
N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 288–297, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Non-revisiting Genetic Algorithm with Adaptive
Mutation for Function Optimization

Saroj and Devraj

Deaprtment of Computer Science and Engg.
Guru Jambheshwar University of Science and Technology, Hisar

{ratnoo.saroj,devraj.kamboj}@gmail.com

Abstract. Genetic Algorithm (GA) is a robust and popular stochastic
optimization algorithm for large and complex search spaces. The major
disadvantages of Genetic Algorithms are premature convergence and revisits to
individual solutions in the search space. In other words, Genetic algorithm is a
revisiting algorithm that leads to duplicate function evaluations which is a clear
waste of time and computational resources. In this paper, a non-revisiting
genetic algorithm with adaptive mutation is proposed for the domain of function
optimization. In this algorithm whenever a revisit occurs, the underlined search
point is replaced with a mutated version of the best/random (chosen
probabilistically) individual from the GA population. Moreover, the suggested
approach is not using any extra memory resources to avoid revisits. To test the
power of the method, the proposed non-revisiting algorithm is evaluated using
nine benchmarks functions. The performance of the proposed genetic algorithm
is superior as compared to simple genetic algorithm as confirmed by the
experimental results.

Keywords: Function optimization, Genetic algorithm, Non-revisiting, Adaptive
mutation.

1 Introduction

Developing new optimization techniques is an active area of research and Genetic
Algorithm (GA) is a relatively new stochastic optimization algorithm pioneered by
Holland [1]. A GA is capable of finding optimal solutions for complex problems in a
wide spectrum of applications due to its global nature. A GA is an iterative procedure
that maintains a population of structures that are candidate solutions to the specific
problem under consideration. In each generation, each individual is evaluated using a
fitness function that measures the quality of solution provided by an individual.
Further, genetic operators such as reproduction, crossover and mutation are applied to
introduce the diversity in the candidate solutions. In fact, a GA mimics the natural
principle of survival of the fittest. A fitness proportionate selection and GA operators
ensures the better and better fit solutions to emerge in successive generations
[2][3][4]. However, GAs are not without limitations. Two of the main problems are-
1) premature convergence i.e. many a times a GA converges to some local optimal

A Non-revisiting Genetic Algorithm with Adaptive Mutation for Function Optimization 289

solution. 2) Redundant function evaluations. A simple genetic algorithm do not
memorizes the search points or solutions to the problem that it visits in its life time
and it revisits lots of search points generating duplicate solutions resulting into
redundant fitness computations. Here, a revisit to a search position x is defined as a
re-evaluation of a function of x which has been evaluated before. The problem of
revisit is all the more severe towards the end of a GA run. In many domains, the
fitness evaluation is computationally very expensive and lots of time is wasted in
revisiting the parts of the search space and duplicate function evaluations.

In this paper, we propose an improved GA with adaptive mutation operator to
avoid revisits and redundant fitness evaluations to a large extent. This GA has the
elitist approach and retains the best individual in every new population. A look up for
revisits is made only in the current population along with the population of previous
generation. If any individual produced is found duplicate, it is replaced
probabilistically with a mutated version of the best individual or of a random
individual. The mutation operator is adaptive in the sense that its power of exploration
decreases and power of exploitation increases with the number of generations.

The proposed approach demonstrates that the duplicate removal introduces a
powerful diversity preservation mechanism which not only results in better final-
population solutions but also avoids premature convergence. The results are presented
for nine benchmark functions and illustrate the effectiveness of duplicate removal
through adaptive mutation. The results are directly compared to a simple GA which is
not removing duplicate solutions generated in its successive generations.

The rest of the paper is organized as below. Section II describes the related work.
The proposed non revisiting Genetic algorithm which removes duplicate individuals
through adaptive mutation is given in section III. Experimental design and results are
enlisted in section IV. Section V concludes the papers and points to the future scope
of this work.

