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Abstract. Genetic Algorithm (GA) is a robust and popular stochastic 
optimization algorithm for large and complex search spaces. The major 
disadvantages of Genetic Algorithms are premature convergence and revisits to 
individual solutions in the search space. In other words, Genetic algorithm is a 
revisiting algorithm that leads to duplicate function evaluations which is a clear 
waste of time and computational resources.  In this paper, a non-revisiting 
genetic algorithm with adaptive mutation is proposed for the domain of function 
optimization. In this algorithm whenever a revisit occurs, the underlined search 
point is replaced with a mutated version of the best/random (chosen 
probabilistically) individual from the GA population. Moreover, the suggested 
approach is not using any extra memory resources to avoid revisits. To test the 
power of the method, the proposed non-revisiting algorithm is evaluated using 
nine benchmarks functions. The performance of the proposed genetic algorithm 
is superior as compared to simple genetic algorithm as confirmed by the 
experimental results.  

Keywords: Function optimization, Genetic algorithm, Non-revisiting, Adaptive 
mutation. 

1 Introduction 

Developing new optimization techniques is an active area of research and Genetic 
Algorithm (GA) is a relatively new stochastic optimization algorithm pioneered by 
Holland [1]. A GA is capable of finding optimal solutions for complex problems in a 
wide spectrum of applications due to its global nature. A GA is an iterative procedure 
that maintains a population of structures that are candidate solutions to the specific 
problem under consideration.  In each generation, each individual is evaluated using a 
fitness function that measures the quality of solution provided by an individual. 
Further, genetic operators such as reproduction, crossover and mutation are applied to 
introduce the diversity in the candidate solutions. In fact, a GA mimics the natural 
principle of survival of the fittest. A fitness proportionate selection and GA operators 
ensures the better and better fit solutions to emerge in successive generations 
[2][3][4]. However, GAs are not without limitations. Two of the main problems are- 
1) premature convergence i.e. many a times a GA converges to some local optimal 
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solution. 2) Redundant function evaluations.  A simple genetic algorithm do not 
memorizes the search points or solutions to the problem that it visits in its life time 
and it revisits lots of search points generating duplicate solutions resulting into 
redundant fitness computations. Here, a revisit to a search position x is defined as a 
re-evaluation of a function of x which has been evaluated before. The problem of 
revisit is all the more severe towards the end of a GA run. In many domains, the 
fitness evaluation is computationally very expensive and lots of time is wasted in 
revisiting the parts of the search space and duplicate function evaluations.    

In this paper, we propose an improved GA with adaptive mutation operator to 
avoid revisits and redundant fitness evaluations to a large extent. This GA has the 
elitist approach and retains the best individual in every new population. A look up for 
revisits is made only in the current population along with the population of previous 
generation. If any individual produced is found duplicate, it is replaced 
probabilistically with a mutated version of the best individual or of a random 
individual. The mutation operator is adaptive in the sense that its power of exploration 
decreases and power of exploitation increases with the number of generations. 

The proposed approach demonstrates that the duplicate removal introduces a 
powerful diversity preservation mechanism which not only results in better final-
population solutions but also avoids premature convergence. The results are presented 
for nine benchmark functions and illustrate the effectiveness of duplicate removal 
through adaptive mutation. The results are directly compared to a simple GA which is 
not removing duplicate solutions generated in its successive generations.  

The rest of the paper is organized as below. Section II describes the related work. 
The proposed non revisiting Genetic algorithm which removes duplicate individuals 
through adaptive mutation is given in section III. Experimental design and results are 
enlisted in section IV. Section V concludes the papers and points to the future scope 
of this work. 

2 Related Work 

A number of implementations of genetic algorithms in a wide spectrum of 
applications have been reported in the literature [1][2][3][4][5]. Since the inception of 
genetic algorithms, several advanced GA approaches came up improving the 
efficiency and efficacy of the results achieved in the domain of function optimization 
along with various other domains. Many of these approaches addressed the problem 
of premature convergence and revisiting behavior of genetic algorithms.  One of these 
advance approaches is devising new GA operators that can be adapted to produce 
suitable individuals by considering the state of the current population with respect to 
global optimal solution[6][7][8][9].  Srinivas and Patnaik (1994) employed a self 
adapted GA that achieved global optima more often than a simple GA for several 
multimodal functions [8]. In their work, they have suggested use of adaptive 
probabilities of crossover and mutation to maintain adequate diversity to avoid 
premature convergence. Another significant contribution came from Herrera and 
Lozano (2000) who suggested heterogeneous gradual distributed real coded genetic 
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algorithms (RCGAs) for function optimization domain. They devised new fuzzy 
connective based crossovers with varying degree of exploration and exploitation 
which proved very effective to avoid premature convergence and achieved one of the 
best reported results for several benchmark problems of function optimization [9]. 
Friedrich et al. (2007) have made an important contribution by analyzing the 
influence of simple diversity mechanisms used in selection procedures on the runtime 
behaviour [14].   

