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Abstract. Query optimization is a process of selecting an optimal Query 
Execution Plan from a number of plans available for execution of query which 
is very critical to the performance of a relational database. Picasso is a Query 
Optimizer analysis tool developed in the Database lab of Indian Institute of 
Science [24]. Using Picasso we can visualize the query execution plans and can 
implement a technique known as Plan Diagram Reduction [15][16][17] which 
can effectively increase the Query Optimizer performance. In this paper we 
briefly introduce the query optimization concept and then perform an 
exhaustive analysis of the reduction algorithms and try to establish some hard 
fact about their relative performance and reduction efficiency. 
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1 Introduction 

Structured Query Language (SQL) follows a declarative paradigm which means that 
the order of execution of instructions has to be determined by the SQL compiler. For 
this purpose the initial SQL query submitted by user is first converted into its 
equivalent relational algebra equation and for this expression a canonical query 
execution tree is generated. From this canonical tree many query execution plans or 
QEPs [3] can be generated using multiple techniques. Each query execution plan 
specifies a different order of execution of query with different set of operation. The 
task of Query optimizer is to search for the best possible query execution plans out of 
all these query execution plans. Query Optimizer plays a crucial role in determining 
the efficiency of Database systems. If the choice of query execution plans is not 
correct then the response time of the query processor will degrade. This increase in 
response time can be frustrating for the end user especially when the user is querying 
a large database in the likes of data warehouses or databases for decision support 
systems. All these requirements make Query Optimization a non trivial task for every 
commercial database management systems.  
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1.1 Picasso Database Query Optimizer Visualizer 

Picasso [24] is a database query optimizer visualizer which generates cubical 
diagrams showcasing all the query execution plans that can be used for execution of a 
query in a specified selectivity space. 

The diagram in Fig.1 (a) is a basic Picasso Diagram which shows 109 different 
plans that can be used for execution of query Q8 of TPCH Database. Each plan is 
represented using a different color. A plan is optimal in the area covered by its color 
in the plan diagram. The region of the plan diagram covered by a specific plan 
corresponds to the selectivities of the two base relations for which the plan will be 
optimal. 

 

 

Fig. 1. Plan Diagram and Reduced Plan Diagram for QT8 of TPCH 

In this paper we discuss one of the main diagrams generated by Picasso which is 
known as the Reduced Plan Diagram. Reduced plan diagram shows a reduced number 
of query execution plans that can be used for execution of query. This reduced plan 
diagram can be effectively used for increasing the performance of Query Optimizer. 
The plan diagram in Fig. 1(a) shows 109 different plans to execute QT8 which are 
reduced to 3 plans in Fig. 1(b). This reduction will help a lot in increasing the 
performance of query optimizer by decreasing the searching time for the optimal plan 
and decreasing the chances of selection of wrong plan. 

2 Problems in Query Optimization 

Query optimization is a hard problem [4]. The selection for best execution plan is 
done by using many different techniques of which the prominent ones are using  
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heuristics, some cost formulae, and randomized algorithms or genetic techniques [12]. 
Most Relational databases use heuristics combined with some cost formulas [22]. 

It is very time consuming to calculate cost of each and every execution plan to find 
the most optimal plan and is practically not feasible. Another problem faced by 
optimizers is the changing selectivity of base relations. The selection of optimal plans 
is based on the basis of some complex cost functions whose major parameters are the 
selectivities of base relations. It happens frequently that the estimated selectivities 
change. These wrong estimates of selectivities will lead to a poor choice of QEP.  

2.1 Related Work 

System R - A breakthrough work in query optimizers appeared in System R [1]. 
System R optimizer was the most rudimentary form of query optimizers. The cost 
function is based on parameters like disk access time and frequency, relation 
cardinality and number of tuples per page etc. The work on System R optimizer was 
further elaborated in [2] which discussed how the access path will be selected for 
execution of basic queries and for complex queries involving JOIN operations.  

Eddies - The first ever technique for dynamic query optimization was discussed in 
[6]. The authors discuss a pure continuous adaptive query processing mechanism 
named Telegraph which checks for selectivities during “on the fly” time of query. 
Telegraph overlaps the optimization and execution phases. The initial optimal plan 
selected for executing a query is based on the cost functions whose parameters are 
determined from the system catalog. These parameters are subjected to change during 
run time of query. When such changes in parameters are discovered eddies try to 
reorder the operators used in the execution plan so as to minimize the execution cost. 

Parametric Query Optimization (PQO) - System Rs algorithms were modified to 
generate multiple optimal plans for query execution and the process was called 
Parametric Query Optimization or PQO [7]. In PQO multiple candidate QEPs are 
generated for a query, each of which is optimal for some region of the parameter 
space. This collection of optimal candidate plans is known as Parametrically Optimal 
Set of Plans or POSP. Any one plan out of these POSP is used as final QEP during 
run time depending on the run time values of the parameters. 

One significant problem with the PQO technique was that while dealing with 
piecewise linear functions, the solution proposed is pretty much intrusive. For this the 
authors of PQO suggests a modified optimization technique for Non Linear cost 
functions. This is known as AniPQO (Almost Non Intrusive PQO) [8].  

