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Abstract. This paper investigates the hybrid synchronization of hyperchaotic
Chen systems (Jia, Dai and Hui, 2010) via sliding mode control. The stability
results for the sliding mode control based synchronization schemes derived in
this paper are established using Lyapunov stability theory. The sliding mode con-
trol method is very effective and convenient to achieve global chaos synchroniza-
tion of the identical hyperchaotic Chen systems because the Lyapunov exponents
are not required for these calculations. Numerical simulations are presented to
demonstrate the sliding mode control results derived in this paper for the hybrid
synchronization of identical hyperchaotic Chen systems.

Keywords: Sliding mode control, hybrid synchronization, hyperchaos, hyper-
chaotic Chen system.

1 Introduction

Chaotic systems are dynamical systems that are highly sensitive to initial conditions.
This sensitivity is popularly known as the butterfly effect [1].

In most of the synchronization approaches, the master-slave or drive-response for-
malism is used. If a particular chaotic system is called the master or drive system and
another chaotic system is called the slave or response system, then the idea of synchro-
nization is to use the output of the master system to control the slave system so that the
output of the response system tracks the output of the master system asymptotically.

Since the pioneering work by Pecora and Carroll ([2], 1990), chaos synchronization
problem has been studied extensively in the literature. Chaos theory has been applied
to a variety of fields including physical systems [3], chemical systems [4], ecological
systems [5], secure communications ([6]-[8]) etc.

In the last two decades, various control schemes have been developed and success-
fully applied for the chaos synchronization such as PC method [2], OGY method [9],
active control ([10]-[12]), adaptive control ([13]-[15]), time-delay feedback method
[16], backstepping design method ([17]-[18]), sampled-data feedback synchronization
method ([19]-[20]) etc.
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So far, many types of synchronization phenomenon have been presented such as
complete synchronization [2], generalized synchronization [21], anti-synchronization
[22], projective synchronization [23], generalized projective synchronization [24], etc.

Complete synchronization (CS) is characterized by the equality of state variables
evolving in time, while anti-synchronization (AS) is characterized by the disappearance
of the sum of relevant state variables evolving in time. Projective synchronization (PS)
is characterized by the fast that the master and slave systems could be synchronized
up to a scaling factor. In generalized projective synchronization (GPS), the responses
of the synchronized dynamical states synchronize up to a constant scaling matrix. It
is easy to see that the complete synchronization and anti-synchronization are special
cases of the generalized projective synchronization where the scaling matrix α = I and
α = −I , respectively. In hybrid synchronization of two chaotic systems [25], one part
of the systems is completely synchronized and the other part is anti-synchronized so
that the complete synchronization (CS) and anti-synchronization (AS) co-exist in the
systems.

In this paper, we derive new results based on the sliding mode control ([26]-[28]) for
the global chaos synchronization of identical hyperchaotic Chen systems ([29], Jia, Dai
and Hui, 2010).

The stability results for the sliding mode control based synchronization schemes
derived in this paper are established using Lyapunov stability theory [30]. In robust
control systems, sliding mode control is often adopted due to its inherent advantages of
easy realization, fast response and good transient performance as well as its insensitivity
to parameter uncertainties and external disturbances.

This paper has been organized as follows. In Section 2, we describe the problem
statement and our methodology using sliding mode control. In Section 3, we discuss
the global chaos synchronization of identical hyperchaotic Chen systems ([29], 2010).
In Section 4, we summarize the main results obtained in this paper.

2 Problem Statement and Our Methodology Using Sliding Mode
Control

In this section, we detail the problem statement for global chaos synchronization of
identical chaos systems and our methodology using sliding mode control (SMC) and
Lyapunov stability theory.

Consider the chaotic system described by

ẋ = Ax + f(x) (1)

where x ∈ IRn is the state of the system, A is the n×n matrix of the system parameters
and f : IRn → IRn is the nonlinear part of the system. We consider the system (1) as
the master or drive system.

As the slave or response system, we consider the following chaotic system described
by the dynamics

ẏ = Ay + f(y) + u (2)

where y ∈ IRn is the state of the system and u ∈ IRm is the controller of the slave
system.
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In hybrid synchronization, we define the synchronization error so that the odd states
of the systems (1) and (2) are completely synchronized and the even states of the sys-
tems (1) and (2) are anti-synchronized.

