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Abstract. In many applications large scale Wireless Sensor Networks (WSNs) 
use multiple sinks for fast data dissemination and energy efficiency. A WSN 
may be divided into a number of partitions and each partition may contain a 
sink, thereby reducing the distance between source nodes and sink node. This 
paper focuses on partitioning algorithms for WSN. Some existing graph 
partitioning algorithms are studied that can be applied for partitioning a WSN. 
A novel partitioning approach for WSN is proposed along with its modification. 
Simulation of the proposed algorithms has been carried out and their 
performances are compared with some existing algorithms. It is demonstrated 
that the proposed algorithms perform better than the existing algorithms. 
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1 Introduction 

For early detection of critical events in large scale wireless sensor networks (WSNs), 
multiple sink nodes are required to be deployed. Routing the information regarding a 
critical event only from the source (the node that sensed the event) to its nearest sink 
also reduces energy consumption in an energy constrained WSN. We propose to 
partition the entire network into a number of sub-networks where each sub-network 
contains one sink node and all the sensor nodes in the sub-network forward the data 
sensed by them to the sink contained within it.  

This paper focuses on algorithms for partitioning a network into smaller-sized sub-
networks. A number of graph partitioning algorithms have been proposed in the 
literature. Some of them which are used for partitioning wireless sensor networks 
have been studied in this research work. We also propose a partitioning algorithm 
based on k-nearest neighbour. Another algorithm with some improvements over the 
former algorithm is also described. Both algorithms are implemented in a simulation 
environment and their performances are compared with the existing algorithms.  

The rest of the paper is organized as follows. Section 2 presents the related works. 
The existing and the proposed partitioning algorithms are discussed in Section 3. 
Section 4 presents a comparative study of the existing and proposed algorithms and 
simulation results. Finally, we conclude the paper in Section 5.  



446 Z. Rehena et al. 

2 Related Work 

Conventionally, the objective of graph partitioning method is to separate the vertices 
of the graph into a predetermined number of sub-graphs, in which each sub-graph 
consists of an equal number of vertices and the cut sets among these sub-graphs are 
minimized. In the literature many heuristic graph partitioning algorithms have been 
proposed based on spectral, combinatorial, geometric and multilevel techniques.  

Pothen, Simon, and Liou [1] introduce an approach to partition the input graph 
using the spectral information of Laplacian matrix. This technique is referred to as 
recursive spectral bisection (RSB). Eigenvector of the Laplacian matrix is computed 
and using its component the graph is initially partitioned into two sets of vertices. 
Chan and Szeto [3] show the size of the cut sets can be minimized by using the 
second smallest eigenvalue of the Laplacian matrix. They have done this by 
introducing the concept of median cut RSB method. In this method the indices of 
vertices which have values above the median are mapped onto one part and which 
have values below the median are mapped onto the other part. The partitions are then 
further partitioned by recursive application of the same procedure. Another variation 
of RSB method is known as Modified RSB. Here instead of using median value, 
another statistical function quantile is used to split the graph into desired number of 
partitions. The authors in [7] use RSB method for partitioning a WSN into two halves 
and then apply this method recursively to obtain optimal number of clusters.  

In [2], authors propose the approximation of the Maximally Balanced Connected 
Partition problem (MBCP). In [6], the authors used this MBCP to partition the entire 
WSN into 2n equal sized sub-partitions where n is the number of iterations. 

Both MBCP and RSB techniques finally produce 2n equivalent smaller sub-
networks where n is the number of iterations. But our objective is to partition the 
network into any desired number of sub-partitions according to the number of sinks 
available. Each sub-partition will be attached with a sink in the network, so that the 
nodes can interact with that associated sink only. In contrast to the above methods, we 
propose algorithms based on nearest neighbour computation. The main difference 
with the proposed algorithms with other algorithms is that here we make prior 
assumption regarding sink placement which is generally common in WSN.  

3 Existing Partitioning Algorithms 

In this section three popular graph partitioning algorithms are discussed. A novel 
algorithm is also proposed in this section which is based on the nearest neighbour [4] 
concept. Table 1 lists the notations used in different algorithms in this paper. 

3.1 Recursive Spectral Bisection (RSB) [5] 

RSB uses the Laplacian matrix of a graph. The construction of the Laplacian matrix is 
such that its smallest eigenvalue λ1 is zero for connected graph and all the associated 
eigenvectors are equal to one. Except λ1, all the other eigenvalues are greater than 
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zero. The RSB method that we mention here is based on the Fiedler vector of the 
Laplacian matrix of a given graph.  

In the RSB method, the spectral information is used to partition the graph. The 
RSB uses Spectral Bisection algorithm recursively. Initially the algorithm computes 
Laplacian matrix LM of the given graph and the eigenvectors EV corresponding to the 
second largest eigenvalue of LM. Then it computes the median m of EV. The nodes 
whose eigenvectors are less than median m are placed in one partition and the rest are 
placed in the other partition. The partitions are further partitioned by recursive 
application of the same procedure. Above method partitions a graph into power of 2.  

