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Abstract. Public key cryptography is based on some mathematically hard prob-
lems, such as Integer Factorization and Discrete Logarithm problems. The RSA 
is based on Integer factorization problem. Number Field Sieve is one of the 
popular algorithms to solve these two problems.  Block Lanczos algorithm is 
used in the linear algebra stage of Number Filed Sieve method for Integer Fac-
torization. The algorithm solves the system of equations Bx=0 for finding null 
spaces in the matrix B. The major problems encountered in implementing Block 
Lanczos are storing the entire sieve matrix and solving the matrix efficiently in 
reduced time. Implementations of Block Lanczos algorithm have already been 
carried out using distributed systems. In the current study, the implementation 
of Block Lanczos Algorithm has been carried out on GPUs using CUDA C as 
programming language. The focus of the present work has been to design a 
model to make use of the high computing power of the GPUs. The input ma-
trices are very large and highly sparse and so stored using coordinate format. 
The GPU on-chip memories have been used to reduce the computation time. 
The experimental results were obtained for the following problems; RSA100, 
RSA110, RSA120. From the results it can be concluded that a distributed model 
over GPUs can be used to reduce the iteration times for Block Lanczos. 
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1 Introduction 

Public key cryptography is based on some mathematically hard problems. The  
popular RSA is based on integer factorization and the counterparts ElGamal and Dif-
fie-Hellman are based on discrete logarithm problem. In number theory, integer facto-
rization problem is to factor the given composite number into its factors. The problem 
is found to be hard when the factors are big primes. The best known method to solve 
the above problem is Number Field Sieve.  

The Number Field Sieve consists of two steps, such as sieving and solving. The 
sieving phase generates a large and sparse matrix called as sieve matrix. The solving 
phase, first reduces the large size matrix into small and still sparse matrix and later 
solves the linear system of equations.  
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The solving phase is the main bottle-neck in the overall process. In the literature, 
many algorithms are reported. The method proposed by Lanczos is widely known and 
attempted method, since it needs less memory and easily adoptable for large and 
sparse matrices.  

Block Lanczos algorithm which is a modified version of Lanczos algorithm used in 
the linear algebra stage of Number Field Sieve (NFS) is proposed in [1]. This algo-
rithm is one of the ideal candidates for parallelization. The algorithm uses subspaces 
instead of vectors for solving the sparse matrix generated in sieving stage, for finding 
null spaces. The subspaces are represented using matrices. The parallel implementa-
tion of Block Lanczos using Mondriaan partitioning for sparse matrices is discussed 
in [2]. In this he discussed about the global-local indexing mechanism, vector parti-
tioning, sparse matrix partitioning, sparse matrix-vector multiplication, AXPY opera-
tions and dense vector inner product computation. Coppersmith et.el., discussed how 
Block Lanczos is much competitive than Gaussian Elimination for solving linear sys-
tem of equations [4]. The paper also discusses that the block operations performed in 
Block Lanczos reduces the 32 matrix-vector operations to one. Nathan Bell et. el., 
reported the different format of representation for sparse matrix to store and perform 
matrix operations on them efficiently [6]. The different formats given by the author 
are DIA, ELL, CSR, COO, hybrid format. The use of COO format shows very little 
variance in efficiency over different data and applications. They also discussed about 
how matrix operations can be performed efficiently on different matrix formats that 
have been discussed in  their previous work [7]. 

In the present study Block Lanczos is implemented on GPUs. The GPUs have larg-
er number of cores on a chip when compared to CPUs. Also the Arithmetic Logical 
Units (ALUs) in case of GPUs are much more than in CPUs. Many-coreprocessors, 
especially the GPUs, have high floating-point performance. As discussed in [4], 
Block Lanczos algorithm is one of the ideal candidates for parallelization. Also from 
[6] and [7] it can be inferred that the sparse matrix operations of Block Lanczos can 
be performed efficiently on GPUs using CUDA. These ideas provided the motivation 
for implementing the Block Lanczos algorithm on GPUs using CUDA C. 

