
xScribble: A Generalized Scheme

for String-Encoding Graphical Data in Multiuser
Graphical Chat

Rahul Anand, Joshy Joseph, P. Dipin Dev, Hegina Alex, and P.C. Rafeeque

Department of Computer Science and Engineering,
Government College of Engineering Kannur,

Kannur, India
rahulanand.fine@gmail.com, rafeeqpc@yahoo.co.in

Abstract. Multiuser graphical chat enables two or more users to com-
municate user generated graphical data in real time. It is most commonly
used in online whiteboards where users can interact simultaneously. In
this paper, we introduce xScribble: a generalized scheme for encoding
graphical data for real time network communication. The paper discusses
how to encode graphical data from various drawing tools into string for-
mat flexible enough to be used with any text chat system. The memory
efficiency and performance of the xScribble scheme is also analysed.

Keywords: graphical chat, string-encoding, online whiteboard, real-
time interaction.

1 Introduction

Usage of graphical aids like diagrams is often necessary to communicate certain
concepts in a clear and concise manner. But exchange of graphical data over
the Internet is limited by the overhead of available techniques like e-mail or file
sharing. This makes Graphical chat an important functionality that is missing
in todays instant messaging services. Available closed source online whiteboard
applications have implementations apparently dependent on their programming
environment [1].

Most of the popular chat clients like Google Talk [2] provide full fledged text
chat service together with voice, video chatting and even file sharing. In this
scenario, an online whiteboard scheme which can be integrated to the existing
system of frequently used clients can be an attractive notion in terms of online
communication. Such a scheme has the additional advantage of being able to
be used with other available services like video call. This is desirable to the end
users in that graphical chat can be quite naturally integrated into their usual
choice of chat client. Such a scheme can be implemented by a generalized algo-
rithm which efficiently converts graphical data into a representation compatible
with any text chat protocol. Moreover, this scheme realizes graphical chat with
minimal additions to the underlying protocol, and optimizes the added memory
requirements for communication.

N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 298–307, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



xScribble: A Generalized Scheme for String-Encoding Graphical Data 299

In this paper, we describe a scheme for efficiently encoding graphical data into
string representation in real time. We call the complete scheme ‘xScribble’. The
scheme provides a general algorithm to encode graphics into text representation
which can be communicated over a text chat protocol.

The rest of the paper is organized as follows. Section 2 discusses related work.
Section 3 evaluates the basic features of graphical data from various drawing
tools. Section 4 describes encoding and decoding of certain popular class of
drawing tools. Section 5 presents the general algorithms used for encoding and
decoding graphical data. Section 6 and Section 7 respectively discusses notions
for extension of the encoding format to account for other drawing tools, and
actual results of implementing the scheme. Section 8 concludes the paper with
remarks on its future scope.

2 Related Work

Existing online whiteboard systems use web based technology like Java applet
and Adobe Flash [3]. The actual protocol used comes under a closed specification.
Scriblink [4] is an online whiteboard with real-time collaboration. The site is
built using Java. Groupboard [5] hosts multiple whiteboards with multi-user
interaction capability. The underlying technology includes Java applet and Ajax.
Twiddla [6] is another browser based whiteboard application intended to support
web meetings. It provides inbuilt voice support using Java plug-in. iScribble
[7] features an online artist collaboration built in Adobe Flash. openCanvas
[8] is a desktop image editing software with additional networking feature. A
maximum of 3 users can connect to a running instance of the software using
TCP connections.

3 Components of Graphical Data

In this section, we analyse the basic information required to represent and/or
reproduce graphical data. The paper discusses the data components associated
with two main classes of drawing tools - Free hand tools and Fixed point tools
- and other tools which are variations of the above classes. In any drawing en-
vironment, deciding where and how to produce the graphical output essentially
involves retrieving the coordinates of the user input device. Additional parame-
ters may be supplied to the method - most commonly the selected colour, line
style, fill style (for closed figures) etc. We analyse the minimal information re-
quired to represent major classes of drawing tools.

3.1 Free-Hand Tools

The sequence of line segments connecting all the mouse coordinates during the
free hand drawing can form a smooth curve. A mouse drag is thus represented by
a connected sequence of line segments called a polyline [9]. Parameters associated
with free hand tools can be the stroke thickness and stroke style.



