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Abstract. This paper investigates the hybrid chaos synchronization of identical
Arneodo systems (1981), identical Rössler systems (1976) and non-identical Ar-
neodo and Rössler systems. In hybrid synchronization of chaotic systems, one
part of the systems is synchronized and the other part is anti-synchronized so
that complete synchronization (CS) and anti-synchronization (AS) co-exist in the
systems. The co-existence of CS and AS is very useful in secure communication
and chaotic encryption schemes. Active nonlinear control is the method used for
the hybrid synchronization of the chaotic systems addressed in this paper. Since
the Lyapunov exponents are not required for these calculations, the active control
method is effective and convenient to achieve hybrid synchronization of the two
chaotic systems. Numerical simulations are shown to verify the results.

Keywords: Hybrid synchronization, chaos, Arneodo system, Rössler system, ac-
tive nonlinear control.

1 Introduction

Chaos is very interesting nonlinear phenomenon, exhibiting sensitive dependence on
initial conditions. Synchronization of chaos is an important research problem, which
has been attracting considerable interest in the chaos literature. Chaos synchronization
has been widely explored in a variety of fields including physical systems [1], chemical
systems [2], ecological systems [3], secure communications ([4]-[5]), etc.

Since Pecora and Carroll published a seminal paper ([6], 1990) for synchronizing
two identical chaotic systems with different conditions, many chaos synchronization
methods have been developed extensively over the past few decades ([6]-[20]). Some
important methods for the chaos synchronization are the PC method [6], sampled-data
feedback synchronization method [7], OGY method [8], time-delay feedback method
[9], backstepping method [10], adaptive design method [11], sliding control method
[12], etc.

So far, many types of synchronization phenomenon have been presented such as
complete synchronization [6], phase synchronization ([3],[13]), generalized synchro-
nization ([5], [14]), anti-synchronization ([15], [16]), projective synchronization [17],
generalized projective synchronization ([18], [19]) etc.

Complete synchronization (CS) is characterized by the equality of state variables
evolving in time, while anti-synchronization (AS) is characterized by the disappearance
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of the sum of relevant state variables evolving in time. Projective synchronization (PS)
is characterized by the fact the master and slave systems could be synchronized up to a
scaling factor, whereas in generalized projective synchronization (GPS), the responses
of the synchronized dynamical states synchronize up to a constant scaling matrix α. It
is easy to see that the complete synchronization and anti-synchronization are the special
cases of the generalized projective synchronization where the scaling matrix α = I and
α = −I , respectively.

In hybrid synchronization of chaotic systems [19], one part of the systems is synchro-
nized and the other part is anti-synchronized so that complete synchronization (CS) and
anti-synchronization (AS) co-exist in the systems. The co-existence of CS and AS is
very useful in secure communication and chaotic encryption schemes.

This paper is organized as follows. In Section 2, we discuss the hybrid synchro-
nization between identical Arneodo systems ([21], 1981). In Section 3, we discuss the
hybrid synchronization between identical Rössler systems ([22], 1976).In Section 4,
we discuss the hybrid synchronization between non-identical Arneodo and Rössler sys-
tems. In Section 5, we conclude with the main results obtained in this paper.

2 Hybrid Synchronization of Identical Arneodo Systems

In this section, we consider the hybrid synchronization of identical Arneodo systems
([21], 1981).

Thus, we consider the master system as the Arneodo dynamics described by

ẋ1 = x2

ẋ2 = x3

ẋ3 = mx1 − sx2 − x3 − x2
1

(1)

where xi(i = 1, 2, 3) are the state variables and s, m are positive constants.
The Arneodo system (1) is chaotic when s = 3.8 and m = 7.5.
The state orbits of the chaotic Arneodo system are shown in Figure 1.
We consider the controlled Arneodo system as the slave system, which is described

by the dynamics
ẏ1 = y2 + u1

ẏ2 = y3 + u2

ẏ3 = my1 − sy2 − y3 − y2
1 + u3

(2)

where yi(i = 1, 2, 3) are the state variables and ui(i = 1, 2, 3) are the active controls.
For the hybrid synchronization of the identical Arneodo systems (1) and (2), the

errors are defined as

e1 = y1 − x1, e2 = y2 + x2 and e3 = y3 − x3 (3)