Dynamic Optimization – Dynamic query optimization is a modern way for 
optimizing queries. In [4] a compile time dynamic plan optimization technique is 
described. Most dynamic optimization techniques use a dynamic programming model 
which compares cost of two plans and ignores the expensive ones. This requires a 
total ordering of plans. But authors of [4] suggest a “check plan” operator which 
maintains a partial ordering of plans. 
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The main problem of dynamic query optimization as pointed in [5] is the time 
spent in repeated collection of run time statistics like selectivities and resource 
availability and the searching of substitute plans. Algorithm described in [5] provides 
specific points in the query execution plan and the run time statistics are collected and 
substitute plans are searched only at these points thus minimizing optimization time. 

The most practical approach in dynamic query optimization occurs in [9] in which 
a generalized and practically effective technique for optimization is suggested using 
CHECK operators. CHECK operators were placed at specific points in a query 
execution plan and they check the input cardinality. If the cardinality is within the 
specified range the current query execution plan is retained else the plan is changed 
during the run time. 

CHECKS increase performance but excess of checks increase the execution time. 
So there is a risk and opportunity tradeoff which makes it important to determine how 
many CHECKS are to be inserted and where to be inserted. Five different rules for 
placement of CHECK operators in the Query Execution Plan were suggested by 
authors. 

3 Plan Diagrams Reduction 

The biggest motivation for reducing the number of plans arises after observing the 
skewed distribution of plans in the plan diagrams for different queries. The amount of 
skewed distribution of plans can be converted into a constant value known as Gini 
Index [25] which is a standard economic measure of income inequality. 

When plan diagrams are generated with Picasso tool the Gini Index values are also 
generated and surprisingly the Gini Index value of most of the plans diagrams was 
greater than 0.75 substantiating the skewed distribution of plans over the selectivity 
space. These high values of Gini Index indicate that a big percentage of plans that 
cover very small space in the plan diagram need not be considered for execution of 
query. This is because these plans are highly vulnerable to poor execution times if the 
selectivities change even by a small order during the execution of query. Thus we  
can ignore or remove these plans to be considered as a possible candidate for 
execution of query. 

A method used to substitute these plans with other plans which have high plan area 
coverage is known as Plan Swallowing [16][17].  The idea is that these smaller plans 
can be completely swallowed by their larger sibling plans which will effectively 
reduce the total number of plan cardinality in the plan diagram. There are two 
advantages of this approach. Firstly, it will reduce the searching time as the plan 
cardinality reduces and secondly, it will help us select robust plans which have higher 
plan space coverage and thus can tolerate higher variations in the plan selectivity. The 
process of plan swallowing may increase the cost of execution of a query but this 
increase in cost is controlled by user. This is represented as cost increase threshold 
(λ). Cost increase threshold (λ) of 10 is also sufficient but as proven in [14], a 20% 
cost increase (λ) can reduce the number of queries to an anorexic value which can 
significantly decrease the searching time of optimizers. 
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3.1 Algorithms Used for Reduction 

Picasso uses three different algorithms for reduction.  Initially COST GREEDY and 
AREA GREEDY were introduced in Picasso version 1 of which COST GREEDY 
proved to be more efficient. In Picasso V2 a new robust plan reduction algorithm 
SEER (Selectivity Estimate Error Resistance) [18] was introduced which performed 
plan reduction and gave robust plans which can withstand run time changes in the 
selectivities. 

Cost Greedy - This algorithm operates under the assumption that the Cost 
Domination Principle holds and therefore only plan swallowing possibilities in the 
first quadrant are considered with respect to the plan under consideration. Cost 
Greedy ensure that the replacement plans are within the cost-increase-threshold at all 
points in the optimality regions of the replaced plans. The complexity of this 
algorithm is O(mn) where n is the number of plans in the diagram and m is the 
number of query points. 

SEER - (Selectivity Estimate Error Reduction) - Due to wrong selectivity estimates 
the performance of the replacement plan could be much worse than the replaced plan. 
This problem naturally leads to the concept of a robust replacement – that is, a 
replacement where the λ-threshold criterion is satisfied at all points in the selectivity 
space, i.e. the replacement ensures global safety. For this we use two 
implementations of SEER: 

Corner Cube-SEER - CC-SEER implements a more conservative test for robust plan 
replacement applying Abstract-plan-costing operations at the corner hyper-cubes of 
the selectivity space and is therefore significantly faster than the original SEER. 
Moreover, its performance is resolution independent unlike SEER, and therefore the 
performance gap between CC-SEER and SEER increases with higher resolution 
diagrams. Experimental results [16] indicate that CC-SEER’s reduction quality is 
comparable to that of SEER instead of it being more conservative. 

Lite SEER - Lite Seer is a light-weight heuristic-based variant of SEER that makes 
its replacement decisions solely based on Abstract-plan-costing operations at the 
corners of the hypercube, and is therefore extremely efficient. Lite SEER is optimal in 
the sense that it incurs the minimum work (complexity-wise) required by any 
reduction algorithm. While it does not guarantee global safety, experimental results 
[16] indicate that in practice, its safety and reduction characteristics are quite close to 
that of SEER and CC-SEER. 