300 R. Anand et al.

Fig. 1. Free hand drawing starts once the user clicks the mouse inside the drawing
area. The point of mouse click is retrieved and stored. As the mouse is dragged from
this point, the next mouse coordinate is retrieved. A line segment is drawn from the
last stored point to the new point with preferred colour and thickness properties. The
new point now becomes the last stored point. The process continues as long as the
mouse is dragged. Free hand drawing stops when the mouse release action is detected.

3.2 Fixed-Point Tools

Most common fixed point tools include Rectangle, Oval, and Straight line tool. In
these tools, the point of first click of mouse is taken as a fixed point. From here, the
user candrag themouse todecide thedimensions andorientationof the graphic out-
put. When the mouse is released, the final drawing is saved on the drawing board.
The user is provided with graphical feedback by painting intermediate shapes dur-
ing the mouse drag.This gives a sensation of scaling the graphic object by the drag-
ging of the mouse. Anyhow, the final drawing depends only on the point of initial
mouse click and the point where the mouse is finally released.

Fig. 2. In Rectangle tool, the points are considered to be forming a diagonal of the
rectangle. The required parameters for the drawing method to draw a rectangle are
computed from these two points using simple geometry. In Oval tool, the two points
again form the diagonal of a rectangle. Here, an ellipse is drawn whose major and minor
axes are respectively the width and height of the enclosing rectangle. In Straight line
tool, a line segment is drawn between the initial and final points. The closed figures
have a parameter determining whether or not they are filled with a selected fill colour.



xScribble: A Generalized Scheme for String-Encoding Graphical Data 301

3.3 Other Tools

This section discusses the component information for three other drawing tools.
Most of the drawing tools are variations of the above two categories.

Air Brush. The Air brush tool is similar to a free hand tool in that the user
can draw with an air brush by dragging the mouse over the drawing area. But
instead of a single stroke, the air brush provides a sensation of spraying the
colour over the mouse path within a fixed thickness. The logic behind the Air
brush tool is to create a spraying effect at each passing coordinate.

Fig. 3. At each mouse coordinate, a square of dimensions 10 pixel units is assumed
adjacent to the mouse coordinate. The algorithm now generate and paint 15 random
pixels such that their coordinates fall within this square.

Pseudo code for Air brush

Air-brush (x, y, selected-color)
Repeat 15 times:

Set rx to an random integer between 0 and 10
Set ry to an random integer between 0 and 10
Draw a node of selected-color at (x+rx, y+ry)

Flood Fill. The Bucket fill tool uses the flood fill algorithm [10] to fill closed ar-
eas in the drawing. It first determines the colour at the pixel where the user clicks.
This becomes the target colour. The selected colour is filled in this target pixel.
Now the colouring spreads to the top, bottom, left and right pixels of the target
pixel. These pixels are painted if their colour is same as the target colour. In case
any new pixels are painted, the colouring spreads from them again. Thus, all the
pixels in the region formed by the target colour is filled with the selected colour.

Pseudo code for Flood fill

Flood-fill (x, y, replacement-color):
Set Q to the empty queue
Set node to Node(x,y)
Set target-color to colour of node
Add node to the end of Q.
While Q is not empty:

Remove first element from Q, let it be n
If the color of n is equal to target-color
Set the color of n to replacement-color
Add the node to the west of n to the end of Q
Add the node to the east of n to the end of Q
Add the node to the north of n to the end of Q
Add the node to the south of n to the end of Q



302 R. Anand et al.

Text Tool. The Text tool writes reads a string of text from the user and paint
it on the drawing board at specified coordinates [11]. Clicking the mouse on the
drawing board allows the user to input the desired string at this location. The
entered string is now painted over the canvas in the required colour.

4 Encoding the Graphical Data

At the heart of xScribble scheme is the technique of encoding the variety of graphi-
cal data into individual strings,which canbe efficiently decoded at the receiver side.
The string should encode the kind of tool used for drawing, its properties and the
set of associated mouse coordinates. In order to represent the data in the most op-
timized format, the scheme uses a comma separated list of decimal integers. Since
the data is essentially a text string it can be communicated with HTTP in the web
or any other chat protocols like XMPP [12].