Thus, we define the hybrid synchronization error as

ei =

{
yi − xi, if i is odd

yi + xi, if i is even
(3)

Then the error dynamics can be expressed in the form

ė = Ae + η(x, y) + u (4)

The objective of the hybrid synchronization problem is to find a controller u such that

lim
t→∞ ‖e(t)‖ = 0 for all e(0) ∈ IRn (5)

To solve this problem, we first define the control u as

u(t) = −η(x, y) + Bv(t) (6)

where B is a constant gain vector selected such that (A, B) is controllable.
Substituting (6) into (4), the error dynamics simplifies to

ė = Ae + Bv (7)

which is a linear time-invariant control system with single input v.
Thus, the original global chaos synchronization problem can be replaced by an equiv-

alent problem of stabilizing the zero solution e = 0 of the linear system (7) be a suitable
choice of the sliding mode control.

In the sliding mode control, we define the variable

s(e) = Ce = c1e1 + c2e2 + · · · + cnen (8)

where C = [ c1 c2 · · · cn ] is a constant vector to be determined.
In the sliding mode control, we constrain the motion of the system (7) to the sliding

manifold defined by

S = {x ∈ IRn | s(e) = 0} = {x ∈ IRn | c1e1 + c2e2 + · · · + cnen = 0}
which is required to be invariant under the flow of the error dynamics (7).

When in sliding manifold S, the system (7) satisfies the following conditions:

s(e) = 0 (9)

which is the defining equation for the manifold S and

ṡ(e) = 0 (10)

which is the necessary condition for the state trajectory e(t) of the system (7) to stay on
the sliding manifold S.
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Using (7) and (8), the equation (10) can be rewritten as

ṡ(e) = C [Ae + Bv] = 0 (11)

Solving (11), we obtain the equivalent control law given by

veq(t) = −(CB)−1CAe(t) (12)

where C is chosen such that CB �= 0.
Substituting (12) into the error dynamics (7), we get the closed-loop dynamics as

ė = [I − B(CB)−1C]Ae (13)

where C is chosen such that the system matrix [I − B(CB)−1C]A is Hurwitz.
Then the controlled system (13) is globally asymptotically stable.
To design the sliding mode controller for the linear time-invariant system (7), we use

the constant plus proportional rate reaching law

ṡ = −qsgn(s) − ks (14)

where sgn(·) denotes the sign function and the gains q > 0, k > 0 are determined such
that the sliding condition is satisfied and sliding motion will occur.

From equations (11) and (14), we obtain the control v(t) as

v(t) = −(CB)−1[C(kI + A)e + qsgn(s)] (15)

Theorem 1. The master system (1) and the slave system (2) are globally and asymptot-
ically synchronized for all initial conditions x(0), y(0) ∈ IRn by the feedback control
law

u(t) = −η(x, y) + Bv(t) (16)

where v(t) is defined by (15) and B is a column vector such that (A, B) is controllable.
Also, the sliding mode gains k, q are positive.

Proof. First, we note that substituting (16) and (15) into the error dynamics (7), we
obtain the closed-loop dynamics as

ė = Ae − B(CB)−1[C(kI + A)e + qsgn(s)] (17)

To prove that the error dynamics (17) is globally asymptotically stable, we consider the
candidate Lyapunov function defined by the equation

V (e) =
1
2

s2(e) (18)

which is a positive definite function on IRn.
Differentiating V along the trajectories of (17) or the equivalent dynamics (14), we

obtain
V̇ (e) = s(e)ṡ(e) = −ks2 − qsgn(s) (19)

which is a negative definite function on IRn.
Thus, by Lyapunov stability theory [30], it is immediate that the error dynamics (17)

is globally asymptotically stable for all initial conditions e(0) ∈ IRn.
This completes the proof.
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Fig. 1. State Portrait of the Hyperchaotic Chen System

3 Global Chaos Synchronization of Identical Hyperchaotic Chen
Systems

3.1 Main Results

In this section, we apply the sliding mode control results obtained in Section 2 for the
global chaos synchronization of identical hyperchaotic Chen systems ([29], 2010).

Thus, the master system is described by the hyperchaotic Chen dynamics

ẋ1 = a(x2 − x1)
ẋ2 = 4x1 − 10x1x3 + cx2 + 4x4

ẋ3 = x2
2 − bx3

ẋ4 = −dx1

(20)

where x1, x2, x3, x4 are the states of the system and a, b, c, d are constant, positive
parameters of the system.