4 Experimental Analyses 

Test Bed Environment 

The TPC-H database was created using the “dbgen” software supplied with the TPC-
H decision support benchmark [23]. A gigabyte-sized (1 GB) database was created on 
this schema and TPC-H queries templates were used. 
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An Intel Core i3 CPU M370 running at 2.4 GHz with 2 GB of main memory and 
240 GB of hard disk, running 64 bit version of Windows 7 Home Basic operating 
system, was used in our experiments. The relational engine used is Microsoft SQL 
Server 2008. 

4.1 Comparison of Reduction Algorithms 

We performed experimental analysis of the three algorithms and compared their 
performance and plan reduction efficiency. Analysis is performed in two different 
parts. In the first part we compare the time taken by the three algorithms for 
performing the reduction. Then we compare the reduction efficiency of the three 
algorithms. 

Computational Efficiency 

Figure 2, 3, and 4 shows the time taken for reduction of plan diagrams by the three 
algorithms for 2D queries with plot resolution 10 and 3D queries with plot resolution 
of 10 and 30 respectively.  

 

 

Fig. 2. Reduction time for 2D Queries, plot resolution=30, λ =10 (values in seconds) 

 

Fig. 3. Reduction time for 3D Queries, plot resolution=10, λ=10 (values in seconds) 
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Fig. 4. Reduction time for 3D queries, plot resolution=30, λ=10 (values in seconds) 

It is interesting to note that the reduction time taken by Cost Greedy algorithm was 
almost constant throughout the analysis for any combination of query and plot 
resolution. This makes Cost Greedy the fastest reduction algorithm. Next is LiteSEER 
which generates second best timings and then comes CC-SEER with the highest time  
readings. Conceptually comparison of SEER variants with Cost Greedy is not fair 
because SEER provides high quality and robust reductions. But when simple plan 
reductions are required, Cost Greedy proves to be much better than the two SEER 
algorithms. 

Reduction Efficiency  

Now we check the reduction efficiency by comparing the number of plans retained 
after performing reduction by the three algorithms. This analysis is also carried in 
three parts: Figure 5 shows the number of plans retained for 2D queries with plot 
resolution of 30 and figure 6 and 7 shows the number of plans retained for 3D queries 
with plot resolution of 30 and 10 respectively. 

 

Fig. 5. Plans remaining after reduction of 2D Queries, Plot Resolution=30, λ=10 
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Fig. 6. Plans remaining after reduction of 3D Queries, plot resolution=10, λ=10 

 

Fig. 7. Plans remaining after reduction of 3D queries, plot resolution=30, λ=10 

Values shown in graph are the number of plans retained after reduction was carried. 
The number of plans before reduction was substantially high. The observation of these 
three tables and corresponding graphs gives a very interesting insight into the reduction 
efficiency of three algorithms. The reduction patterns for 2D queries were quite different 
from the reduction patterns of 3D queries. The following observations were made: 

 
- In Reduction of 2D queries, the final plans retained were different for each 

algorithm in most of the cases. For example, reduction of QT8, QT11. The plans 
retained in LiteSEER and CC-SEER were missing from Cost Greedy which proves 
the quality difference between the three algorithms. Thus the normal assumption 
about the three algorithms holds true in case of 2D queries and CC-SEER gives 
robust plans which mostly are missing from the output of Cost Greedy and many 
times from LiteSEER as well. 

- In case of 3D queries the observation was quite opposite. The plans retained in CC-
SEER were also present in the list of plans retained in Cost Greedy and LiteSEER. 
The most extreme observation is that CC-SEER retained some plans which were 
initially not included in Cost Greedy and LiteSEERs list. This clearly indicates that 
CC-SEER is not a good choice for reduction of 3D queries because Cost Greedy 
and LiteSEER already produced the same diagrams in very less time. 
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5 Conclusion and Future Works 

Query optimization is a difficult but a critical process for the database optimizers. 
Picasso introduces a novice way of plan diagram reduction which decreases the 
search complexity of query optimizers and also produces robust plans which improves 
the performance and reliability of query optimizers. Three such algorithms were 
discussed and the performances were compared. Results proved that Cost Greedy is 
the best algorithm in terms of execution time but if reliability was desired then Lite 
SEER and CC-SEER were better. For 2D queries CC-SEER must be used in spite of 
its long execution time but for 3D queries LiteSEER and Cost Greedy proved better 
than CC-SEER. 

There are many interesting future works to be carried. Cost Greedy and SEER 
based algorithms are purely compile-time approach and it can be used in conjunction 
with run-time techniques such as adaptive query processing [13] for addressing 
selectivity errors in the higher nodes of the plan tree. Another improvisation in the 
design of these algorithms can be to include the technique of CHECKS suggested in 
[9] which can further increase the quality of plans produced after reduction. Lastly it 
would be interesting to use these algorithms on the upcoming TPCE dataset and some 
other dataset having queries with more than 3 dimensions. 
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