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Abstract. Lattice reduction is a powerful concept for solving diverse problems 
involving point lattices. Lattice reduction has been successfully utilizing in 
Number Theory, Linear algebra and Cryptology. Not only the existence of lat-
tice based cryptosystems of hard in nature, but also has vulnerabilities by lattice 
reduction techniques. In this survey paper, we are focusing on point lattices and 
then describing an introduction to the theoretical and practical aspects of lattice 
reduction. Finally, we describe  the applications of lattice reduction in cryptana-
lysis like subset sum problem of low density, modular equations, Attacking 
RSA with small e by knowing parts of the message and Diophantine  
Approximation using LLL algorithm. 
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1 Introduction 

Lattices are periodic arrangements of discrete points. Apart from their wide-spread 
use in pure mathematics, lattices have found applications in numerous other fields as 
diverse as cryptography/cryptanalysis, the geometry of numbers, factorization of in-
teger polynomials, subset sum and knapsack problems, integer relations and Diophan-
tine approximations, coding theory. In this paper, we survey the main tools which can 
be used to  the verify vulnerabilities of different cryptosystems. 

Lattice reduction is concerned with finding improved representations of a given lat-
tice using algorithms like LLL (Lenstra, Lenstra, Lov´asz) reduction .There are some 
versions for lattice reduction, but people are using the LLL algorithm for theoretical and 
practical purposes.  It is a polynomial time algorithm and the vectors are nearly ortho-
gonal. In section II, we briefly discuss the complexity issues of LLL algorithm and its 
properties. In section III, we discuss the subset sum problem and how lattice reduction 
has been used to get a solution in some instances. This technique, in turn can be applied 
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to break knapsack cryptosystems like Merkle-Hellman knapsack cryptosystem. In  
section IV, we discuss Univaraite polynomial congruence problem and how lattice re-
duction was used to get a solution. This technique, in turn can be applied to check vul-
nerabilities of RSA cryptosystem. In section V, we discuss simultaneous Diophantine 
approximation problem and vulnerabilities of knapsack cryptosystem. 

2 Terminology  

2.1 Lattices  

A lattice is a discrete subgroup of Թ௡. Equivalently, given ݉ ൑ ݊ linearly  
independent vectors ܾଵ , ܾଶ , ܾଷ , … , ܾ௡, א Թ௡, the set ࣦ ൌ ࣦሺܾଵ, ܾଶ, ܾଷ, ڮ , ܾ௠ሻ ൌ ሼ∑ ௜ܾ௜௠௜ୀଵߙ ௜ߙ| א Ժሽ, is a lattice. The ܾ௜are called basis vectors of  and ࣜ ൌሼܾଵ, ܾଶ, ڮ , ܾ௠ሽ is called a lattice basis for ࣦ. Thus, the lattice generated by a basis  
is the set of all integer linear combinations of the basis vectors in  ࣜ. The determinant 
of a lattice, denoted by ݈݋ݒሺࣦሻ is the square root of the gramian 
nant݀݁ݐଵஸ௜,௝ஸ௠ܾۃ௜, ௝ܾۄ, which is independent of particular choice of basis. A general 
treatment of this topic see [1]. 

2.2 Lattice Reduction 

Lattice reduction techniques have a long tradition in mathematics in the field of num-
ber theory. The goal of lattice basis reduction is to find, for a given lattice, a basis 
matrix with favorable properties. Usually, such a basis consists of vectors that are 
short and therefore this basis is called reduced. Unless stated otherwise, the term 
“short” is to be interpreted in the usual Euclidean sense. There are several definitions 
of lattice reduction with corresponding reduction criteria, such as Minkowski reduc-
tion, Hermite-Korkine-Zolotareff reduction, Gauss reduction, Lenstra-Lenstra-
Lov´asz (LLL) reduction, Seysen reduction. The corresponding lattice reduction  
algorithms yield reduced bases with shorter basis vectors and improved orthogonality; 
they provide a tradeoff between the quality of the reduced basis and the computational 
effort required for finding it. Here we consider the LLL reduced, because there is a 
polynomial time algorithm exists and vectors are  near orthogonal and the first vector 
solves the   approximate SVP problem. For good survey on lattice reduction  
algorithms refers [4]. 

