
N. Meghanathan et al. (Eds.): CCSIT 2012, Part II, LNICST 85, pp. 176–185, 2012.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012

A Comparative Analysis of Reduction Algorithms
in Picasso Tool for Cost Based Query Optimizers

of Relational Databases

Neeraj Sharma1 and Yogendra Kumar Jain2

1 Dept. of CSE, Trinity Institute of Tech. and Research,
Kokta By-Pass , Raisen Road, Bhopal - 462 038 (M.P.), India

neeraj.bpl83@gmail.com
2 Dept. of CSE, Samrat Ashok Technological Institute,

Civil Lines, Vidisha-464001 (M.P.), India
ykjain_p@yahoo.co.in

Abstract. Query optimization is a process of selecting an optimal Query
Execution Plan from a number of plans available for execution of query which
is very critical to the performance of a relational database. Picasso is a Query
Optimizer analysis tool developed in the Database lab of Indian Institute of
Science [24]. Using Picasso we can visualize the query execution plans and can
implement a technique known as Plan Diagram Reduction [15][16][17] which
can effectively increase the Query Optimizer performance. In this paper we
briefly introduce the query optimization concept and then perform an
exhaustive analysis of the reduction algorithms and try to establish some hard
fact about their relative performance and reduction efficiency.

Keywords: Query Optimization, Selectivity, Plan Cardinality, Plan Diagrams,
Checkpoints, TPCH.

1 Introduction

Structured Query Language (SQL) follows a declarative paradigm which means that
the order of execution of instructions has to be determined by the SQL compiler. For
this purpose the initial SQL query submitted by user is first converted into its
equivalent relational algebra equation and for this expression a canonical query
execution tree is generated. From this canonical tree many query execution plans or
QEPs [3] can be generated using multiple techniques. Each query execution plan
specifies a different order of execution of query with different set of operation. The
task of Query optimizer is to search for the best possible query execution plans out of
all these query execution plans. Query Optimizer plays a crucial role in determining
the efficiency of Database systems. If the choice of query execution plans is not
correct then the response time of the query processor will degrade. This increase in
response time can be frustrating for the end user especially when the user is querying
a large database in the likes of data warehouses or databases for decision support
systems. All these requirements make Query Optimization a non trivial task for every
commercial database management systems.

 A Comparative Analysis of Reduction Algorithms in Picasso Tool 177

1.1 Picasso Database Query Optimizer Visualizer

Picasso [24] is a database query optimizer visualizer which generates cubical
diagrams showcasing all the query execution plans that can be used for execution of a
query in a specified selectivity space.

The diagram in Fig.1 (a) is a basic Picasso Diagram which shows 109 different
plans that can be used for execution of query Q8 of TPCH Database. Each plan is
represented using a different color. A plan is optimal in the area covered by its color
in the plan diagram. The region of the plan diagram covered by a specific plan
corresponds to the selectivities of the two base relations for which the plan will be
optimal.

Fig. 1. Plan Diagram and Reduced Plan Diagram for QT8 of TPCH

In this paper we discuss one of the main diagrams generated by Picasso which is
known as the Reduced Plan Diagram. Reduced plan diagram shows a reduced number
of query execution plans that can be used for execution of query. This reduced plan
diagram can be effectively used for increasing the performance of Query Optimizer.
The plan diagram in Fig. 1(a) shows 109 different plans to execute QT8 which are
reduced to 3 plans in Fig. 1(b). This reduction will help a lot in increasing the
performance of query optimizer by decreasing the searching time for the optimal plan
and decreasing the chances of selection of wrong plan.

2 Problems in Query Optimization

Query optimization is a hard problem [4]. The selection for best execution plan is
done by using many different techniques of which the prominent ones are using

178 N. Sharma and Y.K. Jain

heuristics, some cost formulae, and randomized algorithms or genetic techniques [12].
Most Relational databases use heuristics combined with some cost formulas [22].