The other important problem with GAs that has been in the recent focus of the GA 
research community is redundant function evaluations and revisits. Mauldin [10] was 
among the first ones who enhanced the performance of a genetic algorithm by 
eliminating duplicate genotypes during a GA run. Mauldin used a uniqueness operator 
that allowed a new child x to be inserted into the population if x was greater than a 
Hamming-distance threshold from all existing population genotypes. Davis [4] also 
showed that a binary coded GA for a comparable number of child evaluations that 
removes duplicates in the population has superior performance.  Eshelman and 
Schaffer [11] reconfirmed this observation by using selection based innovations and 
new GA operators that prevented revisits. The problem of duplicate function 
evaluations has also been addressed by providing GA a short/long term memory i.e. 
the GA stores all the search points visited and their corresponding fitness into some 
data structure. In such approaches every time a new search point is produced by GA, 
before actually computing its fitness, the memory of GA is looked into and if this 
search point exists, its fitness is not recomputed. If the new solution is not in the 
memory, its fitness is computed and appended to the memory. Binary search trees, 
Binary partition tress, heap, hash tables and cache memory have been used to provide 
the supplement memory to GA. Such strategies have resulted in performance 
enhancement of GAs by eliminating revisits partially or completely [12][13][14][15].  
Recently, Yuen and Chow [16] used a novel binary space partitioning tree to 
eliminate the duplicate individuals. Saroj et al. used a heap structure to avoid the 
redundant fitness evaluations in domain of rule mining. Their approach proved to be 
effective for large datasets. [17]. Though, all these duplicate removal method reduce 
the run time of a GA, they require huge data structures and a significant amount of 
time is spent for memory look ups.  It is not uncommon for a GA to run for thousands 
of generations with a population of hundreds of individuals. If we assume a GA with 
100 individuals and 5000 generations, we shall need a data structure that can store 
250000 problem solutions and that is when we assume half the individuals produced 
are duplicates.  The GA shall require 500000 look ups to avoid redundant fitness 
computation. GAs is already considered slow as compared to other optimization 
techniques and these approaches further slow down GA’s performance. Clearly this 
method is successful only in the domains where fitness computations time is 
significantly larger than the memory look ups time and not suitable at all for domain 
of function optimization where fitness evaluation is relatively less expensive. 
Therefore, in this paper, we have adopted a genetic algorithm approach that maintains 
the diversity through adaptive mutation, avoids revisits to a large extent and that is 
without any additional memory overheads. 
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3 Proposed Non-revisiting GA with Adaptive Mutation 

Non-revisiting algorithm is the one which do not visit the search points already 
visited. The improved GA with non-revisiting algorithm and adaptive mutation has to 
perform some extra steps than a simple GA. These steps are used to found the 
duplicate individuals. If any duplicate individual is found then it is mutated and 
reinserted in the current population. The duplicates are looked with respect to current 
and the previous generation only. There is a special condition that the best individual 
is preserved and not mutated. The flow chart and algorithm for the proposed GA is 
given in Fig. 1 and Fig 2 respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

            Fig. 1. Step by step procedure for Non-revisiting GA with adaptive mutation 
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The mutation applied is Gaussian adaptive mutation. The Gaussian function 
generates a random number around zero mean. The formula for mutation is as 
follows. 

(1) 

              (2) 

The amount of mutation is controlled by the two parameters mscale and mshrink. 
Here, mscale represents the variance for mutation for the first generation and mshrink 
represents the amount of shrink in mutation in successive generations. The mutation 
scale decreases as the number of generation increase. It is clear from the above 
formulae that such kind of mutation is exploratory during the initial runs and 
exploitative towards the final runs of the GA. We have kept the mscale as 1.0 and 
mshrink equals to 0.75. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       rations)total_geneeneration/(current_g*mscale*mshrinkmscalemscale −=

                     mscale)*rand(gaussian_best_xx(i) ±=

1. Begin 
2. Initial condition: Initial population:- old-pop=[],  new-pop[], Stopping Flag:- 

SF=0, Best Fit=0, Visiting Flag:- VF[]=0 
3. Initialize the population in old-pop 
4. Evaluate the fitness of old-pop and calculate the overall best individual up to 

the current generation. 
5. If(stopping criteria=yes) 

5.1  SF=1   //set stopping flag                                                                           
5.2  Output the best individual                                                                               
5.3   Stop 

Else 
5.4 Copy the best individual into new-pop 
5.5 Perform a GA step by applying GA operators i.e. selection, crossover and 

mutation.  
5.6 Maintain the old population and store the newly generated individuals in 

the new pop. 
5.7 For (i=1 to pop-size)  

check revisits within the new-pop  and   with respect to old-pop 
5.8  If  revisit && not best_individual) 
5.9                  VF[i]=1 
5.10  For(i=1 to pop-size) 
5.11  If  VF[i]==1   

               New-pop[i] =mutated (new-Pop[i]) 
5.12 old-pop=new-pop 

Go to step 4        

        Fig. 2. Algorithm for the proposed GA with no-revisit 
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The proposed non-revisiting GA with adaptive mutation has three key strengths. 