The slave system is also described by the controlled hyperchaotic Chen dynamics

ẏ1 = a(y2 − y1) + u1

ẏ2 = 4y1 − 10y1y3 + cy2 + 4y4 + u2

ẏ3 = y2
2 − by3 + u3

ẏ4 = −dy1 + u4

(21)

where y1, y2, y3, y4 are the states of the system and u1, u2, u3, u4 are the active con-
trollers to be designed.
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The systems (20) and (21) are hyperchaotic when

a = 35, b = 3, c = 21 and d = 2

The state portrait of the hyperchaotic Chen system (20) is illustrated in Figure 1.
The hybrid synchronization error e is defined by

e1 = y1 − x1

e2 = y2 + x2

e3 = y3 − x3

e4 = y4 + x4

(22)

The error dynamics is easily obtained as

ė1 = a(e2 − e1) − 2ax2 + u1

ė2 = 4e1 + ce2 + 4e4 + 8x1 − 10(y1y3 + x1x3) + u2

ė3 = −be3 + y2
2 − x2

2 + u3

ė4 = −de1 − 2dx1 + u4

(23)

We can write the error dynamics (23) in the matrix notation as

ė = Ae + η(x, y) + u (24)

where the associated matrices are

A =

⎡
⎢⎢⎣
−a a 0 0
4 c 0 4
0 0 −b 0
−d 0 0 0

⎤
⎥⎥⎦ , η(x, y) =

⎡
⎢⎢⎣

−2ax2

8x1 − 10(y1y3 + x1x3)
y2
2 − x2

2

−2dx1

⎤
⎥⎥⎦ and u =

⎡
⎢⎢⎣

u1

u2

u3

u4

⎤
⎥⎥⎦ (25)

The sliding mode controller design is carried out as detailed in Section 2.
First, we set u as

u = −η(x, y) + Bv (26)

where B is chosen such that (A, B) is controllable. We take B as

B =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ (27)

In the hyperchaotic case, the parameter values are

a = 35, b = 3, c = 21 and d = 2

The sliding mode variable is selected as

s = Ce = [−1 −2 0 1 ] e (28)

which makes the sliding mode state equation asymptotically stable.
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We choose the sliding mode gains as

k = 5 and q = 0.1

We note that a large value of k can cause chattering and an appropriate value of q is
chosen to speed up the time taken to reach the sliding manifold as well as to reduce the
system chattering.

From equation (15), we can obtain v(t) as

v(t) = 10e1 − 43.5e2 − 1.5e4 + 0.05 sgn(s) (29)

Thus, the required sliding mode controller is obtained as

u(t) = −η(x, y) + Bv(t) (30)

where η(x, y), B and v(t) are defined in equations (25), (27) and (29).
By Theorem 1, we obtain the following result.

Theorem 2. The identical hyperchaotic Chen systems (20) and (21) are globally and
asymptotically hybrid-synchronized for all initial conditions with the sliding mode con-
troller u defined by (30).

3.2 Numerical Results

For the numerical simulations, the fourth-order Runge-Kutta method with time-step
h = 10−6 is used to solve the hyperchaotic Chen systems (20) and (21) with the sliding
mode controller u given by (30) using MATLAB.

For the hyperchaotic Chen systems, the parameter values are taken as

a = 35, b = 3, c = 21 and d = 2

The sliding mode gains are chosen as

k = 5 and q = 0.1

The initial values of the master system (20) are taken as

x1(0) = 16, x2(0) = 19, x3(0) = 21, x4(0) = 11

and the initial values of the slave system (21) are taken as

y1(0) = 8, y2(0) = 26, y3(0) = 36, y4(0) = 24

Figure 2 depicts the hybrid synchronization of the hyperchaotic Chen systems (20) and
(21).
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Fig. 2. Hybrid Synchronization of the Identical Hyperchaotic Chen Systems

4 Conclusions

Sliding control method (SMC) is an effective method in control engineering. In robust
control systems, sliding mode control is often adopted due to its inherent advantages
of easy realization, fast response and good transient performance as well as its insensi-
tivity to parameter uncertainties and external disturbances.In this paper, we have used
sliding mode control (SMC) to achieve hybrid chaos synchronization for the identical
hyperchaotic Chen systems (Jia, Dai and Hui, 2010). Our synchronization results for
the identical hyperchaotic Chen systems have been established using Lyapunov stabil-
ity theory. Since the Lyapunov exponents are not required for these calculations, the
sliding mode control method is very effective and convenient to achieve hybrid chaos
synchronization for identical hyperchaotic Chen systems. Numerical simulations are
also presented to demonstrate the effectiveness of the synchronization results derived in
this paper using sliding mode control.
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17. Wu, X., Lü, J.: Parameter identification and backstepping control of uncertain Lü system.
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