It is very time consuming to calculate cost of each and every execution plan to find
the most optimal plan and is practically not feasible. Another problem faced by
optimizers is the changing selectivity of base relations. The selection of optimal plans
is based on the basis of some complex cost functions whose major parameters are the
selectivities of base relations. It happens frequently that the estimated selectivities
change. These wrong estimates of selectivities will lead to a poor choice of QEP.

2.1 Related Work

System R - A breakthrough work in query optimizers appeared in System R [1].
System R optimizer was the most rudimentary form of query optimizers. The cost
function is based on parameters like disk access time and frequency, relation
cardinality and number of tuples per page etc. The work on System R optimizer was
further elaborated in [2] which discussed how the access path will be selected for
execution of basic queries and for complex queries involving JOIN operations.

Eddies - The first ever technique for dynamic query optimization was discussed in
[6]. The authors discuss a pure continuous adaptive query processing mechanism
named Telegraph which checks for selectivities during “on the fly” time of query.
Telegraph overlaps the optimization and execution phases. The initial optimal plan
selected for executing a query is based on the cost functions whose parameters are
determined from the system catalog. These parameters are subjected to change during
run time of query. When such changes in parameters are discovered eddies try to
reorder the operators used in the execution plan so as to minimize the execution cost.

Parametric Query Optimization (PQO) - System Rs algorithms were modified to
generate multiple optimal plans for query execution and the process was called
Parametric Query Optimization or PQO [7]. In PQO multiple candidate QEPs are
generated for a query, each of which is optimal for some region of the parameter
space. This collection of optimal candidate plans is known as Parametrically Optimal
Set of Plans or POSP. Any one plan out of these POSP is used as final QEP during
run time depending on the run time values of the parameters.

One significant problem with the PQO technique was that while dealing with
piecewise linear functions, the solution proposed is pretty much intrusive. For this the
authors of PQO suggests a modified optimization technique for Non Linear cost
functions. This is known as AniPQO (Almost Non Intrusive PQO) [8].

Dynamic Optimization – Dynamic query optimization is a modern way for
optimizing queries. In [4] a compile time dynamic plan optimization technique is
described. Most dynamic optimization techniques use a dynamic programming model
which compares cost of two plans and ignores the expensive ones. This requires a
total ordering of plans. But authors of [4] suggest a “check plan” operator which
maintains a partial ordering of plans.

 A Comparative Analysis of Reduction Algorithms in Picasso Tool 179

The main problem of dynamic query optimization as pointed in [5] is the time
spent in repeated collection of run time statistics like selectivities and resource
availability and the searching of substitute plans. Algorithm described in [5] provides
specific points in the query execution plan and the run time statistics are collected and
substitute plans are searched only at these points thus minimizing optimization time.

The most practical approach in dynamic query optimization occurs in [9] in which
a generalized and practically effective technique for optimization is suggested using
CHECK operators. CHECK operators were placed at specific points in a query
execution plan and they check the input cardinality. If the cardinality is within the
specified range the current query execution plan is retained else the plan is changed
during the run time.

CHECKS increase performance but excess of checks increase the execution time.
So there is a risk and opportunity tradeoff which makes it important to determine how
many CHECKS are to be inserted and where to be inserted. Five different rules for
placement of CHECK operators in the Query Execution Plan were suggested by
authors.

3 Plan Diagrams Reduction

The biggest motivation for reducing the number of plans arises after observing the
skewed distribution of plans in the plan diagrams for different queries. The amount of
skewed distribution of plans can be converted into a constant value known as Gini
Index [25] which is a standard economic measure of income inequality.

When plan diagrams are generated with Picasso tool the Gini Index values are also
generated and surprisingly the Gini Index value of most of the plans diagrams was
greater than 0.75 substantiating the skewed distribution of plans over the selectivity
space. These high values of Gini Index indicate that a big percentage of plans that
cover very small space in the plan diagram need not be considered for execution of
query. This is because these plans are highly vulnerable to poor execution times if the
selectivities change even by a small order during the execution of query. Thus we
can ignore or remove these plans to be considered as a possible candidate for
execution of query.

