the second rule can be induced by the first rule. We only
need to keep the first rule. The general rule of thumb is to make the
LHS as short as possible. In general, rules with shorter LHSs are more
effective than rules with longer LHSs.

– Elimination of Redundant Episode Rules: Many FERs detected from the
network traffic have some transitive patterns. Suppose we have two rules
A → B and B → C in the rule set. Then, the longer rule A → B, C is
implied. Since we reconstruct this rule from two shorter rules, the longer
rule A → B, C becomes redundant.

4. Rule Generation
Generating the rules is the most CPU-intensive task. This is because we need
to generate all possible combinations of the sequences in a given window
size. To generate these episode rules, we first need to find the sequence of
the events occurring in the given window size. This is done by querying the
database of extracted features to retrieve the event sequence in particular
window size. Once the event sequence is retrieved it is fetched to the script
for generation of Episode rules. The script generates all Episode rules and
also finds the support and confidence for each episode rule.

3.3 MIT/LL DARPA Dataset

We have used MIT/LL’s DARPA 1999 dataset for system training and testing
purpose. DARPA 1999 dataset is a five week dataset. (Twenty-two hours a day
and five days per week). The first and third weeks of the training data do not
contain any attacks. The fourth and fifth weeks of data are the “Test Data”.
These two weeks of testing data consists of network based attacks along with
the normal background data.

3.4 System Architecture

Initially the incoming traffic will be fed to Snort to filter out known attacks
with existing rules of Snort. Then remaining traffic will be passed to Episode
Mining Engine. Episode Mining Engine will generate Frequent Episode Rules
(FER). Newly generated FER are compared with those stored in a normal profile

350 V.V. Korde et al.

database. The anomalous episodes are used to generate rules. Newly generated
rules are inserted into Snort’s attack rules database.

Fig. 3. Proposed System Architecture

4 System Implementation

In this section we first describe some tools used for implementation of the pro-
posed system. Then we give details about stepwise implementation of the pro-
posed system.

The system is implemented and tested on Fedora operating system. Snort
2.9.3 is used for the experimentations. The system is implemented using Java
along with Shell script and some Linux based tools. Since the MIT/LL dataset
is in the form of TCP dump files, we need to use the tools that can read them
as fast as possible and extract the required detail. We have used tcptrace and
Tcpdump utilities available on Linux.

4.1 Feature Extraction and Preprocessing

Since we aim at detecting anomalies of network traffic, the content features
are not used in this work. The connection features and temporal statistics will
be used in HIDS construction. Total features extracted from the connections
are enlisted in table 1. The axis attributes described in section III are chosen
from these features. Connection level features are used in both FER and rules
generation. Temporal statistics are related to connections with the same refer-
ence features. They can be used to improve the accuracy of rules generated.
Table 2 gives the list of temporal features calculated from connection features
extracted.

Hybrid Intrusion Detection with Rule Generation 351

Table 1. Connection Features Extracted

Feature Name Description Feature Name Description

timestamp the time when Connection Begins service Network Service on destination

duration duration of the connection icmp type ICMP message type

ip proto IP protocol type src bytes Bytes sent by source

src ip Source IP address dst bytes Bytes sent by destination

dst ip Destination IP address flags SYN/FIN Flags in the connection

Table 2. Temporal Features Extracted

Feature Name Description

src count No of connections from same source

dst count number of connection to same destination

service count Number of connection for same service

avg duration Average duration of connection for same service

avg src bytes Average bytes sent by source

avg dst bytes Average bytes sent by Destination

After the features are extracted, we need to calculate relative timestamp,
order them and assign a transaction ID for each one of them. The axis attributes
chosen for ADS built here are service, IP protocol, and flags. These attributes
are enough to classify the instance of a connection. Each such unique possible
set of these three values is considered as an Event. These events with unique
Event IDs are stored in the EventList database. In the pre-processing phase,
every transaction ID is mapped with the Event ID and stored with the relative
timestamp in EventOrder database.