1. It automatically assures maintenance of diversity and prevents premature 
convergence. Most of the individuals in a GA population are guaranteed to be 
different. By nature of the proposed GA, it is impossible for a population to 
consist of one kind of individuals only. 

2. It might not completely eliminate the revisits. However it doesn’t require large 
data structure to store the individuals to do a look up for duplicates and only 
uses the previous and current populations which are anyway available.  

3. It probabilistically takes the advantage of the best individuals and converges 
faster without suffering problem of convergence. 

4 Experimental Results 

We have implemented the proposed non-revisiting GA with adaptive mutation on 
nine Benchmarks functions in four dimensions and the set of test functions is given 
below. 

4.1 Test Function Set 
 

1. Rastrigin’s function 
2. Sphere function 
3. Generalized Rosenbrock function 
4. Generalized Rastrigin function 
5. Griewank’s function 

6. Ackley function 
7. Rotated Griewank’s function 
8. Rotated Weierstrass’s function 
9. Branin function

 
All these function are shown in detail in the Appendix I. The first four functions are 
unimodal functions; the next five are multimodal functions designed with a 
considerable amount of local minima. The eighth and ninth functions are rotated 
multimodal functions. The improved GA is implemented in MATLAB. A comparison 
is made between a simple GA and the proposed GA on the basis of mean and the best 
fitness over the generations.  The best fitness is the minimum score of the population. 
Both the GA’s stop when there is no improvement in the best score over last fifty 
generations. The population size is kept at 20 for all the functions and, the crossover 
and mutation rates are equal to 0.6 and 0.01 respectively.  The normal mutation rate is 
kept low as adaptive mutation to remove duplicates is also applied. The best 
individual or a random individual is mutated with equally likely (probability = 0.5) to 
replace the revisited points in the new population.  We have used real encoding, 
proportion scaling, remainder stochastic selection, one point crossover and Gaussian 
mutation. These results are averaged over 20 runs of the GA. A comparison on the 
basis of mean and best fitness of the final population of the proposed GA and simple 
GA for nine benchmarks functions is shown Table 1. 
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Appendix I: Benchmarks Function 

1. Rastrigin’s function: f1(x) = 10x+∑ ሾݔ஽௜ୀଵ 2-10cos (2πx) +10]  
Where x [-5.12, 5.12] D 
Min f1(x) = f1 ([0, 0….0]) =0 

2. Sphere function [14]: f2ሺxሻ ൌ ∑ x D୧ୀଵ 2  
    Where x [-5.12, 5.12] D 

    Min f2(x) =f2 ([0, 0….0]) =0 
3. Generalized Rosenbrock function: f3(x) = ∑ ሾ100ሺݔ஽ିଵ௜ୀଵ i+1-xi

2)2 + (xi-1)2] 
    Where x  [-5.12, 5.12] D 
    Min f3(x) = f3 ([1, 1….1]) =0 
4. Generalized Rastrigin function: f4(x) = ∑ ሾݔ஽௜ୀଵ 2-10cos (2πx) +10] 
    Where x [-5.12, 5.12] D 
    Min f4(x) = f4 ([0, 0… 0]) =0 

5. Griewank’s function: f5(x) = 
ଵସ଴଴଴ ∑ x D୧ୀଵ 2-∏ ஽௜ୀଵݏ݋ܿ ௫௜√௜ ൅ 1 

    Where f5(x)  [-5.12, 5.12] D 

   Min f5(x) = f5 ([0, 0… 0]) 

6. Ackley function: f6(x) = -20 exp (-0.2√ଵ஽ ∑ x D୧ୀଵ i
2)-exp (

ଵ஽ ∑ cos2πx D୧ୀଵ i) +20+e 

        where x  [-5.12, 5.12] D 
    Min f6(x) = f6 ([0, 0… 0]) = 0 

7. Rotated Griewank’s function: f7(x) = 
ଵସ଴଴଴ ∑ z D୧ୀଵ 2-∏ ஽௜ୀଵݏ݋ܿ ௭௜√௜ ൅ 1 

   Where z=xM , f7(x)  [-5.12, 5.12]D 

   Min f7(x) = f7 ([0, 0… 0]) 
8. Rotated Weierstrass’s function [14]:  

    f8(x) = ൥ 1 ڮ ڭܦ ڰ 2ܦڭ െ ܦ ڮ  2൩    //D2=D2ܦ

9. Branin function: f9(x) = (x2-
ହସగଶx1

2+
ହగx1-6)2+10(1 - 

ଵ଼గ) cosx1+10 

    Where x  [-5.12, 5.12]  
   Min f9(x) = f9 ([-3.142, 12.275]) =  
  f9 ([3.142, 2.275]) 
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