2.3 LLL Reduced 

The following LLL reduced version given by Lenstra, Lenstra, Lovasz[1],[2],[3]. 

LLL reduced: A basis ܾଵ, ܾଶ, ܾଷ, ڮ , ܾ௠ of a lattice  is said to be Lovasz-reduced or 
LLL-reduced if หߤ௜,௝ห ൑ ଵଶ  for 1 ൑ ݆ ൏ ݅ ൑ ݊ 



532 R. Santosh Kumar, C. Narasimham, and S. Pallam Setty 

 

หܾ௜כ ൅ כ௜,௜ିଵܾ௜ିଵߤ หଶ ൒ ଷସ |ܾ௜ିଵכ |ଶ for 1 ൏ ݅ ൑ ݊.  where the ܾ௜כ and ߤ௜,௝ are defined by the 

Gram-Schimdt orthogonalization process acting on the ܾ௜. Above in place of   ¾ one 

can replace any quantity 
ଵସ ൏ ߜ ൏ 1. 

2.4 LLL Algorithm 

The Lenstra –Lenstra -Lov´asz (LLL) algorithm [1][2][3]  is an iterative algorithm 
that transforms a given lattice basis into an LLL-reduced one. Since the definition of 
LLL-reduced uses Gram-Schmidt process, the LLL algorithm performs the Gram-
Schimdt method as subroutine.  

 
LLL Algorithm with Euclidean norm 

 
Input: ܾଵ, ܾଶ, ܾଷ, ڮ , ܾ௡ א Ժ௠ 
Output: LLL reduced basis ܾଵ, ܾଶ, ܾଷ, ڮ , ܾ௡ 
1: Compute the Gram-Schimdt basis ܾଵכ, ܾଶڮ,כ , ܾ௡כ  and coefficients ߤ௜,௝ for 1 ൑ ݆ ൏ ݅ ൏ ݊. 
2: Compute ܤ௜ ൌ ,כ௜ܾۃ ܾ௜ۄכ ൌ ԡܾ௜כԡଶ for 1 ൑ ݅ ൑ ݊ 
3:  k=2 
4: while ݇ ൑ ݊ do 
5:   for ݆ ൌ ݇ െ 1 downto 1 do 
6:      let ݍ௝ ൌ ௞,௝ and set ܾ௞ߤ ൌ ܾ௞ െ ௝ݍ ௝ܾ 

7:      update the values ߤ௞,௝ for 1 ൑ ݆ ൏ ݇ and ܤ௞ 
8:   end for 

9: if ܤ௞ ൒ ሺଷସ െ ௞,௞ିଵଶߤ  ௞ିଵ thenܤ(

10:    ݇ ൌ ݇ ൅ 1 
11:          else 
12:      Swap ܾ௞ with ܾ௞ାଵ 
13:              Update the values ܾ௞כ, ܾ௞ିଵכ , ,௞ܤ ,௞ିଵܤ ௞,௝  for 1ߤ ௞ିଵ,௝ andߤ ൑ ݆ ൏ ݇ and                            ߤ௜,௞ and ߤ௜,௞ିଵ for    ݇ ൏ ݅ ൑ ݊.      
14:     ݇ ൌ min ሼ2, ݇ െ 1ሽ 
15:         end if 
16:  end while 

 
Let ܾଵ, ܾଶ, ܾଷ, ڮ , ܾ௠ be an LLL reduced basis of a lattice  and ܾଵכ, ܾଶכ, ڮ , ܾ௠כ be it s 

Gram-Schimdt orthogonalization. Then |ܾଵ| ൑ 2೘షభమ  for every ݔ א ࣦ and ݔ ് 0. It can 
be proven that the LLL algorithm terminates a finite number of iterations. Let ࣦ ,Ժ௡ be a lattice with basisሼܾଵؿ ܾଶ, ܾଷ, ڮ , ܾ௠ሽ, and ܥ א Թ, ܥ ൒ 2 be such that ԡܾ௜ԡ ൑ ݅ for ܥ√ ൌ 1,2, ڮ , ݊.  Then the number of arithmetic operations needed for the 
algorithmܱሺ݊ସ log on integers of size ܱሺ݊ (ܥ log  .ሻ bitsܥ
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3 Solving Subset Sum Problem of Low Density 

Let ሼܽଵ, ܽଶ , ܽଷ , … , ܽ௡ሽ be distinct positive integers. The subset sum problem is, given 
an integer s obtained as a sum of elements ܽ௜, to find ݔ௜ א ሼ0,1ሽ for ݅ ൌ 1,2, ڮ ݊ such 
that ∑ ܽ௜ݔ௜ ൌ ݀ The density of S is defined to be .ݏ ൌ ௡୫ୟ୶ ሼ୪୭୥ ௔೔|ଵஸ௜ஸ௡ሽ. The subset sum 

problem is ࣨ࣪-complete. 