4.2 Rule Generation

For generating rules we need to find all the connection records related to the
anomalies detected. The table 3 gives mapping between Connection Attributes
and Snort Rule Keywords. Let’s say we have got an anomaly detected as A →
B. Where A and B denote events with the following attributes.

A(Event ID = A, ip proto = icmp, icmp type = echo req, f lags = 0)
B(Event ID = B, ip proto = icmp, icmp type = echo req, f lags = 0)

Here flag=0 means no SYN/FIN flags are observed (obvious for an ICMP con-
nection).Now after searching back in the EventOrder database if we find that
these events have occurred many times in a given window size of say 10 sec, it
will produce a higher support as well as confidence values for the same. Thus we
can conclude to the following Snort rule
alert icmp EXTERNAL NETany <>HOME NET any (msg: “Anomalous Be-
haviour”; itype: 8; threshold : type both; count 10 seconds; sid:100001;rev:0)

352 V.V. Korde et al.

Table 3. Mapping between connection attributes and Snort rule keywords

Attribute Name Snort Rule Keyword Short Description

protocol protocol IP protocol type

src ip source IP address Source IP address

dst ip destination IP address destination IP address

service destination port number Service type

icmp type itype ICMP message type

src bytes Dsize Packet Payload size

flags Flags TCP flags

land Sameip Same source and destination Address

src count threshold: track by src, count < n > No. of connection to the same destination

dst count threshold: track by dst, count < n > No. of connection from the same source

5 Experimentation and Results

This section gives brief details about the experiments that were performed on
the system built to generate the performance results. The user needs to select
a window size (in seconds). The window size will be used by the system as a
window size in sliding window implementation of episode rule generation. User
needs to specify values of support and confidence for selection of the episode rule
into the database.

The system was tested with different values for window size, support and
confidence values. Thus a normal profile is created by training the system with
week 1 and week 3 dataset. The system was tested by using DARPA 1999’s
week 4 and week 5 testing dataset. The graph in figure 4.a shows the number

Fig. 4. a)Episode Rule Generation Vs. Window size b)Total Number of Intrusions
Detected

of Episode Rules generated for different window sizes. Episode rules here are
different from those discussed above in such a way that, rules stated here are
unique episode rules among all generated above. Frequent Episode Rules are
chosen by applying the criteria of support and confidence to them. From the

Hybrid Intrusion Detection with Rule Generation 353

graph as shown in figure 4.a it is clear that the number of FER that are selectable
for normal profile dataset are steady between window sizes 200 and 250. After
window size = 250, the total Episode rules becomes higher but comparatively
very few FERs are produced. For system testing purpose, DARPA 1999’s week 4
and week 5 was used. The detection list is provided by them. The attack results
obtained from the detection by the HIDS were compared to that of the attacks
in the attack list file. This is shown by the graph as shown in Fig 4.b. The
misuse-based Intrusion Detection System: Snort is quite capable of detecting
the attacks present in the test dataset. The anomaly detection system has also
performed well. There were in total 2959 attacks present in the dataset. The
intrusion detection rate (denoted by δ) is formally defined by

Detectionrateδ =
detectedattacks

totalattacks
(4)

Snort could detect 1407 attacks with the help of its own rules. Detection rate

Fig. 5. a)Intrusion Detection Rate of HIDS b)False Alarm Rate per day of testing
dataset

for Snort becomes 47.55%. Snort could detect 1667 attacks with only ADS Rule
but out of it 1053 were false positives. Thus 614 were correctly detected. Thus
detection Rate for Snort with only ADS rules =20.75%. It implies the Total
Detection rate = 68.30%. Thus the new hybrid Intrusion Detection System has
achieved a detection rate of 68.30% which is better than that of Snort which
is 47.55%. The resultant system just had a false alarm of about 0.08%. Note
that number of attacks in MIT/LL dataset are much lower than number of
normal connections. This affects false alarm rate. The system had false positives
of an average of 100 per day. From the figure 5.a, it is clear that the detection
rate is almost steady after window =250. The false alarm rate (denoted by η)
measures the percentage of false positives among all normal traffic events. A
formal definition is given by

η =
p

k
∗ 100 (5)

where p is the total number of false positive alarms and k accounts for the total
number of connection events.

