
Survey on Optimization Techniques

in High Level Synthesis

B. Saravanakumaran1 and M. Joseph2

1 E.G.S. Pillay Engineering College
Nagore, Nagapattinam - 611002, India
saravanakumaranbalu@yahoo.com

2 Mother Terasa College of Engineering and Technology
Illuppur, Pudukkottai - 622102, India

mjoseph mich@yahoo.com

Abstract. This paper provides a detailed survey of optimization tech-
niques available in high level synthesis. This survey contemplates on two
parts. The first part deals with the applicability of optimization tech-
niques available in high level language compiler into high level synthesis.
The second part address the topics such as Area optimization, Resource
optimization, Power optimization and Optimization issues pertaining to
the notions value-grouping, value to register assignment, Transfer to wire
assignment and wire to FU port assignment.

Keywords: High Level Synthesis, Very Large Scale Integrated Circuits,
Functional Units, HDL Compiler.

1 Introduction

High level synthesis is generally used in Integrated Circuit design. The main goal
of the HLS is to optimize silicon area, power and time. The use of a Hardware
Description Language (HDL) is to understand the optimization techniques at
the HDL level of abstraction for the accomplishment of better design, low power
and reduced area. The use of a Hardware Description Language is to examine
the optimization techniques at the HDL level of abstraction to achieve possible
changes in design realization of low power and area reduction. In Very Large
Scale Integrated Circuit (VLSI) design, it is required to achieve higher level
abstraction. The higher level abstraction of the circuit is a basic requirement
due to

– Higher Complexity
– Shrinking device size and
– Shorter time to market

Due to low power requirements in many portable applications such as mobile
phones as well as packaging cost consideration, low power design is imperative.
To design the chip designer automates on higher levels of abstraction where
functionality is easier to understand and tradeoff is more influenced. There are

N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 11–21, 2012.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012



12 B. Saravanakumaran and M. Joseph

several advantages to automate part of all of the design process and moving au-
tomation to higher levels. First, automation assures a much shorter design cycle.
Second, it allows for more exploration of different design styles since different
designs can be generated and evaluated quickly. Finally, if synthesis algorithms
are well understood, design automation tools may-out perform average human
designers in meeting most design constraints and requirements.

1.1 High-Level Synthesis

Synthesis is a translation process from a behavioral description into a structural
description, similar to the compilation of a high level language program in C or
Pascal into an assembly program. Each component in the structural description
is in turn defined by its own (low level) behavioral description. Synthesis, some-
times called design refinement, adds an additional level of detail that provides
information needed for the next level of synthesis or for manufacturing of the
design. High Level Synthesis is also defined as the process of mapping a behav-
ioral description at the algorithmic level to a structural description in terms of
functional units, memory elements and interconnections (e.g. multiplexers and
buses).The functional units normally implement one or more elementary oper-
ations like addition, multiplication, etc. Another important point in high level
synthesis is the formal description of the algorithm to be mapped. The study
of the HLS leads to the manifestation of shorter design cycle, minimization of
errors, exposure to identify the design space and the capability of the design
process in self documenting.

1.2 Hardware Description Language

The job of the hardware in modeling, design and documentation of digital sys-
tems is wholly governed by the hardware description language. The hierarchical
representation of functional and wiring details of the systems receive a complete
and compact format only from these languages.

1.3 HDL Compiler

The tool which performs high level synthesis is called Hardware Description Lan-
guage complier. The main objective is to optimize the code, so that optimized
hardware is obtained after synthesis. The optimization factors are different since
the aim of synthesis is to generate optimal hardware circuit. They are perfor-
mance(speed), area and power. As in HLL compiler, optimization techniques are
applied onto the intermediate representation but improve the speed, minimize
the silicon area and power.

The compiler driven optimization techniques are trying to optimize the logic
of the digital system and can be better. The parameters on which the systems
optimally can be assessed are testability and design time. The few optimiza-
tion techniques are Dead code elimination, constant propagation, common sub



Survey on Optimization Techniques in High Level Synthesis 13

expression elimination, inline expansion of procedures and loop unrolling. The
objective of HDL compiler is to obtain the optimized hardware, which runs
faster, occupies the silicon area and consumes less power. Other parameters on
which the systems can be accessed are testability and design time.