A method used to substitute these plans with other plans which have high plan area
coverage is known as Plan Swallowing [16][17]. The idea is that these smaller plans
can be completely swallowed by their larger sibling plans which will effectively
reduce the total number of plan cardinality in the plan diagram. There are two
advantages of this approach. Firstly, it will reduce the searching time as the plan
cardinality reduces and secondly, it will help us select robust plans which have higher
plan space coverage and thus can tolerate higher variations in the plan selectivity. The
process of plan swallowing may increase the cost of execution of a query but this
increase in cost is controlled by user. This is represented as cost increase threshold
(λ). Cost increase threshold (λ) of 10 is also sufficient but as proven in [14], a 20%
cost increase (λ) can reduce the number of queries to an anorexic value which can
significantly decrease the searching time of optimizers.

180 N. Sharma and Y.K. Jain

3.1 Algorithms Used for Reduction

Picasso uses three different algorithms for reduction. Initially COST GREEDY and
AREA GREEDY were introduced in Picasso version 1 of which COST GREEDY
proved to be more efficient. In Picasso V2 a new robust plan reduction algorithm
SEER (Selectivity Estimate Error Resistance) [18] was introduced which performed
plan reduction and gave robust plans which can withstand run time changes in the
selectivities.

Cost Greedy - This algorithm operates under the assumption that the Cost
Domination Principle holds and therefore only plan swallowing possibilities in the
first quadrant are considered with respect to the plan under consideration. Cost
Greedy ensure that the replacement plans are within the cost-increase-threshold at all
points in the optimality regions of the replaced plans. The complexity of this
algorithm is O(mn) where n is the number of plans in the diagram and m is the
number of query points.

SEER - (Selectivity Estimate Error Reduction) - Due to wrong selectivity estimates
the performance of the replacement plan could be much worse than the replaced plan.
This problem naturally leads to the concept of a robust replacement – that is, a
replacement where the λ-threshold criterion is satisfied at all points in the selectivity
space, i.e. the replacement ensures global safety. For this we use two
implementations of SEER:

Corner Cube-SEER - CC-SEER implements a more conservative test for robust plan
replacement applying Abstract-plan-costing operations at the corner hyper-cubes of
the selectivity space and is therefore significantly faster than the original SEER.
Moreover, its performance is resolution independent unlike SEER, and therefore the
performance gap between CC-SEER and SEER increases with higher resolution
diagrams. Experimental results [16] indicate that CC-SEER’s reduction quality is
comparable to that of SEER instead of it being more conservative.

Lite SEER - Lite Seer is a light-weight heuristic-based variant of SEER that makes
its replacement decisions solely based on Abstract-plan-costing operations at the
corners of the hypercube, and is therefore extremely efficient. Lite SEER is optimal in
the sense that it incurs the minimum work (complexity-wise) required by any
reduction algorithm. While it does not guarantee global safety, experimental results
[16] indicate that in practice, its safety and reduction characteristics are quite close to
that of SEER and CC-SEER.

4 Experimental Analyses

Test Bed Environment

The TPC-H database was created using the “dbgen” software supplied with the TPC-
H decision support benchmark [23]. A gigabyte-sized (1 GB) database was created on
this schema and TPC-H queries templates were used.

 A Comparative Analysis of Reduction Algorithms in Picasso Tool 181

An Intel Core i3 CPU M370 running at 2.4 GHz with 2 GB of main memory and
240 GB of hard disk, running 64 bit version of Windows 7 Home Basic operating
system, was used in our experiments. The relational engine used is Microsoft SQL
Server 2008.

4.1 Comparison of Reduction Algorithms

We performed experimental analysis of the three algorithms and compared their
performance and plan reduction efficiency. Analysis is performed in two different
parts. In the first part we compare the time taken by the three algorithms for
performing the reduction. Then we compare the reduction efficiency of the three
algorithms.

