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Abstract. In this paper, we have proposed a novel wavelet based approximate 
entropy for feature extraction and a novel Multi-Class Support Vector Machine 
(MSVM) for the multi-class electroencephalogram (EEG) signals classification 
with the emphasis on epileptic seizure detection. The aim was to determine an 
effective classifier and features for this problem. Wavelets have played an 
important role in biomedical signal processing for its ability to capture localized 
spatial-frequency information of EEG signals. The MSVM works well for high 
dimensional, multi-class data streams. Decision making was performed in two 
stages: feature extraction by computing the wavelet based approximate entropy 
and classification using the classifiers trained on the extracted features. We 
have compared the MSVM with Probabilistic Neural Network (PNN) by 
evaluating with the benchmark EEG dataset. Our experimental results show that 
the MSVM with wavelet based approximate entropy features gives high 
classification accuracies than the existing classifier.  
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1 Introduction 

The electroencephalogram (EEG) is a complex and aperiodic time series, which is a 
sum over a very large number of neuronal membrane potentials. Despite rapid 
advances of neuroimaging techniques, EEG recordings continue to play an important 
role in both the diagnosis of neurological diseases and understanding the 
psychophysiological processes. In order to extract relevant information from 
recordings of brain electrical activity, a variety of computerized-analysis methods 
have been developed. Most methods are based on the assumption that the EEG is 
generated by a highly complex linear system, resulting in characteristic signal features 
like nonstationary or unpredictability [1]. Much research with nonlinear methods 
revealed that the EEG is generated by a chaotic neural process of low dimension  
[2]–[4]. As in traditional pattern recognition systems, classification of biomedical 
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signals consists of two main modules namely Feature Extraction and Feature 
Classification. In recent papers, for studying and analyzing the behavior of EEG 
signals, chaos theory was used [1]–[4]. To quantify the complexity of EEG signals, 
numbers of entropy estimators are available. This proposed technique uses 
approximate entropy (ApEn) as the input feature. The general structure of developed 
EEG signals classification model has two modules (Fig. 1). A significant contribution 
of our work was the composition of composite features, which were used to train 
novel classifier. PNN is a type of radial basis network. For the classification and 
comparison we used the benchmarked datasets (EEG Signals) which includes five 
classes. The paper is organized as follows. In Section 2, we briefly presented the 
literature survey that has been performed. In Section 3 we described about the 
benchmark dataset, our proposed methodology with feature extraction method and 
classification techniques that are considered. In Section 4, we compared the results of 
the proposed classifiers using the features with other existing classifier. And Section 5 
concludes the paper. 

 

Fig. 1. General Structure of developed EEG- signals classification 

2 Literature Survey 

Automatic analysis and diagnosis of epilepsy based on EEG recordings is started in 
the early 1970s. Today, computer-based analysis addresses two major problems: 1) 
interictal event detection 2) epileptic seizure analysis [1]. Various feature extraction 
techniques have been used for the classification of EEG signals with the emphasis on 
seizure detection. Non-linear based feature extraction technique uses Correlation 
Dimension, Lyapunov Exponent and Standard Deviation for extracting the features of 
EEG signals [1][2]. Entropy is a term of thermodynamics that is used to describe 
amount of disorder in a system.Entropy based technique uses Approximate Entropy 
(ApEn) as the input feature [4] [6]. Wavelet based technique uses Max, Min, Mean 
and Standard Deviation [2] [7] [8] [9]. Time Frequency based technique, Feature 
extraction based on Local Variance [3]. The benchmarked dataset that have been used 
in the existing works was used to compare the proposed method with the existing 
methods. The EEG signal classification techniques are divided into three broader 
categories: Conventional classifiers such as Linear Discriminant Analysis [10], 
Support Vector Machine [8], and Naïve Bayes [1]. Neural Networks such as MLPNN 
[8], PNN [10], and RBFNN [6], Combinational classifiers such as Boosting, Voting 
and Stacking [11]. 
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3 Proposed Methodology 

3.1 Dataset Description 

We have used the publicly available benchmark EEG dataset described in Andrzejak 
et al. [8]. The complete data set consists of five sets (denoted A–E) each containing 
100 single-channel EEG segments. Sets A and B consisted of segments taken from 
surface EEG recordings that were carried out on five healthy volunteers using a 
standardised electrode placement scheme. Volunteers were relaxed in an awake-state 
with eyes open (A) and eyes closed (B), respectively. Sets C, D, and E originated 
from EEG archive of pre-surgical diagnosis. EEGs from five patients were selected, 
all of whom had achieved complete seizure control after resection of one of the 
hippocampal formations, which was therefore correctly diagnosed to be the 
epileptogenic zone. Segments in set D were recorded from within the epileptogenic 
zone, and those in set C from the hippocampal formation of the opposite hemisphere 
of the brain. While sets C and D contained only activity measured during seizure free 
intervals, set E only contained seizure activity. 