3.1 LLL Algorithm Solution  

Using LLL algorithm one can find a particular short vector in a lattice[4]. Since the 
reduced basis produced by LLL algorithm includes a vector of length which is guar-

anteed to be within a factor of 2೙షభమ  of the shortest non-zero vector of the lattice. In 
practice, however, the LLL algorithm usually finds a vector which is much shorter 
than what is guaranteed. So the LLL algorithm can be expected to find the short vec-
tor which yields a solution to the subset sum problem provided that this vector is 
shorter than most of the non zero vectors in the lattice. 

3.2 Justification 

Consider the matrix ሺ݊ ൅ 1ሻ כ ሺ݊ ൅ 2ሻ matrix ܤ ൌ ێێۏ
2ۍێێ 0 00 2 00 0 2 ڮ 0 ݉ܽଵ 00 ݉ܽଶ 00 ݉ܽଷ ڭ0 ڰ 0ڭ 0 00 0 0 ڮ 2 ݉ܽ௡ 01 ݏ݉ ۑۑے1

 ېۑۑ
Let  the rows of the matrix B be ܾଵ , ܾଶ , ܾଷ , … , ܾ௡ , ܾ௡ାଵ and L be the lattice gener-

ated by these vectors. If ݔଵ , , ଶݔ , ଷݔ … ,  ,௡ is a solution to the subset sum problemݔ
then we have ݕ ൌ ෍ ௜ ௡௜ୀଵݔ ܾ௜ െ ܾ௡ାଵ 

ଵ ܾଵ ൅ݔ)= ଶ ܾଶݔ ൅ ଷ ܾଷݔ ൅  … ൅  (௡ܾ௡-ܾ௡ାଵݔ

ଵ െݔ2)    1, ଶ െݔ2 1,.  .  . , ௡ݔ2 െ 1, ݉ሺܽଵݔଵ ൅ ܽଶݔଶ൅.  .   . ൅ܽ௡ݔ௡ െ ,ሻݏ 1ሻ 

Since (ݔଵ , , ଶݔ , ଷݔ … , ௜ ሺ1ݔ ௡) is a solution and eachݔ ൑ ݅ ൑ ݊ሻ is either 0 or 1, we 

have ݕ௜ א ሼെ1,1ሽ and ݕ௡ାଵ ൌ 0.  Since ԡݕԡ ൌ ඥݕଵଶ ൅ .   .    .ଶଶ൅ݕ ൅ݕ௡ାଵଶ ൅ ௡ାଶଶݕ , the 
vector y is a vector of short length in L.  If the density of the knapsack set is small, i.e 
the ܽ௜ are large, then most vectors in L will have relatively large lengths, and hence y 
may be unique shortest non zero vector in L. If this is indeed the case then there is a 
good possibility of the algorithm finding a basis which includes this vector. Above 
algorithm is not guaranteed to succeed. Assuming that the LLL algorithm always 
produces a basis which includes the shortest non zero lattice vector, then algorithm 
succeeds with high probability if the density of the knapsack set is less than 0.9408. 
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3.3 Application  

This is most powerful general attack known on knapsack encryption schemes[5]. It is 
typically successful if the density of the knapsack set is less than 0.9408. This is sig-
nificant because the density of a Merkle-Hellman knapsack[6] set much be less than 
1, since otherwise there will  be many subsets of the knapsack set with the same sum, 
in which case some cipher texts will not be uniquely decipherable.  

4 Solving Modular Equations 

It is easy to compute the integer roots of a polynomial in a single variable over the 
integers. But the related problem of solving modular equations can be hard. We have 
different tools to solve ݂ሺݔሻ ൌ 0. But one cannot solve ݂ሺݔሻ ൌ 0 ሺ݉݀݋ ݊ሻ efficiently. 
The solution for the above equation was proposed by Coppersmith in the year 
1997[7]. Here we present simple version of Howgrave-Graham[8]. 