Computational Efficiency

Figure 2, 3, and 4 shows the time taken for reduction of plan diagrams by the three
algorithms for 2D queries with plot resolution 10 and 3D queries with plot resolution
of 10 and 30 respectively.

Fig. 2. Reduction time for 2D Queries, plot resolution=30, λ =10 (values in seconds)

Fig. 3. Reduction time for 3D Queries, plot resolution=10, λ=10 (values in seconds)

182 N. Sharma and Y.K. Jain

Fig. 4. Reduction time for 3D queries, plot resolution=30, λ=10 (values in seconds)

It is interesting to note that the reduction time taken by Cost Greedy algorithm was
almost constant throughout the analysis for any combination of query and plot
resolution. This makes Cost Greedy the fastest reduction algorithm. Next is LiteSEER
which generates second best timings and then comes CC-SEER with the highest time
readings. Conceptually comparison of SEER variants with Cost Greedy is not fair
because SEER provides high quality and robust reductions. But when simple plan
reductions are required, Cost Greedy proves to be much better than the two SEER
algorithms.

Reduction Efficiency

Now we check the reduction efficiency by comparing the number of plans retained
after performing reduction by the three algorithms. This analysis is also carried in
three parts: Figure 5 shows the number of plans retained for 2D queries with plot
resolution of 30 and figure 6 and 7 shows the number of plans retained for 3D queries
with plot resolution of 30 and 10 respectively.

Fig. 5. Plans remaining after reduction of 2D Queries, Plot Resolution=30, λ=10

 A Comparative Analysis of Reduction Algorithms in Picasso Tool 183

Fig. 6. Plans remaining after reduction of 3D Queries, plot resolution=10, λ=10

Fig. 7. Plans remaining after reduction of 3D queries, plot resolution=30, λ=10

Values shown in graph are the number of plans retained after reduction was carried.
The number of plans before reduction was substantially high. The observation of these
three tables and corresponding graphs gives a very interesting insight into the reduction
efficiency of three algorithms. The reduction patterns for 2D queries were quite different
from the reduction patterns of 3D queries. The following observations were made:

- In Reduction of 2D queries, the final plans retained were different for each

algorithm in most of the cases. For example, reduction of QT8, QT11. The plans
retained in LiteSEER and CC-SEER were missing from Cost Greedy which proves
the quality difference between the three algorithms. Thus the normal assumption
about the three algorithms holds true in case of 2D queries and CC-SEER gives
robust plans which mostly are missing from the output of Cost Greedy and many
times from LiteSEER as well.

- In case of 3D queries the observation was quite opposite. The plans retained in CC-
SEER were also present in the list of plans retained in Cost Greedy and LiteSEER.
The most extreme observation is that CC-SEER retained some plans which were
initially not included in Cost Greedy and LiteSEERs list. This clearly indicates that
CC-SEER is not a good choice for reduction of 3D queries because Cost Greedy
and LiteSEER already produced the same diagrams in very less time.

184 N. Sharma and Y.K. Jain

5 Conclusion and Future Works

Query optimization is a difficult but a critical process for the database optimizers.
Picasso introduces a novice way of plan diagram reduction which decreases the
search complexity of query optimizers and also produces robust plans which improves
the performance and reliability of query optimizers. Three such algorithms were
discussed and the performances were compared. Results proved that Cost Greedy is
the best algorithm in terms of execution time but if reliability was desired then Lite
SEER and CC-SEER were better. For 2D queries CC-SEER must be used in spite of
its long execution time but for 3D queries LiteSEER and Cost Greedy proved better
than CC-SEER.

There are many interesting future works to be carried. Cost Greedy and SEER
based algorithms are purely compile-time approach and it can be used in conjunction
with run-time techniques such as adaptive query processing [13] for addressing
selectivity errors in the higher nodes of the plan tree. Another improvisation in the
design of these algorithms can be to include the technique of CHECKS suggested in
[9] which can further increase the quality of plans produced after reduction. Lastly it
would be interesting to use these algorithms on the upcoming TPCE dataset and some
other dataset having queries with more than 3 dimensions.