2 Related Work

A number of implementations of genetic algorithms in a wide spectrum of
applications have been reported in the literature [1][2][3][4][5]. Since the inception of
genetic algorithms, several advanced GA approaches came up improving the
efficiency and efficacy of the results achieved in the domain of function optimization
along with various other domains. Many of these approaches addressed the problem
of premature convergence and revisiting behavior of genetic algorithms. One of these
advance approaches is devising new GA operators that can be adapted to produce
suitable individuals by considering the state of the current population with respect to
global optimal solution[6][7][8][9]. Srinivas and Patnaik (1994) employed a self
adapted GA that achieved global optima more often than a simple GA for several
multimodal functions [8]. In their work, they have suggested use of adaptive
probabilities of crossover and mutation to maintain adequate diversity to avoid
premature convergence. Another significant contribution came from Herrera and
Lozano (2000) who suggested heterogeneous gradual distributed real coded genetic

290 Saroj and Devraj

algorithms (RCGAs) for function optimization domain. They devised new fuzzy
connective based crossovers with varying degree of exploration and exploitation
which proved very effective to avoid premature convergence and achieved one of the
best reported results for several benchmark problems of function optimization [9].
Friedrich et al. (2007) have made an important contribution by analyzing the
influence of simple diversity mechanisms used in selection procedures on the runtime
behaviour [14].

The other important problem with GAs that has been in the recent focus of the GA
research community is redundant function evaluations and revisits. Mauldin [10] was
among the first ones who enhanced the performance of a genetic algorithm by
eliminating duplicate genotypes during a GA run. Mauldin used a uniqueness operator
that allowed a new child x to be inserted into the population if x was greater than a
Hamming-distance threshold from all existing population genotypes. Davis [4] also
showed that a binary coded GA for a comparable number of child evaluations that
removes duplicates in the population has superior performance. Eshelman and
Schaffer [11] reconfirmed this observation by using selection based innovations and
new GA operators that prevented revisits. The problem of duplicate function
evaluations has also been addressed by providing GA a short/long term memory i.e.
the GA stores all the search points visited and their corresponding fitness into some
data structure. In such approaches every time a new search point is produced by GA,
before actually computing its fitness, the memory of GA is looked into and if this
search point exists, its fitness is not recomputed. If the new solution is not in the
memory, its fitness is computed and appended to the memory. Binary search trees,
Binary partition tress, heap, hash tables and cache memory have been used to provide
the supplement memory to GA. Such strategies have resulted in performance
enhancement of GAs by eliminating revisits partially or completely [12][13][14][15].
Recently, Yuen and Chow [16] used a novel binary space partitioning tree to
eliminate the duplicate individuals. Saroj et al. used a heap structure to avoid the
redundant fitness evaluations in domain of rule mining. Their approach proved to be
effective for large datasets. [17]. Though, all these duplicate removal method reduce
the run time of a GA, they require huge data structures and a significant amount of
time is spent for memory look ups. It is not uncommon for a GA to run for thousands
of generations with a population of hundreds of individuals. If we assume a GA with
100 individuals and 5000 generations, we shall need a data structure that can store
250000 problem solutions and that is when we assume half the individuals produced
are duplicates. The GA shall require 500000 look ups to avoid redundant fitness
computation. GAs is already considered slow as compared to other optimization
techniques and these approaches further slow down GA’s performance. Clearly this
method is successful only in the domains where fitness computations time is
significantly larger than the memory look ups time and not suitable at all for domain
of function optimization where fitness evaluation is relatively less expensive.
Therefore, in this paper, we have adopted a genetic algorithm approach that maintains
the diversity through adaptive mutation, avoids revisits to a large extent and that is
without any additional memory overheads.

A Non-revisiting Genetic Algorithm with Adaptive Mutation for Function Optimization 291

3 Proposed Non-revisiting GA with Adaptive Mutation

Non-revisiting algorithm is the one which do not visit the search points already
visited. The improved GA with non-revisiting algorithm and adaptive mutation has to
perform some extra steps than a simple GA. These steps are used to found the
duplicate individuals. If any duplicate individual is found then it is mutated and
reinserted in the current population. The duplicates are looked with respect to current
and the previous generation only. There is a special condition that the best individual
is preserved and not mutated. The flow chart and algorithm for the proposed GA is
given in Fig. 1 and Fig 2 respectively.

 Fig. 1. Step by step procedure for Non-revisiting GA with adaptive mutation

Selection Stopping
criteria

Output the
best Individual

Crossover

Mutation

New Pop

Replace the
revisited with
mutated individual

Mutate probabilistically
the best/ random
individual

Find Revisits

Initialize population

Evaluate population

 Start

292 Saroj and Devraj

The mutation applied is Gaussian adaptive mutation. The Gaussian function
generates a random number around zero mean. The formula for mutation is as
follows.