2 Related Surveys

Youn-Long Lin[8] has examined the latest developments in high level synthesis
technology design. This paper provides the detailed survey for basic techniques
for various optimization techniques in High level synthesis. Techniques have been
proposed in the past few years for various sub tasks of high level synthesis are sur-
veyed. The prime goal of the HLS for testability, low power and reliability were
detailed. M.Joseph, Narasimha B.Bhat and K. Chandrasekaran[2] survey paper
presents Hardware description language compiler optimization techniques and
applicability of high level language compiler optimization techniques to Hard-
ware Description Language Compilers was exhaustively presented. Esther An-
dres and Maria C.Molina[19] have made an attempt to optimize the area in high
level synthesis using combined integer and floating point circuits. Dake Liu and
Christer Svensson[20] have investigated the consumption estimation techniques
in CMOS VLSI chips. Jason Coog et.al.,[21] have studied the various resource
optimization techniques available in high level synthesis.

3 HDL Compiler Optimization Techniques

Program analysis techniques like Data Flow Analysis (DFA), Control Flow Anal-
ysis (CFA) and Dependence Analysis (DA) are essential for applying optimization
techniques. The major optimization techniques available in HDL compiler are

3.1 Elementary Optimization Techniques

Constant folding: It is an optimization technique, which replaces the runtime
computation by compile time computation and is generally done for constants.
Eg.:pi=22/7;the value of pi can be replaced by the evaluated value 3.14. This
avoids the division operation and the related hardware. Constant folding reduces
the number of computations, which in turn reduces the synthesized hardware and
thus area and power are reduced.

3.2 Redundancy Elimination

This category of optimization techniques avoids re-computation of the computa-
tions which have been done already. In this category of optimization necessitate
the Data Flow Analysis.

Common Sub-expression Elimination (CSE): CSE allows no re-computation
of an expression which is evaluated already. The common sub expression should
not be redefined along the path of its use. This technique can be applied locally
or globally. In general the goal of CSE can be defined as follows.



14 B. Saravanakumaran and M. Joseph

– Identify multiple patterns in the coefficient set.
– Remove these patterns and calculate them only once.

The problem to solve is how to identify the proper patterns for elimination so the
optimization impact can be maximal. Our algorithm is based on a combination
of an exhaustive search technique with a steepest descent (or greedy) approach
in order to select the proper patterns for elimination [17].
Eg.:
a=b+c;
d=e+b+c;
The above expression is an un-optimized expression.
t=b+c;
a=t;
d=e+t;
The above expression is optimized expression.

3.3 Loop Optimization

Strength Reduction: It is an optimization technique, which replaces the costly
operator by a cheap operator. Consider the statement; c=2*a this can be replaced
by c=a+a. Here the multiplication operator is replaced by addition operator.
These optimizations are done inside the loop, so it leads to greater improvement.
Strength reduction minimizes the area and power.

3.4 Code Scheduling

This technique discusses about the scheduling of instructions, which will lead
to improvement in the speed. Scheduling here refers to ordering or reordering
the instructions with respect to clock cycles. The optimization in the scheduling
mostly improve the performance i.e. either reduction in the number of cycles
needed or reduction in the clock period of particular logic device.
Instruction Scheduling: This optimization technique schedules number of in-
dependent instructions in a same cycle. In example, the instructions are sched-
uled in three cycles in the un-optimized case. The first and second statements
are data independent and can be scheduled in a single cycle. The third statement
is a data dependant on both first and second. So it should be scheduled after
both [15].
a=b+c;
d=e+f;
g=a+d;

The above expression is an un-optimized.
a=b+c; d=e+f;
g=a+b;
The above expression is an optimized.



Survey on Optimization Techniques in High Level Synthesis 15

Loop fusion: This technique allows computations in adjacent loops to be com-
bined into a single loop. If possible two loops can also be integrated together.
This reduces the total number of cycles required. This will increase the clock
period of that logic.