A simple calculation yields the error dynamics as

ė1 = e2 − 2x2 + u1

ė2 = e3 + 2x3 + u2

ė3 = me1 − se2 − e3 + 2sx2 − y2
1 + x2

1 + u3

(4)
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Fig. 1. State Orbits of the Arneodo System (1)

We consider the active nonlinear controller defined by

u1 = −e2 + 2x2 − k1e1

u2 = −e3 − 2x3 − k2e2

u3 = −me1 + se2 − 2sx2 + y2
1 − x2

1

(5)

where k1 and k2 are positive constants.
Substitution of (5) into (4) yields the linear error dynamics

ė1 = −k1e1, ė2 = −k2e2, ė3 = −e3 (6)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3

)
(7)

Differentiating (7) along the trajectories of the system (6), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − e2

3 (8)

which is a negative definite function on IR3, since k1, k2 are positive constants.
Thus, by Lyapunov stability theory [23], the error dynamics (6) is globally exponen-

tially stable. Hence, we obtain the following result.

Theorem 1. The identical Arneodo systems (1) and (2) are globally and exponentially
hybrid synchronized with the active nonlinear controller (5).

Numerical Simulations
For the numerical simulations, the fourth order Runge-Kutta method with time-step
h = 10−6 is used to solve the two systems of differential equations (1) and (2) with the
active controller (5).

The parameters of the identical Arneodo systems (1) and (2) are selected as s = 3.8
and m = 7.5 so that the systems (1) and (2) exhibit chaotic behaviour. Also, we take
k1 = 2, k2 = 2.
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The initial values for the master system (1) are taken as

x1(0) = 6, x2(0) = 8, x3(0) = 2

and the initial values for the slave system (2) are taken as

y1(0) = 9, y2(0) = 4, y3(0) = 3

Figure 2 shows the hybrid synchronization of the Arneodo systems (1) and (2).
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Fig. 2. Hybrid Synchronization of Identical Arneodo Systems

3 Hybrid Synchronization of Identical Rössler Systems

In this section, we discuss the hybrid synchronization of identical Rössler systems.
Thus, we consider the Rössler system [22] as the master system, which is described by
the dynamics

ẋ1 = −x2 − x3

ẋ2 = x1 + ax2

ẋ3 = b + (x1 − c)x3

(9)

where xi(i = 1, 2, 3) are the state variables and a, b, c are positive constants.
When a = 0.2, b = 0.2 and c = 5.7, the Rössler system (9) is chaotic. The state

orbits of the Rössler system are shown in Figure 3.
Next, we consider the controlled Rössler dynamics as the slave system, which is

described by
ẏ1 = −y2 − y3 + u1

ẏ2 = y1 + ay2 + u2

ẏ3 = b + (y1 − c)y3 + u3

(10)

where yi(i = 1, 2, 3) are the state variables and ui(i = 1, 2, 3) are the active controls.
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Fig. 3. State Orbits of the Rössler System (9)

For the hybrid synchronization of the identical Rössler systems (9) and (10), the
errors are defined as

e1 = y1 − x1, e2 = y2 + x2 and e3 = y3 − x3 (11)

A simple calculation yields the error dynamics as

ė1 = −e2 − e3 + 2x2 + u1

ė2 = e1 + ae2 + 2x1 + u2

ė3 = −ce3 + y1y3 − x1x3 + u3

(12)

We consider the active nonlinear controller defined by

u1 = e2 + e3 − 2x2 − k1e1

u2 = −e1 − ae2 − 2x1 − k2e2

u3 = −y1y3 + x1x3

(13)

where k1 and k2 are positive constants.
Substitution of (13) into (12) yields the linear error dynamics

ė1 = −k1e1, ė2 = −k2e2, ė3 = −ce3 (14)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3

)
(15)
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Differentiating (15) along the trajectories of the system (14), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − ce2

3 (16)

which is a negative definite function on IR3, since k1, k2, c are positive constants.
Thus, by Lyapunov stability theory [23], the error dynamics (14) is globally expo-

nentially stable. Hence, we obtain the following result.

Theorem 2. The identical Rössler systems (9) and (10) are globally and exponentially
hybrid synchronized with the active nonlinear controller (13).

Numerical Simulations
For the numerical simulations, the fourth order Runge-Kutta method with time-step
h = 10−6 is used to solve the two systems of differential equations (9) and (10) with
the active controller (13).