1.1 Integer Factorization 

There are different methods for Integer Factorization like continued fraction method, 
quadratic sieve, and number field sieve. Integer factorization algorithms require several 
nonzero vectors x belonging to Galoise field (GF(2)n ) such that a system of equations 
Bx= 0 is obtained, where B is a given m×n matrix over the field GF(2). This matrix B is 
called sieve matrix and is usually very large and highly sparse with m < n. Suppose, an 

integer M is to be factored, the quadratic sieve method finds congruence’s between ܽଶ 

and product of pi raised to some exponents bij, modulus M. Here pi are primes or -1 and 
the bij are exponents, which are mostly zeroes. The quadratic sieve method then tries to 
find S Є{ 1, 2, - - ,n } such that both sides of the congruence. ∏ ܽଶ∈ௌ ൌ ∏ ∏ ೕୀଵ∈ௌ  (mod M)                   (1) 
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are perfect squares. The left hand side product is automatically a square, but the right 
hand side product is a square only if all exponents are even, i.e., if∏jЄS  bij≡ 0 (mod 
2) for 1 ≤ i ≤  m. This is equivalent to the system of equations Bx≡ 0(mod 2), where B 
= (bij), and x= (xj), and where xj= 1 if j ∈ S and xi= 0 if j ∈ S.  

The matrix B that arises in the sieving stage of factoring has a specific structure. 
This matrix is extremely sparse, with around 60-80 non-zero entries per row. It is 
divided into dense block and sparse block.  The dense parts in columns correspond to 
smaller primes and very sparse parts in columns correspond to larger primes. The best 
way to solve the matrix is the combination of Structured Gaussian elimination with 
Lanczos or Wiedemann. The Structured Gaussian elimination algorithm is applied 
first to reduce the large matrix to a comparatively smaller matrix which is still sparse. 
This step is called filtering. After getting the filtered matrix, the Block Lanczos or 
Wiedemann iterations can be applied efficiently on a smaller matrix. 

Wiedemann is found to be slower compared to Lanczos and hence,  Block Lanczos 
algorithm is chosen as the best method for finding the required linear dependencies 
[5, 8, 9, 13]. 

1.2 Block Lanczos 

The Lanczos method is used for solving linear equations Ax=b for finding eigenvec-
tors. But the algorithm fails in GF(2) due to the self orthogonality property of the 
binary vectors. To eliminate this problem, a set of vectors(representing subspaces) 
instead of a single vector were used. Each subspace is represented by a matrix. The 
matrix-vector products in Lanczos are replaced by matrix-matrix products in GF(2n). 
The matrix A can be applied to N (generally 32 or 64) different vectors in GF(2n) at 
once using bitwise operators. This modification is called Block Lanczos. 

The Block Lanczos method, which is a variation of the Lanczos  procedure uses 
block versions of the three-term recursions. As a general thrust, block algorithms 
substitute matrix block multiplies and block solvers for matrix-vector products and 
simple solvers in unblocked algorithms. In other words, higher level block arithmetic 
operations are used in the inner loop of the block algorithms. This decreases the I/O 
costs essentially by a factor of the block size. In addition, the block algorithms are 
generally more robust and efficient for matrices with multiple or closely clustered 
eigen values.  

Suppose A is a symmetric n × n matrix over the field GF(2). The Block Lanczos 

algorithm produces a sequence of subspaces ሼ ܹሽୀିଵ of GF (2n) which are pair 
wise A−orthogonal. The properties of vectors wi in the Lanczos algorithm ensures the 
finding of a solution vector. These properties were generalized to a A-orthogonal 
subspaces Wi to ensure a solution in the modified sequence of iterations. 