354 V.V. Korde et al.

6 Conclusion

The hybrid intrusion detection system proposed here combines the advantages of
low false-positive rate of misuse-based intrusion detection systems and the abil-
ity of an anomaly detection system to detect novel unknown attacks. By mining
anomalous traffic episodes from Internet connections, an anomaly detection sys-
tem is built that detects anomalies not detected by misuse-based Snort. Frequent
episode rule concept can successfully be applied for detecting the anomalies in
the computer network and hence for performing Intrusion detection in the net-
work. The performance of detection rate was increased from 47.55% to 68.30%
with the combined rules from Snort and ADS. This increase is just at a cost of
average 0.08% false alarm rate.

The ADS is efficient for an offline evaluation since the computational resource
requirement is higher. This kind of system can be deployed at network layer along
with Snort to locally generate the rules specific to the traffic of the deployed
network.

References

1. Qin, M., Hwang, K.: Anomaly Intrusion Detection by Internet Data mining of
Traffic Episodes. ACM Transactions on Information and System Security (2004)

2. Yang, J., Chen, X., Xiang, X., Wan, J.: HIDS-DT: An Effective Hybrid Intru-
sion Detection System Based on Decision Tree. In: International Conference on
Communications and Mobile Computing (2010)

3. Barbara, D., Couto, J., Jajodia, S., Popyack, L., Wu, N.: ADAM: Detecting Intru-
sions by Data Mining. Proceedings of the IEEE (2001)

4. Ertoz, L., et al.: The MINDS-Minnesota Intrusion Detection System. In: Next
Generation Data Mining. MIT Press (2004)

5. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A Comparative
Study of Anomaly Detection Schemes in Network Intrusion Detection. In: Proc.
Third SIAM Conference Data Mining (2003)

6. Lee, W., et al.: A Framework for Constructing Features and Models for Intrusion
Detection Systems. ACM Transactions on Information and System Security (2000)

7. Lee, T.-Y., et al.: Mining Serial Episode Rules with Time Lags over Multiple Data
Streams. Springer, Heidelberg (2008)

8. Snort 2.1 Intrusion Detection, 2nd edn. Syngress Publication
9. Roesch, M.: SNORT-Lightweight Intrusion Detection for Networks. In: Proc.

USENIX 13th Systems Administration Conf., LISA 1999 (1999)
10. Paxson, V.: Bro: A System for Detecting Network Intrusions in Real Time. In:

Proc. Seventh USENIX Security Symposium (January 1998)
11. Lippmann, R., Haines, J.W., Fried, D.J., Korba, J., Das, K.: Analysis and Results of

the 1999 DARPAOff-Line IntrusionDetection Evaluation. In:Debar,H.,Mé, L.,Wu,
S.F. (eds.) RAID 2000. LNCS, vol. 1907, pp. 162–182. Springer, Heidelberg (2000)

12. Mahoney, M.V., Chan, P.K.: An Analysis of the 1999 DARPA/Lincoln Laboratory
Evaluation Data for Network Anomaly Detection. In: Vigna, G., Krügel, C., Jonsson,
E. (eds.) RAID 2003. LNCS, vol. 2820, pp. 220–237. Springer, Heidelberg (2003)

13. McHugh, J.: Testing Intrusion Detection Systems: A Critique of the 1998 and 1999
DARPAOff-lineIntrusionDetectionSystemEvaluationasPerformedbyLincolnLab-
oratory. ACM Transactions on Information and System Security (November 2000)

14. Mannila, H., Toivonen, H.: Discovering Generalized Episodes Using Minimal Oc-
currences. In: Proc. Second International Conference on Knowledge Discovery and
Data Mining (August 1996)

	Hybrid Intrusion Detectionwith Rule Generation
	Introduction
	Related Works and Our Approach
	System Design Internals
	Anomaly Detection System
	Episode Rules
	MIT/LL DARPA Dataset
	System Architecture

	System Implementation
	Feature Extraction and Preprocessing
	Rule Generation

	Experimentation and Results
	Conclusion
	References