The parameters of the identical Rössler systems (9) and (10) are selected as a =
0.2, b = 0.2 and c = 5.7 so that the systems (9) and (10) exhibit chaotic behaviour.
Also, we take k1 = 2, k2 = 2.

The initial values for the master system (9) are taken as

x1(0) = 6, x2(0) = 17, x3(0) = 12

and the initial values for the slave system (10) are taken as

y1(0) = 1, y2(0) = 10, y3(0) = 2

Figure 4 shows the hybrid synchronization of the Rössler systems (9) and (10).
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Fig. 4. Hybrid Synchronization of Identical Rössler Systems
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4 Hybrid Synchronization of Arneodo and Rössler Systems

In this section, we discuss the hybrid synchronization of non-identical chaotic systems,
viz. Arneodo and Rössler chaotic systems. Thus, we consider the Arneodo system [21]
as the master system, which is described by the dynamics

ẋ1 = x2

ẋ2 = x3

ẋ3 = mx1 − sx2 − x3 − x2
1

(17)

where x1, x2, x3 are the state variables and s, m are positive constants.
Next, we consider the controlled Rössler dynamics [22] as the slave system, which

is described by
ẏ1 = −y2 − y3 + u1

ẏ2 = y1 + ay2 + u2

ẏ3 = b + (y1 − c)y3 + u3

(18)

where y1, y2, y3 are the state variables, a, b, c are positive constants and u1, u2, u3 are
the active controls.

For the hybrid synchronization of the non-identical systems (17) and (18), the errors
are defined as

e1 = y1 − x1, e2 = y2 + x2 and e3 = y3 − x3 (19)

A simple calculation yields the error dynamics as

ė1 = −e2 − y3 + u1

ė2 = e1 + x1 + x3 + ay2 + u2

ė3 = b − ce3 − mx1 + sx2 + (1 − c)x3 + x2
1 + y1y3 + u3

(20)

We consider the active nonlinear controller defined by

u1 = e2 + y3 − k1e1

u2 = −e1 − x1 − x3 − ay2 − k2e2

u3 = −b + mx1 − sx2 − (1 − c)x3 − x2
1 − y1y3

(21)

where k1 and k2 are positive constants.
Substitution of (21) into (20) yields the linear error dynamics

ė1 = −k1e1, ė2 = −k2e2, ė3 = −ce3 (22)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3

)
(23)

Differentiating (23) along the trajectories of the system (22), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − ce2

3 (24)

which is a negative definite function on IR3, since k1, k2, c are positive constants.
Thus, by Lyapunov stability theory [23], the error dynamics (14) is globally expo-

nentially stable. Hence, we obtain the following result.
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Theorem 3. The non-identical Arneodo system (17) and Rössler system (18) are glob-
ally and exponentially hybrid synchronized with the active nonlinear controller (21).

Numerical Simulations
For the numerical simulations, the fourth order Runge-Kutta method with time-step
h = 10−6 is used to solve the two systems of differential equations (17) and (18) with
the active controller (21).

The parameters of the Arneodo and Rössler systems are selected so that they are
chaotic, viz.

s = 3.8, m = 7.5, a = 0.2, b = 0.2, c = 5.7

The initial values for the master system (17) are taken as

x1(0) = 2, x2(0) = 8, x3(0) = 5

and the initial values for the slave system (18) are taken as

y1(0) = 16, y2(0) = 3, y3(0) = 12

Figure 5 shows the hybrid synchronization of the non-identical Arneodo system (17)
and Rössler system(18).
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Fig. 5. Hybrid Synchronization of Arneodo and Rössler Systems
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5 Conclusions

In this paper, we have used active nonlinear control method so as to achieve hybrid
chaos synchronization of the following chaotic systems:

(A) Identical Arneodo chaotic systems (1981)
(B) Identical Rössler chaotic systems (1976)
(C) Non-identical Arneodo and Rössler chaotic systems

Numerical simulations are also shown to verify the proposed active nonlinear con-
trollers to achieve hybrid synchronization of the chaotic systems addressed in this paper.
Since Lyapunov exponents are not required for the calculations, the proposed nonlin-
ear control method is effective and convenient to achieve hybrid synchronization of the
identical and non-identical Arneodo and Rössler chaotic systems. Numerical simula-
tions are given to illustrate the synchronization results.
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