3.2 Extraction of Features 

Generally feature extraction is transforming the raw input data into set of features. 
Wavelet Transform (WT) is a spectral estimation technique in which any general 
function can be expressed as an infinite series of wavelets. Abnormalities in the EEG 
in serious psychiatric disorders are many times too subtle to be detected using 
conventional techniques, such as Fourier transform. WT is specific appropriate for 
analysis of non-stationary signals. It is well suited for locating transient events, which 
always occur during epileptic seizure. The decomposition of the signal leads to a set 
of coefficients called wavelet coefficients. The key feature of wavelets is the time-
frequency localization. 

 

Fig. 2. Wavelet Decomposition of EEG signal into two levels of sub-bands 

The decomposition of the signal into the different frequency bands is merely 
obtained by consecutive high-pass and low-pass filtering of the time domain signal. 
The procedure of multi-resolution decomposition of a signal x[n] is schematically 
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shown in Fig. 2. Each stage of this scheme consists of two digital filters and two 
down-samplers by 2. The first filter, h[n] is the discrete mother wavelet, high pass in 
nature, and the second, g[n] is its mirror version, low-pass in nature. The detail at 
level j is defined as 
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The down-sampled outputs of first high-pass and low-pass filters provide the detail, 
D1 and the approximation, A1, respectively. 

 

Fig. 3. Level 2 decomposition of the band-limited EEG into three EEG sub bands using fourth-
order Daubechies wavelet (s = a2+d2+d1) 

Wavelet has several advantages, which can simultaneously possess compact 
support, orthogonality, symmetry, and short support, and high order approximation. 
We experimentally found that time-frequency domain feature provides superior 
performance over time domain feature in the detection of epileptic EEG signals. 
Usually, tests are performed with different types of wavelets and the one, which gives 
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maximum efficiency, is selected for the particular application. The smoothing feature 
of the Daubechies wavelet of order 4 (db4) made it more appropriate to detect 
changes of EEG signals. The EEG sub bands of a2, d2 and d1are shown in fig. 3. 

Wavelet based Approximate Entropy (ApEn) 

The proposed system makes use of a single feature called ApEn for the epileptic 
detection. The ApEn is a wavelet-domain feature that is capable of classifying 
complex systems. The value of the ApEn is determined as shown in the following 
steps. Table 1 represents the extracted wavelet based Approximate Entropy (ApEn) 
features for the decomposed sub bands.  

Table 1. Wavelet based ApEn values used for Training and testing the classifier 

Data 
Points 

 

Wavelet based ApEn 
values used for training 

Wavelet ApEn values 
used for testing 

Intracranial Normal Intracranial Normal 
173 1380 1380 920 920 

256 932 932 620 620 

512 466 466 310 310 

1024 233 233 155 155 

2048 116 166 77 77 

 
1) Let the data sequence containing N data points be X = [x(1), x(2), x(3), . . . , 
x(N)]. 
 
2) Let x(i) be a subsequence of X such that x(i) =[x(i), x(i + 1), x(i + 2), . . . , x(i + 
m − 1)] for 1 ≤ i ≤N − m, where m represents the number of samples used for the 
prediction. 
 
3) Let r represent the noise filter level that is defined as 

r = k × SD (5) 

for k = 0, 0.1, 0.2, 0.3, . . . , 0.9                                
where SD is the standard deviation of the data sequence X. 
 
4) Let {x(j)} represent a set of subsequences obtained from x(j) by varying j from 1 
to N. Each sequence x(j) in the set of {x(j)} is compared with x(i) and, in this 
process, two parameters, namely Cim(r) and Cim+1(r) are defined as follows: 

Cim(r)  =   N-m (6) 

where k =   1, if |x(i) − x(j)|≤r  for 1 ≤ j ≤ N − m 
               0, otherwise 
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and 

  Cim+1(r) =N-m (7) 

with conditions depicted by (A) as shown at the bottom of the page. 

5) We define Φm(r) and Φm+1(r) as follows: 

Φm(r) = N-m (8) 

Φm+1(r) = N-m (9) 

Small values of ApEn imply strong regularity in a data sequence and large values 
imply substantial fluctuations [11].  