Fig. 4. The integer components in the string are separated by commas. The first com-
ponent identifies the tool used for creating the graphics. The tool specific parameters
follow this. The colour is represented in the form of its Red, Blue, and Green (RGB)
components, each which is encoded as integers between 0 and 255 [13]. Other parame-
ters will follow these values. Here colour is only a tool-specific parameter and may be
omitted for tools or drawing commands which doesn’t require colour information. Fi-
nally, the required coordinates which defines the graphic are appended. These integers
are processed in pairs as they are alternatively the x and y coordinates of each point.
Again, the number of coordinates can vary from a single point to a series of points
according to the type of the tool used.



xScribble: A Generalized Scheme for String-Encoding Graphical Data 303

4.1 Free-Hand Tools

Most of the common free hand tools can be represented under a single category and
thereby by a single integer in our encoding scheme. As discussed, the parameters
for a free hand tool other than colour are line thickness and line style (dotted,
dashed, solid) [14]. These class of tools require the entire series of points through
which the user has performed the free hand stroke. Thus all the coordinates from
the beginning to the the end of drawing are encoded into the string.

4.2 Fixed-Point Tools

The most common fixed point tools in popular drawing applications are Rect-
angle, Oval and Straight line. Although the technique of producing the graphics
differs for each of these tools, they require only a pair of coordinates to represent
the position and size of the resulting graphic. These are respectively the fixed
point and the final position of the dynamic point where the user stops drawing.
The parameters for these tools are also common, which generally include the
colour, outline thickness and the fill style for Rectangle and Oval. Although the
encoding scheme is structurally similar we should account for the fact that the
coordinates are processed in a different way for each of the tools.

4.3 Other Tools

Air Brush. According to the discussed drawing logic of Air brush, a large
number of pixels are painted on the canvas as the user draw with the air brush
tool in free hand style. Here we may strike a compromise between data size and
accuracy of data reproduction by encoding only the coordinates through which
the user moves the mouse. At the receiver end, random pixels are generated
around each of these path coordinates. Actual test cases show that the random
pixels restricted to a small area and in a dense fashion show only negligible
differences between the graphic outputs at the two ends.

Flood Fill. Flood fill tool demands only minimal information to produce its
graphical output. These information are namely the selected fill colour and the
coordinates from where the flood fill procedure is to commence. Major part in
producing the graphical output is done by the flood fill algorithm. However the
performance of flood fill is critical in the dynamic environment of graphical chat
since other graphical data may be added to the canvas before the flood fill is
completed.

Text Tool. Text entry tool is a special case in string encoding of graphical data
in that this tool uses a character set different from other tools in the encoding.
Encoded data of text tool consists of the actual text string entered by the user
and the coordinates showing the relative position where the text is to be painted.
The character set may even include a wide variety of Unicode symbols if user
input in native languages is to be provided.



304 R. Anand et al.

Drawing Commands. The peculiarity of drawing commands, such as Clear
Canvas, is that they do not usually need any graphical information such as
colour or any coordinates. When such commands are encoded, basically they
only contain the first component integer, which identifies the command itself.
Even in an environment where a larger set of commands are used, the same
unified encoding scheme can be used.

5 Encoding and Decoding Algorithms

This section provides the actual algorithms for encoding graphical data to text
string and for decoding a text string to reproduce original graphics respec-
tively. The algorithms account for the above mentioned categories of draw-
ing tools. The encoding algorithm is not sequentially run for a stream of in-
put data. Rather it spans the entire drawing process from when a user starts
drawing on the canvas to when he stops drawing. The encoding algorithm con-
sider drawing in a general context. It may be noted that the ongoing state
of drawing is represented by the continuous dragging of the mouse pointer
in a classic interface. Most of the other common tools can be accounted for
in the algorithm as special cases of existing tools or with minimal additions.