Let ܰ be an integer and ݂ א  চሾݔሿ be a monic polynomial of degree ݀. Set ܺ ൌ ܰభ೏ିఌ for some ߝ ൒ 0.  Then given ܰۃ, |଴ݔ| one can efficiently find all integers ,ۄ݂ ൏ ܺ satisfying ݂ሺݔ଴ሻ ൌ 0ሺ݉݀݋ ܰሻ using the LLL algorithm.  This fact claims 
the existence of an algorithm which can efficiently find all roots of ݂ modulo ܰ that 

are less than ܺ ൌ ܰభ೏. As ܺ gets smaller, the algorithm’s runtime decreases. This theo-
rem’s strength is the ability to find out all small roots of polynomials modulo a com-
posite N. The idea is simply reducing the root finding problem in modular equations 
to the case of root finding equations over the integers. Thus one has to construct from 
the polynomial ௕݂ሺݔሻ with the root ݔ଴ ൑ ܺ modulo ܾ a polynomial of ݂ሺݔሻ which has 
the same root ݔ଴ by applying standard root finding algorithms to ݂ሺݔሻ.  But how can 
be transform ௕݂ሺݔሻ into ݂ሺݔሻ?. This transform is exactly the core of the Coppers-
mith’s method. He defines the matrix which has the elements of the form ݃௜,௝ሺݔሻ ൌܰ௠ି௜ݔ௝ ௕݂௜ሺݔሻ for ݅ ൌ 1, ڮ ݉ and some choice of ݆ and it has a root ݔ଴݉݀݋ ܾ௠. Then 
every integer linear combination ݂ሺݔሻ ൌ ∑ ݃௜,௝ሺݔሻ,   ܽ௜,௝ א চ௜,௝  of polynomials in G 
also has the root   ݔ଴݉݀݋ ܾ௠. Our goal is to find among these linear combinations 
one which has the root ݔ଴ not just modulo ܾ௠ but also over the integers. For this one 
can choose coefficients of ݂ሺݔሻ satisfies the relation ݂ሺݔ଴ሻ ൏ ܾ௠. This is where the 
lattice reduction algorithm such as LLL comes into the picture. The first vector of a 
reduced basis satisfies the above inequality.  

4.1 Application 1: Attacking RSA with Small e by Knowing Parts of the 
Message 

Suppose that ݉ ൌ ܯ ൅  of the message and some unknown ܯ for some known part ݔ

part ݔ ൑ ܰభ೐. Now one can recover ݉ from above scenario. This situation occurs in 
the case of stereotyped messages. Let ሺܰ, ݁ሻ be a public key in RSA public key crypto 
system[7]. Furthermore, let ܥ ൌ ሺܯ ൅   be an RSA encrypted message ܰ ݀݋଴ሻ௘݉ݔ
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with known M and unknown ݔ଴,where |ݔ଴| ൑ ܰభ೐. Then one can find ݔ଴ in time poly-
nomial in log ܰ and ݁. The above fact is direct application of Coppersmith’s method. 

4.2 Application 2: Repeated Message and Short Pad Attack 

Consider the situation when Bob sends two messages to Alice that only differ by a 
small amount. Also assume that sender is using a public exponent 3. In this case ܯଷ ൌ ܿଵሺ݉݀݋ ܰሻ and ሺܯ ൅ ሻଷݔ ൌ  ܿଶሺ݉݀݋ ܰሻ. One can eliminate the M from above 
two equations by using resultants, and is left with the equation ݔଽ ൅ 3ሺܿଵ െ ܿଶሻݔ଺ ൅3ሺܿଶଶ ൅ 7ܿଵܿଶ ൅ ܿଵଶሻݔଷ൅ሺܿଵ െ ܿଶሻଷ ൌ 0ሺ݉݀݋ ܰሻ, so one may discover the padding as 

long as |ݔ| ൑ ܰభవ. It is not obvious that recovering M from the knowledge of x, but 
this is true due to clever trick of Franklin and Reiter[9]. 