Resource sharing: The resources like adder, multipliers and other functional
units can be shared. This avoids instantiating hardware resources for every oper-
ator. The resources can be shared for the operations, which are not scheduled in
the same cycle. The resources must be compatible. For example adder is compat-
ible with subtracter and relational operator. When the scheduled operations for
a functional unit are completed then those functional units are free and can be
shared by other operations. This optimization technique reduces the area and
power. The above optimization techniques are already available in High level
language compiler. Our present work is to try and apply the programmer level
optimization techniques into HDL complier.

Fig. 1. HDL Compiler Optimization and Proposed Architecture design



16 B. Saravanakumaran and M. Joseph

3.5 Register Allocation

This is popularly used optimization techniques in HLL compiler for register as-
signment to the variables. Graph coloring is one such technique used for register
allocation. In HDL compiler this problem can be understood in a different per-
spective. Here storage elements are flip flops and variables can be assigned to
them. The assignment of variables to flip flops can be understood as a register al-
location problem and accordingly techniques like graph coloring can be applied.
The classification is made whether the optimization reduces or increases one of
the three metrics: clock period, power consumption and area in the FPGA [14].

4 Recent Developments

Young Long Lin[8] has studied the High level Synthesis. The chief objectives of
his investigation are Testability, Power efficiency and Reliability of High Level
Synthesis. He has applied Scheduling, Allocation and Binding to achieve the
transforming behaviour into structure. By virtue of ASAP (As Soon As Possi-
ble) operations are stored into a list according to their scheduling. By virtue
of ALAP(As Late As Possible)operations define the latest step into which an
operations can be scheduled optimization is realized by minimizing the num-
ber of self loops. Along this line Flottes[6] has extensively studied the register
allocation. To manifest the testability Potkonjak[7] has proposed a two stage
objective function for estimating the area and to reduce the fan-ins and fan-outs
of the interconnection wires, capacitance. Rabaey[9] has invoked scheduling, As-
signment and allocation techniques. Raghunathan and Jha[11]has applied data
path allocation method to the circumstances where low power is prevalent. Mu-
soli and Cortadelia[13] has applied scheduling and resource binding algorithm
for reducing the activity of functional units by minimizing the input operations.
Martin and Knight[23]attempted an investigation by lowering supply voltage
and disabling the clock of idle computers. These findings are highly applicable
in Digital Signal Processing design environment, embedded system design envi-
ronment, Hardware design verification and to solve the software-hardware code
design problem.

Hao Li Srinivas Katkori Zhipeng Lin[22] have established that HLS design
flow improve the circuit performance once the placement phase is done. They
have also established that once the placement is computed estimation of the
circuit performance is done by the Xilinx. They proposed a method so that
feed back is generated and given to the Automatic design installation. This has
provided confidence that the mixture of the HLS tool and physical design that
has excellent potential to enhance the performance of modern VLSI design.

Hao Li Srinivas Katkoori, Zhipeng Liu[22], have exposed HLS tool is able
to iteratively enhance the system performance with the guidance information
obtained from the physical design phase. According to their study estimation
shares that the best synthesized design could satisfy the original system design
objective. Testing is applied with regard to the predefined number of iterations.
This revelation has reduced the running the efficiency.



Survey on Optimization Techniques in High Level Synthesis 17

Jason Coog, Bin Liu and Junjuan XG[21] have examined the coordinated
Resource optimization in behavioural synthesis. This study is aimed to reduce
resource usage in terms of power, performance and cost. In this study the sepa-
rating synthesis process in transformed into a sequence of optimization steps.

Esther Andres, Maria C.Molina, Guilerno Botella[19] have proposed HLS al-
gorithms associated with floating point operations. In this paper the authors
propose the substitution of the floating point operation by their corresponding
fixed point operations. Due to huge area requirement of the floating point oper-
ations the authors propose the optimization of the systems through the reuse of
the internal modules to perform other operations.

5 Important Optimizations

A major part of the design process for an optimizer is to decide which optimiza-
tion techniques are most important and which are less important. Typically, a few
optimization techniques will provide a very high return in terms of improved ex-
ecution speed while the remainder provides only marginal improvements. Given
that compile-speed and compile space always have limitations, this means the
best returns are yielded by focusing on a few, important optimizations.