Pseudo code for String encoding

if drawing starts:
Set encode-string to the empty string
Append current-tool, colour R,G,B values, tool
parameters, x-coordinate and y-coordinate of current
tool location to encode-string separated by commas

while drawing:
if current-tool is a free hand tool

Append x-coordinate and y-coordinate of current tool
location to encode-string separated by commas

if drawing ends:
if current-tool is not bucket-fill or text-input:

Append x-coordinate and y-coordinate of current tool
location to encode-string separated by commas

else if current-tool is text-input:
Append entered text to encode-string

Send encode-string to the network

Pseudo code for String decoding

String-Decode (decode-string)
Split decode-string at commas and store the elements
in decode-array

Set current-tool to the first element of decode-array

Set R,G,B to the next three elements of decode array
Set selected-color to Color(R,G,B)

for each element corresponding to tool parameters:
Set variables corresponding to the parameter values

Set x0, y0 to the next two elements in decode array



xScribble: A Generalized Scheme for String-Encoding Graphical Data 305

if current-tool is a free hand tool:
while the end of decode-array is not reached:
Set x1, y1 to the next two elements in decode array
Call appropriate free hand tool method with
parameters x0, y0, x1, y1, selected-color
and tool parameters

Set x0 = x1, y0 = y1

if current-tool is a fixed point tool:
Set x1, y1 to the next two elements in decode array
Call appropriate fixed point tool method with
parameters x0, y0, x1, y1, selected-color
and tool parameters

if current-tool is bucket-fill:
Call Flood-Fill(x0, y0, selected-color)

if current-tool is text-input:
Set user-text to the last tool parameter
Call Text-input(x0, y0, user-text, selected-color)

6 Implementation Details

xScribble scheme is designed to be implemented in any networking environment
which supports sending and receiving text data. While integrating xScribble
scheme in existing chat servers there is virtually no property which distinguishes
graphical chat data from normal text chat. The encoded graphical data might
be prepended with a special header string for this purpose. The application
can recognize a graphical chat string when it detects the header string at its
beginning.

The design of the encoding format supports efficient compression. For in-
stance, the most commonly occurring character in the encoded string is the
comma because it is used as a separator for other components. If Huffman Cod-
ing is used for compression, a comma may be represented in a single bit. Also
the most frequent character set includes integers from 0 to 9. These characters
can also be mapped to bit strings of size not exceeding 3 bits. Thus the size of
the encoded data is considerably reduced with the minimal character set [15].
This can be a great advantage when we need to keep track of the drawing board
state at a centralized server.

The method of producing the actual graphics on the canvas is implementation
specific. The graphical data may be used to construct static graphics or it can
be used to create separate graphical objects. Graphical objects, such as in the
case of vector image editors like Inkscape [16], allow more flexibility in editing
the drawing board. In this case additional information regarding the identifier
assigned to the graphical object need to be encoded in the communicated data.

7 Experimental Results

We implemented an integration of the encoding scheme with Google Talk in
xScribble instant messaging application [17]. Here the xScribble scheme was im-
plemented with minimal drawing tools using Python over the XMPP protocol



306 R. Anand et al.

[18]. Users could perform graphical chat using their Google account. The graph-
ical data could be communicated with the same efficiency as in the case of text
data. The group chat feature in Google Talk can be utilized to enable any number
of users to simultaneously draw on a shared canvas. The size of graphical data
was limited only by the inbuilt quota on amount of text data passing through
the server. In all the cases, the size of graphics in transit is highly optimized by
the encoding scheme.

We have also implemented the xScribble scheme using Java applets at client
side and a server running under Tomcat. Text chat functionality was imple-
mented in the server using HTTP messages. The scheme was tested in the In-
ternet at connection speeds of 100 to 200 KBps. The average size of the encoded
data from above mentioned drawing tools is 50 to 100 bytes, which is comparable
to usual text chat data. The scheme employs an additional overhead at the client
ends alone, where an extra processing is done for encoding and decoding pur-
poses. This encoding of graphics in real-time and decoding of received messages
could be performed without any noticeable delay. Simultaneous drawing over the
network was tested with more than 5 users. This number can be conveniently
as high as 20 or more; the scalability of the system (determined by the number
of possible simultaneous users) is limited only by the capability of the server.
While a basic server can have limitations regarding the maximum number of
users using a particular drawing board, integration with fully developed server
systems poses no perceivable delay from the side of the string encoding scheme.