5 Simultaneous Diophantine Approximation 

Simultaneous Diophantine approximation is concerned with approximating a 

tor ቀ௤భ௤ , ௤మ௤ , ڮ , ௤೙௤ ቁ of rational numbers by a vector of ቀ௣భ௤ , ௣మ௤ , ڮ , ௣೙௤ ቁ of rational num-

bers with a smaller denominator ݌. Algorithms for finding simultaneous Diophantine 
approximation have been used to break some knapsack public key cryptosystems. The 

vector ቀ௣భ௤ , ௣మ௤ , ڮ , ௣೙௤ ቁ of rational numbers is said to be a simultaneous Diophantine 

approximation of ߜ-quality to the vector ቀ௤భ௤ , ௤మ௤ , ڮ , ௤೙௤ ቁ of rational numbers if ݌ ൏  ݍ

and ቚ݌ ௤೔௤ െ ௜ቚ݌ ൑ ݅ ఋ  forିݍ ൌ 1,2, -ߜ n. One can reduce the problem of finding a,ڮ

quality simultaneous Diophantine approximation to the problem of finding a short 
vector in a lattice [2]. The latter problem can be solved using LLL algorithm. Consid-
er the (n+1) dimensional matrix ܣ௜,௝ as   

݅ ݂݅ ݍߣ= ൌ ݆ and 1 ൑ ݅ ൑ ݊, 

                                              =0 if i് ݆ and ݅ ൑ ݅ ൑ ݊, 
݅ ௝ifݍߣ-=        ൌ ݊ ൅ 1 and j് ݊ ൅ 1, 

                       =1 if ݅ ൌ ݊ ൅ 1and j=݊ ൅ 1 where ߣ ൎ  .ఋݍ
5.1 Justification 

Apply LLL algorithm to above matrix  and let the rows of the matrix ܣ be denoted by ሺܾଵ, ܾଶ, ڮ , ܾ௡, ܾ௡ାଵሻ. Suppose that  ቀ௤భ௤ , ௤మ௤ , ڮ , ௤೙௤ ቁ has a ߜquality approximation ቀ௣భ௤ , ௣మ௤ , ڮ , ௣೙௤ ቁ.  The vector ݔ ൌ ଵܾଵ݌ ൅ ଶܾଶ݌ ൅ ڮ ൅ ௡ܾ௡݌ ൅ ݍଵ݌ሺߣ௡ାଵܾ௡ାଵ=ሺ݌ െݍ݌ଵሻ, ݍଶ݌ሺߣ െ ,ଶሻݍ݌ ڮ , ݍ௡݌ሺߣ െ ,௡ሻݍ݌ -ሻis in L and has length less than approx݌
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imately √݊ ൅  is short compared to the original basis vectors, which are of ݔ Thus .ݍ1

length roughly ݍଵାఋ. Also, if ݒ ൌ ሺݒଵ, ,ଶݒ ڮ , ,௡ݒ  ௡ାଵሻ is a vector in L of length lessݒ

than ݍ, then the vector ቀ௣భ௤ , ௣మ௤ , ڮ , ௣೙௤ ቁ defined as above is a ߜ quality approximation.  

5.2 Application  

Given the public knapsack set, this technique finds a pair of integers ܷ′,  such that ௎′ெ′ is close to ′ܯ
௎ெ where ܷ and ܯ are part  of the private key of the Merkle-Hellman 

Cryptosystem  and ܷ ൌ ܹିଵ݉ܯ ݀݋ and such that the integers ܾ௜′ ൌ ܷ′ܽ௜݉ܯ ݀݋, 1 ൑݅ ൑ ݊ form a super increasing sequence. This sequence can then used by an adversary 
to decrypt messages [2].  

6 Conclusions 

In this survey paper, we have discussed some Cryptographic attacks using some tricky 
lattice techniques. First one, we solved subset sum problem of low density. Then we 
observe vulnerabilities of Merkle-Hellman knapsack cryptosystem which is based on 
subset sum problem. Second one, we solved univaraite modular polynomial equa-
tions. Using this we check the pitfalls of RSA function in two cases. Finally we dis-
cuss the problem of Simultaneous Diophantine Approximation problem. Again we 
observe vulnerabilities of Merkle-Hellman Cryptosystem. All are implemented in 
NTL number theory [12] library maintaining by victor shoup.  
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