Table 1. List of Notations used in all the algorithms  

Symbol Description 
p total number of sink nodes, SINK={SINK1, .., SINKp } 
NextNode the node used for finding its k-NNG in the next iteration 
Flag used to denote visited or unvisited node 
pre_dist previously stored distances of each node from NextNode 
cur_dist current distance of each node from the NextNode in each partition 

Neighbor_list NNs 
a set of neighbour nodes of each node s generated from k-NNG, 
where k is the pre-defined number of nodes  

dist A vector storing distances of all neighbor nodes of a given node 
Partition_list P   a set of sensor nodes for eachpartition Pp

3.2 Modified Recursive Spectral Bisection (M-RSB) [5] 

Unlike RSB, the modified recursive spectral bisection algorithm partitions a graph 
into any number of sub-graphs. M-RSB also computes LM and EV and bisects the 
graph into two parts based on the value of quantile. In case of RSB, median is used to 
bisect the graph. In case of M-RSB, instead of median, the quantile percentage q of 
EV is calculated and used as the splitting value. The nodes whose eigenvector is less 
than q are placed in one partition and the rest are placed in the other partition. Each 
partition is then further partitioned by recursive application of the same procedure. 
Quantile percentage q of EV determines the number of nodes in each partition.  

3.3 Maximally Balanced Connected Partition (MBCP) [6] 

MBCP finds the maximally balanced connected partition for a graph G(V, E). It 
results in a partition (V1, V2) of V composed of disjoint sets V1 and V2 such that both 
sub-graphs of G induced by V1 and V2 are connected.  

The algorithm starts with two connected partitions V1 and V2 for G. Initially V1 
consists of the single vertex v1 ∈  V near the periphery of the network. V2 consists {V - 
V1}. In the next step, it creates a set V0 by choosing a vertex u from V2 such that (V1 U 
{u}) and (V2 - {u}) would also be a connected partition of G. From V0, a vertex vi is 
selected such that vi is the closest element to V1. This is done by sorting the list of 
candidates according to their distances from V1. The algorithm repeats until the total 
number of vertices in V1 is greater than or equal to half of the vertex in V.  
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3.4 Proposed Algorithm: FN_NNG (Farthest Node in Nearest Neighbor 
Graph) 

The algorithm runs in two phases: Initial Phase and Incremental phase. Initially, there 
are p sink nodes and the algorithm outputs p partitions at the end. In the initial phase, 
each sink generates its k-nearest-neighbors, k-NNG. These are stored in its 
Neighbour_list as well as in the Partition_list associated with it. A Flag is used for 
each sensor node which is set to 'False' initially.  

In the Incremental phase, the farthest neighbour node is found for each sink node. 
These nodes are set as NextNode and their neighbour nodes are found in the next step. 
The k-NNG of each NextNode is generated and these neighbour nodes are stored in 
the Neighbour_list, as well as in the Partition_list. This phase is repeated until the 
union of all the Partition_lists equals total number of nodes deployed. By setting the 
Flag of each sensor node when it is first visited, we can avoid duplication. Thus, each 
Partition_list contains disjoint set of nodes. Whenever a sensor node is included in a 
partition, it stores the id of the corresponding sink as the destination address. 
Algorithm for Incremental Phase is shown in the Fig. 1. 

The following functions are used in FN_NNG algorithm: 
 

FARTHEST selects the farthest neighbour node of Rootp, such that the returned node is 
not SINKp and it belongs to NNp. 
GENERATE returns the k nearest neighbours of a given node and place them in set 
NN. 
FIND returns the k +ith nearest neighbour of a given node if such a node exists, else it 
returns null. 

3.5 Improvement on FN_NNG  

One major problem of using k-NNG is that the algorithm needs global information of 
sensor nodes such as location information. For this reason GPS enabled sensor nodes 
are required which increases the cost of the network. Furthermore, while searching k-
Nearest Neighbour of a node in any partition, we may select a node u for partition P1. 
Later if it is found that the node u is nearer to another node in partition P2, it will not 
be included in partition P2 according to the above algorithm. In such cases the  
region covered by partition P1 is larger than other partitions. This scenario is depicted 
in Fig. 2.  

Thus, some modifications on FN_NNG algorithm are suggested. Instead of using 
k-NNG, the concept of 1_Hop_Neighbour nodes is used. Here the algorithm only 
needs local information in the network. In order to overcome the second problem we 
use a variable pre_dist which stores the calculated distance of each node from the 
NextNode. This algorithm is also run in two phases: Initial Phase and Incremental 
phase. The Initial phase is similar to FN_NNG. The initial value of pre_dist is set to 
infinity. The incremental phase is shown in Fig. 3. 
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Fig. 1. Algorithm of Incremental Phase 

 

Fig. 2. Partitioning Scenario 

In the 1_Hop_Neighbour function, for a particular Neighbour_list p, if the node m is 
not previously selected and the cur_dist is less than the pre_dist then the node is 
assigned into Neighbourp. The pre_dist value is modified by cur_dist value. Now in the 
same iteration if cur_dist value of the node m in another Neighbour_list q, is less than 
pre_dist value, then the node m is deleted from previous Neighbourp and included in 
new Neighbourq. The algorithm for selecting 1_Hop_Neighbour is given in Fig. 4.  