8 Conclusion

Our aim in this research was to develop a scheme to efficiently communicate
user generated graphics over a multi-user network in real-time. Initial studies
found that existing systems have closed and implementation specific commu-
nication protocols which cannot be integrated with other server systems. We
developed the xScribble scheme which provides a generalized and optimized en-
coding scheme for graphics. The efficient encoding of graphics to text strings
with minimal character set enabled the integration of the scheme into any ex-
isting text chat server. Thus the scheme virtually enables graphical chat to be
implemented as a feature in all instant messengers. The scheme may be extended
further to account for vector graphic objects providing more control over the can-
vas. Additional exclusive locking features may be included in the encoding when
users are allowed to alter the graphic objects on the canvas. We hope our work
will contribute to more productive and expressive network communication.

References

1. Oekaki Central, http://www.oekakicentral.com/fp/fp1/index2.php
2. Getting started with Google Talk, http://www.google.com/talk/start.html
3. Paint Chat, http://en.wikipedia.org/wiki/Paint_Chat
4. Scriblink online whiteboard, http://www.scriblink.com/index.jsp?act=about

http://www.oekakicentral.com/fp/fp1/index2.php
http://www.google.com/talk/start.html
http://en.wikipedia.org/wiki/Paint_Chat
http://www.scriblink.com/index.jsp?act=about


xScribble: A Generalized Scheme for String-Encoding Graphical Data 307

5. Groupboard, http://www.groupboard.com/products/
6. Twiddla, http://www.twiddla.com/
7. iScribble, http://www.iscribble.net/
8. OpenCanvas image editor, http://en.wikipedia.org/wiki/OpenCanvas
9. Foley, J.D.: Computer graphics: principles and practice, 2nd edn., p. 27. Addison-

Wesley Publishing Company, Inc. (1996)
10. Dav Data. A non recursive Flood fill algorithm,

http://www.davdata.nl/math/floodfill.html

11. Klawonn, F.: Introduction to Computer Graphics: Using Java 2D and 3D, p. 96.
Springer, London (2008)

12. The Extensible Messaging and Presence Protocol (XMPP). RFCs,
http://xmpp.org/xmpp-protocols/rfcs/

13. Prez-Quiones, M.A.: Media Computation CS2984-S07 (January 2007),
http://happy.cs.vt.edu/~manuel/courses/cs2984/slides/05Colors.html

14. Klawonn, F.: Introduction to Computer Graphics: Using Java 2D and 3D, p. 63.
Springer, London (2008)

15. Astrachan, O.L.: From ASCII Coding to Huffman Coding (February 2004),
http://www.cs.duke.edu/csed/poop/huff/info/

16. Inkscape vector editor, http://wiki.inkscape.org/wiki/index.php/Inkscape
17. Anand, R., et al.: xScribble instant messaging client for Google Talk,

http://code.google.com/p/xscribble/

18. Package xmpp API documentation,
http://xmpppy.sourceforge.net/apidocs/index.html

http://www.groupboard.com/products/
http://www.twiddla.com/
http://www.iscribble.net/
http://en.wikipedia.org/wiki/OpenCanvas
http://www.davdata.nl/math/floodfill.html
http://xmpp.org/xmpp-protocols/rfcs/
http://happy.cs.vt.edu/~manuel/courses/cs2984/slides/05Colors.html
http://www.cs.duke.edu/csed/poop/huff/info/
http://wiki.inkscape.org/wiki/index.php/Inkscape
http://code.google.com/p/xscribble/
http://xmpppy.sourceforge.net/apidocs/index.html

	xScribble: A Generalized Scheme
for String-Encoding Graphical Data in Multiuser Graphical Chat
	Introduction
	Related Work
	Components of Graphical Data
	Free-Hand Tools
	Fixed-Point Tools
	Other Tools

	Encoding the Graphical Data 
	Free-Hand Tools
	Fixed-Point Tools
	Other Tools

	Encoding and Decoding Algorithms
	Implementation Details
	Experimental Results
	Conclusion
	References