The condition ݓ் ݓܣ ് 0 in Lanczos is replaced by a requirement that no non-
zero vector in Wi be A−orthogonal to all of Wi. The subspace W satisfying this prop-
erty is said to be A− invertible.(A subspace W Є Kn is said to be A-invertible if it has 
a basis W of column vectors such that WTAW is invertible). It will have a basis W of 
column vectors such that WTAW is invertible. 
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The property of being A-invertible is independent of the choice of basis, since any 
two bases for W are related by an invertible transformation. If W is A-invertible, then 
any u ∈Kn can be uniquely written as v + w where w ∈ W and WAv = (0). The gene-

ralization to subspaces can be given as,Wi is A-invertible , W୨TAW୧ ൌ ሼ0ሽ for i ≠j , 

and AW C W, where W=W0+W1+...+Wm-1 . 
Assuming the above statement, given b ∈ W, an x ∈ W can be constructed such 

that AX = b. Let x = ∑wj , where wj∈Wj is chosen so that Awj - b is orthogonal to all 
of Wj. If the columns of Wj form a basis for Wj, then x can be given as ݔ ൌ ∑ ܹሺ ்ܹ ܣ ܹሻିଵ ்ܹ ܾିଵୀ                                     

(2)
 

Now fix N > 0. At certain step i, an n x N matrix Vis generated, which is A-
orthogonal to all earlier Wj. The initial V0 is taken to be arbitrary. Wi is selected using 
as many columns of Vi as can be possible, subject to the requirement that Wi be A-
invertible. The Lanczos iterations are replaced by    

Wi=ViSi,                                                               (3) V୧ାଵ ൌ AW୧S୧  V୧ െ ∑ W୨C୧ାଵ,୨୧୨ୀ     (i ≥ 0)                            (4) 

wi = <Wi>                                                 (5) 

Iterations are stopped when V୧TAV୧ ൌ 0. suppose this occurs for i = m. In the above 

equation Si is an N x Ni projection matrix which has been chosen so that W୧TAW୧ is 
invertible while making Ni≤N as large as possible. The matrix Si should be zero ex-
cept for exactly one 1 per column and at most one 1 per row. These ensure that S୧TS୧ ൌ IN  and that S୧S୧T is a sub matrix of IN reflecting the vectors selected from 

Vi. The equation Vi+l tries to generalize while ensuring that WjAVi+1= {0} for j ≤i, if 
the earlier Wj exhibits the desired property of A-orthogonality. Then the following 
expression can be used ܥାଵ, ൌ ൫ ்ܹ ܣ ܹ൯ିଵ ்ܹ ܣሺܣ ܹ ்ܵ  ܸሻ                      

(6)
 

The terms Vi -WiCi+l,i select all the columns of Vi not used in Wi; those columns are 
known to be A-orthogonal to W0 through Wi-1, and the choice of Ci+l,i adjusts them so 
they are A-orthogonal to W, as well. Without the Vi term, rank (Vi+l) would be 

bounded by rank(AWiS୧T) ≤ rank(Vi), and would soon drop to zero. After further 
simplification, 

ܸାଵ ൌ ܣ ܸ ܵ ்ܵ  ܸܦାଵ  ܸିଵܧାଵ  ܸିଶܨାଵ                (7) 
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2 Review of Basic Operations Involved in Block Lanczos 
Algorithm 

2.1 Block Lanczos Algorithm 

The Block Lanczos algorithm is used to solve the linear system of equations Bx=0 for 
finding the null spaces in matrix B. This is achieved by decomposing GF(2)n into 
several subspaces of dimension almost N which are pair wise orthogonal with respect 
to the symmetric n x n matrix A = BT B. In each of the iteration the matrices Band 
BTare applied to an n xN matrix and then a few supplementary operations are per-
formed [12]. 

The pseudo-code for the algorithm is given as Algorithm 1. 

Algorithm 1: Block Lanczos 

Input:Matrices B of size n1 × n2 and Y of size n2 × N 

Output:The matrices X and Vm 

1: Initialization: X = 0 2: V0 = AY = BT * (BY ) 

3: C = VTAV = VT(BTB)V0 = (BV0)
T *BV0 4: Compute AV0 = BT *(BV0) 

5: i = 0 

6: while C୧≠0 do 

7: compute V୧TAଶV୧ = (AV୧)T * (AV୧)  
8: [W୧୧୬୴ , SS୧T ] = Inverse (V୧TAV୧, SS୧ିଵT ,N) 

9: X = X + Vi * (W୧୧୬୴ * (V୧T * V)) 10: Z୧ = (V୧TAଶV୧) * (SS୧T) + C୧ 
11: D୧ାଵ ൌ IN െ W୧୧୬୴ (Z୧) 12: E୧ାଵ ൌ െW୧ିଵ୧୬୴ (C୧ * SS୧T) 