In general, this investigation requires complicated analysis, some combination
of inter procedural analysis, higher level Verilog analysis, or user assertion. While
it is desirable to solve the general problem in the long run, in the short run, this
information is often available in local cases by a simple analysis of the code.
In any case, once the information is available, it is clear that the key global
optimizations are constant propagation and dead code elimination. Given a local
strategy for code generation that attempts no memory reuse, it should also be
evident optimizations focused on recognizing and exploiting memory reuse is
important. In particular, users tend to work with the same variables repeatedly
in a section of code. Code generators rarely recognize this reuse; they load the
locations which they need at the beginning of a unit and store everything changed
at the end of a unit.

There are three ways of improving this reuse: 1.Eliminating Common Sub
Expressions, 2.Changing variable allocations, 3.Doing good register allocation.

5.1 Area Optimization

Improvement in circuit performance is an important factor in area optimization.
For this purpose conventional high level synthesis algorithms employ multi cy-
cle operators to the cycle length. For the execution of one operation operators
require several cycles, but at the same time the entire functional unit is not em-
ployed in any cycle. Also, the execution of operations in multi cycle operators is
infeasible if the results should be available in a smaller number of cycles than the
functional unit delay. This obliges to add new functional resources to the data
path even if multi-cycle operators are idle when the execution of the operation
begins.



18 B. Saravanakumaran and M. Joseph

Operations are executed in such a manner that functional units are allowed
for their internal reuse, which eventually reduces the area of functional units.
Since it facilitates the use of multi cycle operators for the calculation of nar-
rower operations faster than the functional units, the possibilities of common
hardware sharing get the expansion. At the end of the high level synthesis this
technique is employed as an optimization phase. It can also optimize the circuits
synthesized by any high level synthesis tool, consequently the area of the circuits
synthesized by regular HLS algorithm using multi cycle operators gets reduced
by the proposed optimization technique.

5.2 Resource Optimization

One of the most pertinent optimization objective is the abstract reducing re-
source usage in behavioral sysnthsis. Since it has its influence on power, per-
formance and cost. Functional units, registers and multiplexers are the distinct
components of the data path in a typical design. If a behavioral synthesis tool
considers all kinds of tools simultaneously then it would optimize the overall
resource usage.

Nevertheless the earlier work on behavioral synthesis has its own limitations in
terms of the inability to consider all kinds of resources globally and the splitting
of the synthesis process into a sequence of optimization steps which is void
of a consistent optimization objective. Neilson[12] has examined a behavioral
synthesis flow by allowing all types of components in the data path are modeled
and optimized consistently. The key idea is to feed to the scheduler the intentions
for sharing functional units and to register in favor of the global optimization
goal such as total area, so that the scheduler could generate a schedule that
makes the sharing intentions feasible.

Performed experiments reveal the fact that minimizing functional unit require-
ments is scheduling and employing the east number of functional units and regis-
ters in binding when compared with our solution promotes a 24 percent reduction
on average. Neilson[12] has presented a behavioural synthesis flow, in which all
resources in the data path are consistently optimized throughout the whole syn-
thesis flow. This is achieved by guiding the scheduler using sharing intentions in
favor of efficient resource usage. Experimental results show significant reduction
compared to previous approaches in total area for a set of benchmarks. Our idea
can also be used for optimizations of other objectives (e.g., power), by consistent
consideration throughout different steps in the behavioral synthesis flow.

5.3 Power Optimization

To address the challenge to reduce power, the semiconductor industry has
adopted a multifaceted approach, attacking the problem on four fronts [1]:

– Reducing the chip and package capacitance
– Scaling the supply voltage
– Employing better design techniques
– Using power management strategies



Survey on Optimization Techniques in High Level Synthesis 19

6 Issues in Compiler Driven Optimization Techniques

System Power: When a chip dissipates too much power, it will either become
too hot and cease working or will need extra cooling. Besides, there is a special
category of applications, viz. portable equipment powered by batteries, for which
low power consumption is of primary importance. Here again there are trade-offs:
designing for low power may e.g. lead to an increase in the chip area.