(1)

 (2)

The amount of mutation is controlled by the two parameters mscale and mshrink.
Here, mscale represents the variance for mutation for the first generation and mshrink
represents the amount of shrink in mutation in successive generations. The mutation
scale decreases as the number of generation increase. It is clear from the above
formulae that such kind of mutation is exploratory during the initial runs and
exploitative towards the final runs of the GA. We have kept the mscale as 1.0 and
mshrink equals to 0.75.

 rations)total_geneeneration/(current_g*mscale*mshrinkmscalemscale −=

 mscale)*rand(gaussian_best_xx(i) ±=

1. Begin
2. Initial condition: Initial population:- old-pop=[], new-pop[], Stopping Flag:-

SF=0, Best Fit=0, Visiting Flag:- VF[]=0
3. Initialize the population in old-pop
4. Evaluate the fitness of old-pop and calculate the overall best individual up to

the current generation.
5. If(stopping criteria=yes)

5.1 SF=1 //set stopping flag
5.2 Output the best individual
5.3 Stop

Else
5.4 Copy the best individual into new-pop
5.5 Perform a GA step by applying GA operators i.e. selection, crossover and

mutation.
5.6 Maintain the old population and store the newly generated individuals in

the new pop.
5.7 For (i=1 to pop-size)

check revisits within the new-pop and with respect to old-pop
5.8 If revisit && not best_individual)
5.9 VF[i]=1
5.10 For(i=1 to pop-size)
5.11 If VF[i]==1

 New-pop[i] =mutated (new-Pop[i])
5.12 old-pop=new-pop

Go to step 4

 Fig. 2. Algorithm for the proposed GA with no-revisit

A Non-revisiting Genetic Algorithm with Adaptive Mutation for Function Optimization 293

The proposed non-revisiting GA with adaptive mutation has three key strengths.

1. It automatically assures maintenance of diversity and prevents premature
convergence. Most of the individuals in a GA population are guaranteed to be
different. By nature of the proposed GA, it is impossible for a population to
consist of one kind of individuals only.

2. It might not completely eliminate the revisits. However it doesn’t require large
data structure to store the individuals to do a look up for duplicates and only
uses the previous and current populations which are anyway available.

3. It probabilistically takes the advantage of the best individuals and converges
faster without suffering problem of convergence.

4 Experimental Results

We have implemented the proposed non-revisiting GA with adaptive mutation on
nine Benchmarks functions in four dimensions and the set of test functions is given
below.

4.1 Test Function Set

1. Rastrigin’s function
2. Sphere function
3. Generalized Rosenbrock function
4. Generalized Rastrigin function
5. Griewank’s function

6. Ackley function
7. Rotated Griewank’s function
8. Rotated Weierstrass’s function
9. Branin function

All these function are shown in detail in the Appendix I. The first four functions are
unimodal functions; the next five are multimodal functions designed with a
considerable amount of local minima. The eighth and ninth functions are rotated
multimodal functions. The improved GA is implemented in MATLAB. A comparison
is made between a simple GA and the proposed GA on the basis of mean and the best
fitness over the generations. The best fitness is the minimum score of the population.
Both the GA’s stop when there is no improvement in the best score over last fifty
generations. The population size is kept at 20 for all the functions and, the crossover
and mutation rates are equal to 0.6 and 0.01 respectively. The normal mutation rate is
kept low as adaptive mutation to remove duplicates is also applied. The best
individual or a random individual is mutated with equally likely (probability = 0.5) to
replace the revisited points in the new population. We have used real encoding,
proportion scaling, remainder stochastic selection, one point crossover and Gaussian
mutation. These results are averaged over 20 runs of the GA. A comparison on the
basis of mean and best fitness of the final population of the proposed GA and simple
GA for nine benchmarks functions is shown Table 1.

294 Saroj and Devraj

Table 1. Best and mean fitne
adaptive mutation

Benchmarks Function

Rastrigin’s function

Sphere function

Generalized Rastrigins fun

Griewank’s function

Generalized Rosenbrock fu

Ackley function

Rotated Griewank’s functi

Rotated Weierstrass’s func

Branin function

Though, our approach pe

to Fig. 6 show the performa
Generalized Rastrigins, Ro
NRGA approach dominate
performance of the non-rev
GA.