13: F୧ାଵ ൌ െW୧ିଶ୧୬୴ (IN − C୧ିଵ +W୧ିଵ୧୬୴)(Z୧ିଵ) SS୧T 

14: V୧ାଵ ൌ AV୧S୧S୧T  V୧D୧ାଵ  V୧ିଵE୧ାଵ  V୧ିଶF୧ାଵ 

15: compute BV୧ାଵ  

16: C୧ାଵ= V୧ାଵT AV୧ାଵ  = (BV୧ାଵ)T * (BV୧ାଵ) and AV୧ାଵ = BT * BV୧ାଵ 

17: i = i + 1 

18: end while 

19: Return X and Vm 
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The experimental results are carried out on a machine with following characteristics:- 
A system with following configurations 

• Intel i7 740QM processor 

• 4GB DDR3 RAM 

• NVIDIA Ge Force 330M GPU (1 GB) 

• Another system for debugging using SSH portal. 

Software Requirements 

• Operating System: Ubuntu 10.10 
• NVIDIA Developer Driver for Linux (260.19.26) 
• CUDA 3.2 Toolkit 
• SSH server on system with GPU and SSH client on another system 

 

3 Implementation 

3.1 Distribution of Data 

The typical matrices for which the Block Lanczos algorithm is applied are very large 
and mostly sparse. Taking advantage of the latter, the matrix can be stored in a way 
that is much more clever than just explicitly storing every entry in the matrix. Storing 
each entry is already infeasible for a matrix with n of size 500,000, since that would 
need about 32 GB of RAM to store it. Note that this requirement is much too large to 
be fulfilled by the RAM of today’s typical machine. Also the typical n may be two to 
twenty times larger than this, increasing the RAM requirement substantially.  

The matrix corresponding to the system of equations that is generated from the 
number field sieve follows a very predictable pattern. The matrix that is obtained 
from sieving stage is stored by collections of columns, each collection may form a 
dense block or a sparse block. The number field sieve (much like the quadratic sieve) 
uses three factor bases (rational, algebraic, and quadratic characters) in sieving as part 
of the process of factoring a large number. Dense rows of the matrix correspond to the 
smaller primes, and sparse rows correspond to larger primes. These first few rows are 
called dense since they have relatively higher non-zero entries. Once sparsity of the 
matrix increases, it is more worthwhile to store the locations of these entries rather 
than storing all the particular entries.  

The sizes of the sieve matrices are too huge. Hence sometimes it may not be possi-
ble to store the entire matrix on a single device. Hence the need to keep the matrix on 
several devices is arising. So storing the matrix on many number of devices and deal-
ing with them efficiently is necessary. Distributing the matrix uniformly over the 
devices is necessary so as to distribute the computation load uniformly. 

Therefore the matrix B is stored in co-ordinate form with each entry giving the in-
dices of row and column to which then on-zero element belong. The use of coordinate 
format greatly reduces the memory requirements, which is directly proportionate to 
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number of non-zero entries in the matrix. Also an advantage of storing the matrix in 
coordinate format was that no extra memory was used to store the transpose of memo-
ry. Only a slight change in the logic for multiplication of transpose of matrix was 
required. The matrix is being stored in global memory on GPU because this matrix is 
used in all the iterations twice.  The matrix is also divided into strips of size which 
depends on shared memory restrictions of GPU. The strip size of the matrix depends 
on the shared memory because the output of the multiplication of the matrix with 
column vector is being stored in shared memory which greatly reduces the write 
access time costs. The offsets of these strips have also been stored in global memory 
on GPU. These offsets are used in relation to transpose of matrix B. The dense part of 
matrix is stored as an array of bit strings. The data distribution can be found in [3]. 
Programming massively parallel processors is reported in [10] and the GPU pro-
gramming is illustrated in [11] 

3.2 Basic Functions Implemented Using CUDA C on GPUs 

The following are some of the main operations to be computed to carry out the block 
lanczos algorithm.  