Design Time: The design of an integrated circuit is almost never a goal on its
own: it is an economical activity. So a chip satisfying the specifications should
be available as soon as possible. The design costs are an important factor, espe-
cially when only a small number of chips need to be manufactured. Of course,
good CAD tools help to shorten the design time considerably as does the use of
semicustom design.

Testability: As a significant percentage of the chips fabricated is expected
to be defective, all of them have to be tested before used in a product. It is
important that a chip is easily testable as testing equipment is expensive. This
asks for the minimization of the time spent to test a single chip. Often, increasing
the testability of a chip an increase in its area.

7 Optimization Issues

In High Level Synthesis the scheduling and assignment tasks are interrelated. For
an optimal design they should be solved simultaneously. Most systems first solve
the scheduling problem and then try to find a good assignment given a certain
schedule. The assignment problem itself consists of several sub problems.

Operation-to-FU assignment: This is the problem of mapping a computation
to functional unit of an appropriate type. Value grouping: This is the problem of
partitioning all storage values in such a way that subset does not contain values
that are read or written simultaneously. Then each subset can be realized as a
register bank. In the case of multiport memories, the conditions for grouping
should be adapted accordingly.

Value-to-register assignment: This is the problem of assigning memory loca-
tion to storage values in the same group. Values with non overlapping life times
can share the same location. The life time of a storage value is the time inter-
val starting at the instant that it is created, and ending the moment that it no
longer is required.

Transfer-to-wire assignment: A transfer is the actual transport of data from
one hardware unit to another. In a bus-based architecture, one has the choice
of which bus to write. The choice affects the number of three-state drivers con-
nected to the unit from which the transfer originates and the type of multiplexers
connected to the receiving the transfer.

Wire to FU-port assignment: In the case of commutative operations, one can
choose one of the two equivalent input ports to feed the data to the functional
unit. More in general, the problem exists when a functional unit has ports that
are functionally equivalent.



20 B. Saravanakumaran and M. Joseph

8 Summary

This paper is on the basis of the detailed survey on the optimization techniques
available in high level synthesis. This paper exposes the possible application of
optimization techniques aimed to transform high level language compiler into
high level synthesis. The later part of the paper discusses in detail the notions
such as area optimization, resource optimization, power optimization and opti-
mization issues which eventually lead to the concept of value grouping, value to
register assignment, transfer to wire assignment and port assignment.

Acknowledgments. We thank to the anonymous reviewers for their numerous
insightful and constructive comments.

References

1. Lin, C.-C., Yoon, D.-H.: New Efficient High Level Synthesis Methodology for Low
Power Design. In: International Conference on New Trends in Information and
Service Science (2009)

2. Joseph, M., Bhat, N.B., Chandra Sekaran, K.: Right inference of Hardware in
High-Level Synthesis. In: International Conference on Information Processing, ICIP
2007, Bangalore, India (2007)

3. Zhang, J., Zhang, Z., Zhou, S., et al.: Bit-level optimization for high level synthesis
and FGPA-based acceleration. In: Proceedings of FPGA 2010, Monterey, USA
(2010)

4. Molina, M.C., Ruiz Sautra, R., Mendias, J.M., Hermida, R.: Area Optimization
of multi-cycle operators in high level synthesis. In: Dte Conference Proceedings
(2007)

5. McFarland, M.C., Parker, A.C., Campasona, R.: Tutorial on High-Level Synthesis.
In: 25th ACM/IEEE Design Automation Conference (1998)

6. Flottes, M.L., Hammad, D., Rouzeyre, B.: High Level Synthesis for easy Testabil-
ity. In: Proceedings of the European Design and Test Conference, Paris, France,
pp. 198–206 (1995)

7. Potkonjak, M., Rabaey, J.: Optimizing Resource Utilization using Transformation.
IEEE Trans. Computer Aided Design Integrated Circuits Systems 13(3), 227–292
(1994)

8. Lin, Y.L.: Recent Developments in High-Level Synthesis. ACM Transactions on
Design Automation of Electronic Systems 2(1), 2–21 (1997)