 Fig. 3. Performance compa
and SGA for Generalized Ras

ess of the final populations of SGA and Non-revisiting GA w

Best Fitness Mean Fitness

SGA NRGA SGA NRGA

2.561 1.023 21.68 19.81

0.004 0.002 1.474 1.102

nction 2.461 0.024 18.47 15.71

0.0020 0.0021 1.107 1.062

unction 2.834 0.091 21.24 19.24

3.324 0.009 22.42 18.96

ion 0.009 0.001 1.104 1.014

ction 3.784 0.092 1.936 1.526

3.187 0.335 16.16 14.01

erforms better for all the nine benchmark functions, Fig
ance comparison of non-revisiting GA with simple GA

osenbrock, Ackley and Rotated Griewank functions wh
es significantly. It is quite clear from the results that
visiting GA with adaptive mutation is better than the sim

arison of NRGA
trigin’s function

Fig. 4. Performance comparison of NRG
and SGA for Generalized Rosenbrocks
function

with

g. 3
A for
here
the

mple

GA
s’s

A Non-revisiting Genetic Algo

5 Conclusion

In this paper, a novel non-re
in the domain of functio
completely eliminate the r
enough diversity to avoid
approach achieves better a
duplicates individuals and l
GA as suggested in several

The mechanism of a pr
balance between exploratio
optimal. It is exploratory in
runs of GA. More the numb
the new individual that rep
are very encouraging and
conventional counterpart. T
domain of rule mining in th

References

[1] Holland, J.H.: Adaptatio
Ann Arbor (1975)

[2] Goldberg, D.E.: Geneti
Addison-Wesley, New Y

[3] Michalewicz, Z.: Geneti
Heidelberg (1999)

[4] Davis, L.: Handbook of G

Fig. 5. Performance comparis
and SGA for Ackley’s functio

orithm with Adaptive Mutation for Function Optimization

evisiting GA with adaptive mutation is proposed and tes
on optimization. Though new improved GA may
revisits and redundant function evaluation, it guarant

the problem of premature convergence. The envisa
accuracy without much overheads of searching time
large data structures to serve as the long term memory fo
earlier approaches [12][13][14][15].
obabilistic adaptive mutation provides the much requi
on and exploitation along with faster convergence to
n the initial runs of GA and exploitative towards the fi
ber of generations of the GA, smaller will be the change
places the revisited search point. The experimental res
 show that the improved GA is clearly superior to

The adaptation of the current approach is underway for
he field of knowledge discovery.

on in Natural and Artificial Systems. MI Univ. Michigan Pr

c Algorithms in Search, Optimization and Machine Learn
York (1989)
ic Algorithms + Data Structures = Evolution Programs. Sprin

Genetic Algorithms. Van Nostrand Reinhold, New York (199

son of NRGA
on

Fig. 6. Performance comparison of NG
and SGA for Generalized Griewan

295

sted
not

tees
aged

for
or a

ired
the

final
e in
ults
 its
the

ress,

ning.

nger,

1)

GGA
nk’s

296 Saroj and Devraj

[5] De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
PhD Thesis, University of Michigan, Ann Arbor, MI, USA (1975)

[6] Srinivasa, K.G., Venugopal, K.R., Patnaik, L.M.: A Self Adaptive Migration Model
Genetic Algorithm for Data Mining Applications. Information Sciences 177, 4295–4313
(2007)

[7] Ono, I., Kita, H., Kobayashi, S.: A Robust Real-Coded Genetic Algorithm using
Unimodal Normal Distribution Crossover Augmented by Uniform Crossover: Effects of
Self-Adaptation of Crossover Probabilities. In: Proceedings of the Genetic and
Evolutionary Computation Conference, vol. 1, pp. 496–503. Morgan Kaufmann, Orlando
(1999)

[8] Srinivas, M., Patnaik, L.M.: Adaptive Probabilities of Crossover and Mutation in Genetic
Algorithms. IEEE Transactions on Systems, Man and Cybernetics 24, 656–667 (1994)

[9] Herrera, F., Lozano, M.: Gradual Distributed Real-Coded Genetic Algorithms. IEEE
Transactions on Evolutionary Computation 4, 43–63 (2000)

[10] Mauldin, M.L.: Maintaining Diversity in Genetic Search. In: Proceeding National
Conference on Artificial Intelligence, Austin, pp. 247–250 (1984)

[11] Eshelman, L., Schaffer, J.: Preventing Premature Convergence in Genetic Algorithms by
Preventing Incest. In: Proceedings of the Fourth International Conference on Genetic
Algorithms. Morgan Kaufmann, San Mateo (1991)