3.3 Classifiers Used for Classification 

Probabilistic Neural Network (PNN) 

The PNN was first proposed by Specht [14]. Various multi-class problems can be 
handled by a single PNN.  
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where d denotes the dimension of the pattern vector x, σ is the smoothing parameter, 
and xij is the neuron vector [8].  

 

Fig. 4. PNN Architecture, R: number of features, Q: number of training samples, K: number of 
classes 

On receiving a pattern x from the input layer, the neuron xij of the pattern layer 
computes its output. The structure of PNN is depicted in Fig. 4. 
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Multi-class Support Vector Machine (MSVM) 

The SVM is basically a binary classifier that can be extended by modifying several of 
its kind into a multi-class classifier. The general structure of SVM is depicted in Fig. 
5. The SVM is a one pass incremental algorithm that does not require the following 
such as a sliding window on the data stream and monitoring the performance of the 
classifier as data points are streaming. The principle idea is to assign a binary code 
word of length N, denoted here    

( ) { 1,0,1}Nt c ∈ −  (11) 

( ) {0,1} , ( ) { 1,1}N Nt c t c∈ ∈ −    (12) 

or even for each class c. The result is the code matrix T represented here 
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Now each column defines a separation of the classes in two subsets f¡1; 1g, 0 valued 
elements are simply ignored. Each column is fed into a separate classifier for learning 
and recognition. The result is another codeword tL which can be compared with the 
existing N code words by using Hamming or other distance measures. For 
dichotomies, a soft margin classifier can be defined. It can be understood as mapping 

the property ( )n ny f x ρ≥


 with ( , )n nx y


{training set} and some positive constant 

giving the margin. The function f is also called the embedding. To avoid over fitting 
some slack variables   are also introduced 
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This margin maximization alone is nothing new, but the notation can be extended to 
polychotomial problems. The minimal relative difference in distance between f, the 
correct target t(y) and any other target t(c). The new optimization problem can now be 
written in the following way. 

Minimize 
1

{ }mm
f

λ εΜ

=
+ Ω

Μ∑  (15) 

This optimization problem is a multi-class classifier using the distance measure 
function d and large soft margins. 
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Fig. 5. General Architecture of SVM 

4 Results and Discussion 

In our work, we employed a discrete wavelet transform for extracting approximate 
entropy features from the dataset in order to extract temporal information. The wavelet 
base ApEn possesses good characteristics such as robustness in the characterization of 
the epileptic patterns and low computational burden. n. ApEn values are computed for 
selected combinations of m, r, and N. The values of m, r, and N that are used for the 
experiments are as follows: m = 1, 2, 3; r = 0%–90% of SD of the data sequence in 
increments of 10%; and N = 4097. Wavelet based ApEn values are computed for both 
normal and epileptic EEG signals and are fed as inputs to the two neural networks. The 
potentiality of the wavelet based ApEn to discriminate the two signals, namely, normal 
and epileptic EEG signals depends on the values of m, r, and N.  
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Fig. 6. Comparison of classifiers such as Probabilistic Neural Network and Multi-class Support 
Vector Machine based on classification rate 
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For the classification of EEG signals we have used a novel multi-class SVM. 
Among the available 100 EEG data sets, 50 data sets are used for training and the 
remaining data sets are used for testing the performance of the neural network and 
SVM classifiers. Computational cost and the classification time for the proposed 
MSVM classifier depend on the number of support vectors required for the design of 
the classifier and the kernel employed. Increase in number of support vectors lead to 
increase in computational requirements. It is shown that our wavelet based ApEn 
possesses good characteristics such as robustness in the characterization of the 
epileptic patterns and low computational burden. The performance in the rate of 
classification of the two classifiers such as PNN and multi-class SVM have been 
compared with different sub bands and which is shown in Fig. 6. The Multi-class 
SVM using wavelet based Approximate Entropy features for the sub-band D1 gives 
superior performance in terms of classification rate.  

5 Conclusion 

The MSVM has shown great performance since it measures the predictability of the 
current amplitude values of a physiological signal based on its previous amplitude 
values. A robust and computationally low-intensive feature, wavelet based ApEn has 
been used as the feature for the proposed system. Besides this, the PNN provided 
encouraging results, which could have originated from the architecture of the PNN.  
The performance of the other neural network was not as high as the MSVM. The 
results of the present paper demonstrated that the MSVM with wavelet based 
Approximate Entropy feature can be used in the classification of the EEG signals by 
taking the misclassification rates into consideration. In current work, focus was put on 
normal and epileptic EEG signal classification. In the next stage of research, the 
results from this preliminary study will be expanded to include a more complete range 
of datasets.  
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