9. Rabaey, J., Guerra, L., Mehra, R.: Design guidance in the power dimension. In:
International Conference on Acoustics, Speech and Signal Processing, pp. 2837–
2840 (1995)

10. Roy, S., Banerjee, P.: An Algorithm for Converting Floating-Point Computations to
Fixed-Point in MATLAB based FPGA design. In: Design Automation Conference
- DAC 2004, San Diego, California, pp. 484–487 (2004)

11. Raghunathan, A., Jha, N.K.: Behavioral Synthesis for low power. In: Proceedings
of the International Conference on Computer Design (ICCD), pp. 318–322 (1994)

12. Neilson, S.G.: Behavioral synthesis of asynchronous circuits. PhD dessertation
Technical University of Denmark, Department of Informatics and Mathematics
modelling (2005)



Survey on Optimization Techniques in High Level Synthesis 21

13. Musoli, E., Cortadella, J.: Scheduling and Resource binding for low power. In:
Proceedings of the Eighth Symposium on System Synthesis, pp. 104–109 (1995)

14. Ozer, E., Nisbet, A., Gregg, D.: Classification of Compiler Optimizations for High
Performance. Small Area and Low Power in FPGAs (2003)

15. Joseph, M., Bhat, N.B., Chandra Sekaran, K.: Technology driven High-Level Syn-
thesis. In: International Conference on Advanced Computing and Communication-
ADCOM 2007. IEEE, Indian Institute of Technology, Guwahati, India (2007)

16. Taylor, S., Edwards, D., Plana, L.: Automatic compilation of data driven circuits.
In: 14th IEEE International Symposium on Asynchronous Circuits and Systems,
pp. 3–14. IEEE (2008)

17. Pasko, P., Schaumont, P., Derudder, V., Vernalde, S., Durackova, D.: A New algo-
rithm for Elimination of Common Sub Expressions. IEEE Transactions on Com-
puter Aided Design of Integrated Circuits and Systems 18(1) (1999)

18. Muchnick, S.S.: Advanced Compiler Design Implementations. Harcourt Asia PTE
Ltd. (1997)

19. Andres, E., Molina, M.C.: Area Optimization of Combined Integer and Floating
Point Circuits in High Level Synthesis. IEEE Transactions on Computer Aided
Design of Integrated Circuits and Systems 8(1) (2008)

20. Liu, D., Svensson, C.: Power Consumption Estimation in CMOS VLSI Chips. IEEE
Journal of Solid State Circuits 29(6) (1994)

21. Coog, J., Liu, B., Xu, J., et al.: Coordinated Resource Optimization in Behavioural
Synthesis 20(2) (2009)

22. Katkoori, H.L., Liu, S.Z.: Feedback driven High Level Synthesis for performance
optimization. In: ASICON 2005, 6th International Conference ASIC Proceedings,
pp. 961–964 (2006)

23. Martin, R.S., Knight, J.P.: Power-profiler: Optimizing ASICs power consumption
at the behavioral level. In: Proceedings of the Design Automation Conference
(DAC), San Francisco, CA, p. 4247 (1995)

24. Free Floating-Point Madness, http://www.hmc.edu/chips
25. Electronic Design Interchange Format, http://www.edif.org
26. FPGA, CPLD, and EPP Solutions, http://www.xilinx.com
27. Icarus Verilog Simulation and Synthesis Tool, http://www.icraus.com

http://www.hmc.edu/chips
http://www.edif.org
http://www.xilinx.com
http://www.icraus.com

	Survey on Optimization Techniques
in High Level Synthesis
	Introduction
	High-Level Synthesis
	Hardware Description Language
	HDL Compiler

	Related Surveys
	HDL Compiler Optimization Techniques
	Elementary Optimization Techniques
	Redundancy Elimination
	Loop Optimization
	Code Scheduling
	Register Allocation

	Recent Developments
	Important Optimizations
	Area Optimization
	Resource Optimization
	Power Optimization

	Issues in Compiler Driven Optimization Techniques
	Optimization Issues
	Summary
	References