[12] Povinelli, R.J., Feng, X.: Improving Genetic Algorithms Performance by Hashing Fitness
Values. In: Proceedings Artificial Neural Network, England, pp. 399–404 (1999)

[13] Kratica, J.: Improving the Performances of Genetic Algorithm by Caching. Computer
Artificial Intelligence 18, 271–283 (1999)

[14] Friedrich, T., Hebbinghaus, N., Neumann, F.: Rigorous Analysis of Simple Diversity
Mechanisms. In: Proc. Genetic Evolutionary Computation Conference, pp. 1219–1225.
ACM Press, London (2007)

[15] Ronald, S.: Duplicate Genotypes in a Genetic Algorithm. In: Proc. IEEE Int. Conf.
Evolutionary Computation, Anchorage, Alaska, pp. 793–798 (1998)

[16] Yuen, S.Y., Chow, C.K.: A Non-revisiting Genetic Algorithm. In: Proc. IEEE Congress
on Evolutionary Computation, Singapore, pp. 4583–4590 (2007)

[17] Saroj, Kapila, Kumar, D., Kanika: A Genetic Algorithm with Entropy Based Probabilistic
Initialization and Memory for Automated Rule Mining. In: Meghanathan, N., Kaushik,
B.K., Nagamalai, D. (eds.) CCSIT 2011, Part I. CCIS, vol. 131, pp. 604–613. Springer,
Heidelberg (2011)

A Non-revisiting Genetic Algorithm with Adaptive Mutation for Function Optimization 297

Appendix I: Benchmarks Function

1. Rastrigin’s function: f1(x) = 10x+∑ ሾݔ஽௜ୀଵ 2-10cos (2πx) +10]
Where x [-5.12, 5.12] D
Min f1(x) = f1 ([0, 0….0]) =0

2. Sphere function [14]: f2ሺxሻ ൌ ∑ x D୧ୀଵ 2
 Where x [-5.12, 5.12] D

 Min f2(x) =f2 ([0, 0….0]) =0
3. Generalized Rosenbrock function: f3(x) = ∑ ሾ100ሺݔ஽ିଵ௜ୀଵ i+1-xi

2)2 + (xi-1)2]
 Where x [-5.12, 5.12] D
 Min f3(x) = f3 ([1, 1….1]) =0
4. Generalized Rastrigin function: f4(x) = ∑ ሾݔ஽௜ୀଵ 2-10cos (2πx) +10]
 Where x [-5.12, 5.12] D
 Min f4(x) = f4 ([0, 0… 0]) =0

5. Griewank’s function: f5(x) =
ଵସ଴଴଴ ∑ x D୧ୀଵ 2-∏ ஽௜ୀଵݏ݋ܿ ௫௜√௜ ൅ 1

 Where f5(x) [-5.12, 5.12] D

 Min f5(x) = f5 ([0, 0… 0])

6. Ackley function: f6(x) = -20 exp (-0.2√ଵ஽ ∑ x D୧ୀଵ i
2)-exp (

ଵ஽ ∑ cos2πx D୧ୀଵ i) +20+e

 where x [-5.12, 5.12] D
 Min f6(x) = f6 ([0, 0… 0]) = 0

7. Rotated Griewank’s function: f7(x) =
ଵସ଴଴଴ ∑ z D୧ୀଵ 2-∏ ஽௜ୀଵݏ݋ܿ ௭௜√௜ ൅ 1

 Where z=xM , f7(x) [-5.12, 5.12]D

 Min f7(x) = f7 ([0, 0… 0])
8. Rotated Weierstrass’s function [14]:

 f8(x) = ൥ 1 ڮ ڭܦ ڰ 2ܦڭ െ ܦ ڮ 2൩ //D2=D2ܦ

9. Branin function: f9(x) = (x2-
ହସగଶx1

2+
ହగx1-6)2+10(1 -

ଵ଼గ) cosx1+10

 Where x [-5.12, 5.12]
 Min f9(x) = f9 ([-3.142, 12.275]) =
 f9 ([3.142, 2.275])

	A Non-revisiting Genetic Algorithm with Adaptive
Mutation for Function Optimization
	Introduction
	Related Work
	Proposed Non-revisiting GA with Adaptive Mutation
	Experimental Results
	Test Function Set

	Conclusion
	References