References

1. Astrahan, M.M., et al.: System R: Relational Approach to Database Management. ACM
Transactions on Database Systems 1(2) (1976)

2. Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path Selection in a
Relational Database Management System. In: SIGMOD (1979)

3. Freytag, J.C.: Basic principles of query optimization in relational database management
systems. In: Proceedings of IFIP Congress (1989)

4. Cole, L., Graefe, G.: Optimization of dynamic query evaluation plans. In: SIGMOD
(1994)

5. Kabra, N., DeWitt, D.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans. In: SIGMOD (1998)

6. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Optimization. In:
SIGMOD (2000)

7. Hulgeri, A., Sudarshan, S.: Parametric Query Optimization for Linear and Piecewise
Linear Cost Functions. In: VLDB (2002)

8. Hulgeri, A., Sudarshan, S.: AniPQO: Almost Non-intrusive Parametric Query
Optimization, for Nonlinear Cost Functions. In: VLDB (2003)

9. Markl, V., Raman, V., Simmen, D., Loman, G., Pirahesh, H., Cilimdzic, M.: Robust Query
Processing through Progressive Optimization. In: SIGMOD (2004)

10. Reddy, N., Haritsa, J.: Analyzing plan diagrams of Database query optimizers. In: VLDB
(2005)

11. Aslam, M.: Picasso: Design and implementation of a Query Optimizer Analyzer. Master’s
Thesis, Dept. of Computer Sci. and Automation, IISc (2006)

12. Kader, R.A., van Keulen, M.: Overview of query optimization in XML Database Systems.
University of Twente Publications (2007)

 A Comparative Analysis of Reduction Algorithms in Picasso Tool 185

13. Deshpande, A., Ives, Z., Raman, V.: Adaptive Query Processing. In: Foundations and
Trends in Databases. Now Publishers (2007)

14. Harish, D., Darera, P., Haritsa, J.: On the Production of Anorexic Plan Diagrams. In:
VLDB (2007)

15. Darera, P.: Reduction of query optimizer Plan Diagrams. Master’s Thesis, Supercomputer
Education & Research Centre, IISc (2007)

16. Harish, D., Darera, P., Haritsa, J.: Robust plans through plan diagram reduction. In: VLDB
(2007)

17. Harish, D., Darera, P., Haritsa, J.: Identifying Robust Plans through Plan Diagram
Reduction. In: VLDB (2008)

18. Harish, D.: SIGHT and SEER: Efficient Production and Reduction of Query Optimizer
Plan Diagrams. Master’s Thesis, Dept. of Comp. Sci. and Automation, IISc (July 2008)

19. Dey, A., Bhaumik, S., Harish, D., Haritsa, J.: Efficiently Approximating Query Optimizer
Plan Diagrams. In: VLDB (2008)

20. Haritsa, J.: The Picasso Database Query Optimizer Visualizer. In: VLDB (2010)
21. Haritsa, J.: Query optimizer plan diagrams: Production, Reduction and Applications. In:

ICDE (2011)
22. Elmasri, R., Navathe, S.B.: Fundamentals of Database Systems, 5th edn. Addison-Wesley

(2008)
23. Transaction Processing Council, http://www.tpc.org/tpch
24. Project Picasso, IISC,

http://dsl.serc.iisc.ernet.in/projects/PICASSO/index.html
25. http://en.wikipedia.org/wiki/Gini_coefficient

	A Comparative Analysis of Reduction Algorithmsin Picasso Tool for Cost Based Query Optimizers of Relational Databases
	Introduction
	Picasso Database Query Optimizer Visualizer

	Problems in Query Optimization
	Related Work

	Plan Diagrams Reduction
	Algorithms Used for Reduction

	Experimental Analyses
	Comparison of Reduction Algorithms

	Conclusion and Future Works
	References