 
Random Vector Y, Computation of V0, Computation of Ci, Computation of Vi-

TA2Vi and Computation of Vi+1 

3.2.1 The List of Functions Written in CUDA C 
The algorithm is implemented in CUDA C. The implementation consists of different 
functions on device based on operations that are to be performed in the algorithm. The 
word-size N is 32 bits. A brief description of functions is given below: 

rand_gen( ) This function randomly generates vector Y of size of n x N which is 
represented as n words. To increase the randomness of the data used Y is divided into 
3 blocks and each block uses a different seed. 

strip_mul ( ) This function performs the operation in1 for a block of matrix B of size 
m x n with column vector Y of size n words on the device. The output of this function 
is a partial matrix product that is passed to the reduce() function to get final product. 

reduce( ) This function takes the partial products and performs the XOR operation on 
them to get the final result. 

productBY( ) This function performs the multiplication of matrix B (size m x n) with 
vector Y (size n x N) by calling the function strip_mul( )for each strip in B. It also 
makes use of pthreads and parallely reduces the outputs of strip_mul( ) for the pre-
vious strip. The same function is used for calculating product BV (size m x N) during 
each iteration of the algorithm. 

dense_mul( ) This function computes the product of the dense block of matrix B and 
vector Y which is later on combined with product of sparse block of B with Y. 
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strip_trans_mul( ) This function performs the operation in2 for block of matrix B of 
size m x n with vector V of size n words. The output of this function is a partial ma-
trix product that is passed to the reduce( ) function to get final product.  

productV( ) This function performs the multiplication of matrix BT with vector V by 
calling the function strip_trans_mul( ) for each strip. The same functionis used for 
calculating the product AV during each iteration of the algorithm. 

dev_trans_dense_mul( ) This function computes the product of the dense block of 
matrix BT(size m × n) and vector Y (sizen × N) which is later on combined with 
product of sparse block of BT with Y. 

device_mul_NnnN( ) This function performs operation op2 for matrix AV and its 
transpose. 

dev_mul_nNNN( ) This function performs operation op1. 

mul_NNNN( ) This function performs the operation op3. 

inverse( ) This function implements the algorithm given in algorithm 4 to compute 
Wi

inv,  SSi
T 

The inputs were generated using msieve 1.48 which is developed for factoring 
RSA numbers. Msieve is implemented on pthreads and MPI that make use of multi-
core architecture of CPUs. These matrices that were obtained from Msieve were in 
column-major order format for the sparse part and in bit string representation for the 
dense part of the sparse matrix. These matrices were later on reordered to suit the 
implementation model that was followed in the current work. Block Lanczos was 
carried out for three different matrices that are obtained in three different RSA num-
bers. Details of which are tabulated in following table. 

Table 1. Input matrices dimensions. 

Input Matrix Number of rows Number of columns 
RSA100 186821 186999 
RSA110 346763 346940 
RSA120 736255 736431 

 
The operations were carried out by varying the number of blocks in the grid and al-

so number of threads in each block. The results obtained were as follows: 

Table 2. Experimental results obtained by varying the number of blocks keeping the number of 
threads constant 

Input Matrix Number of Blocks (Number of threads=512) 
8 16 32 64 128 

RSA100 1922 1924 1866 1855 1941 
RSA110 3303 3213 3129 3102 3271 
RSA120 6053 5994 5865 5847 6175 
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These results are single iteration times in milliseconds. 

Table 3. Results obtained on varying the number of threads keeping the number of blocks 
constant 

Input Matrix Number of threads (Number of blocks=64) 
64 128 256 512 

RSA 100 2077 1996 2007 1855 

These results are also single iteration times in milliseconds. 
It can be seen that by varying the number of blocks and threads in all the three cas-

es best results are obtained by keeping number of blocks as 64. Also, the number of 
threads to get the least time possible for this implementation is 512. 

From the results above, it can be concluded that the single iteration times increase 
by a factor of less than 2 for each increase of 10 digits in the RSA number factored. 
Also it was found that the optimum time was reached when the program was executed 
using 64 blocks each of 512 threads. In this way it was found that by focusing on the 
architecture of device an efficient implementation of Block Lanczos algorithm on 
GPUs can be carried out. 
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