The following additional functions are used in M-FN_NNG algorithms: 

SEARCH returns the 1-Hop Neighbour_list which are within the communication 
range of a node and current distance, cur_dist of each neighbour node. 
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GET picks up an element from distance vector dist that corresponds to the distance of 
node m.  

GETPARTITION returns the partition id of the partition in which the node m has 
already been included. 

  

Fig. 3. Algorithm of Incremental Phase             Fig. 4. Algorithm of 1_Hop_Neighbour 

4 Comparative Analysis and Simulation Results 

Spectral Bisection methods find good partitions and are used in many applications. 
But the calculations of the eigenvector in spectral methods involve expensive 
computation. 

4.1 Comparative Analysis 

Using RSB method the network is partitioned into 2n sub-networks where n is the 
number of iterations. M-RSB partitions the network into any number of partitions. 
Fig. 5 shows the partitioning structure of a given network using RSB method having 
four parts. Fig. 6 shows that six partitions are created using M-RSB.  

All the methods, except M-FN_NNG, need global information of the nodes. M-
FN_NNG needs only 1-Hop neighbour information. Like M-RSB, our proposed 
methods also partition the network into any number of sub-networks. Fig. 7 depicts 
four sub-partitions using FN_NNG method and Fig. 8 shows four sub-partitions using 
M-FN_NNG methods. Fig. 9 and Fig. 10 show six sub-partitions using FN_NNG and 
M-FN_NNG of a given network respectively. 
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Fig. 5.  4-partitions using RSB   Fig. 6.  6-partitions using M-RSB 

 

Fig. 7. 4-partitions using FN_NNG             Fig. 8.  4-partitions using M-FN_NNG 

 

Fig. 9. 6-partitions using FN_NNG            Fig. 10. 6-partitions using M-FN_NNG 

The MBCP method also partitions the network into 2n sub-networks where n is the 
number of iterations. The authors in [6] have not mentioned clearly how the node u is 
chosen from set V0. According to them, node u of V0 is chosen in such a way that u is 
closest to the elements of V1. Thus in most cases this partitioning method generates 
sub-partitions which are not physically separated. This situation is shown in Fig. 11.  

While implementing MBCP, we have made some modifications in the strategy of 
choosing the node u from set V0. We calculate the mean of distances between u and 
each element of V1. Then we choose a node u which has least mean distance in V0. 

 



452 Z. Rehena et al. 

 

Fig. 11. 4-partitions using MBCP    Fig. 12. 4-partitions using M-MBCP 

Using the new strategy (M-MBCP), the sub-partitions generated by MBCP are shown 
in Fig. 12. In the next section we describe the simulation environment and present the 
experimental results.  

4.2 Simulation Environment and Metrics  

The simulations of the above algorithms have been done in Matlab environment. A 
wireless sensor network deployed in a square region is considered.   

We use four different sensor networks ranging from 100 nodes to 400 nodes. The 
100 node field is generated by randomly placing the nodes in a 200 m x 200 m square 
area. We assume that the area contains homogeneous sensor nodes with a 
communication range of 45m. Other sizes are generated by scaling the square and 
keeping the communication range constant in order to keep average density of sensor 
nodes constant.  

Following metrics are evaluated for performance analysis of the algorithms: 
 

Average Execution Time for a particular method. Execution time needed for 
computation of the sub-partitions in a given network is measured. We have 
considered four sub-partitions for each of the algorithms.  
 
Number of Edge cuts in a particular method. Edge cut is defined as follows:  

|| 'EEC =
, Where E' is the set of edges with one point in V1 and the second point in 

V2. V1 and V2 are the set of vertices of two sub-partitions. 

4.3 Result Discussion 

Execution times needed for partitioning using RSB, M-RSB, MBCP, M-MBCP, 
FN_NNG and M-FN_NNG are compared in Fig.13. It is clear from Fig.13 that 
MBCP needs highest execution time and M-FN_NNG needs lowest execution time. 
Execution time of RSB increases due to its computation of the eigenvalues and 
eigenvectors. M-RSB performs slightly better than RSB. Both MBCP and M-MBCP 
require higher execution time, because time is spent in checking connectivity while 
including a vertex in each partition. Thus, FN_NNG and M-FN_NNG give much 
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better performance among all the methods. Fig.14 compares the number of edge cuts 
for the above mentioned algorithms. RSB and M-RSB return equal number of edge 
cuts. Fig.14 depicts that FN_NNG and M-FN_NNG also give low edge cut in 
comparison with other methods. Fig.15 demonstrates execution time needed to run all 
the methods with different sized networks. As expected, with the increased number of 
nodes, the execution time increases. However, in case of FN_NNG, M-FN_NNG, 
RSB and M-RSB methods, execution time increases slowly. But in case of MBCP and 
M-MBCP, the execution time increases rapidly with the increase in number of nodes. 

 

Fig. 13. Execution time    Fig. 14. Number of Edge-cut 

5 Conclusion  

This paper makes a comparative analysis of different graph partitioning algorithms 
and proposes novel algorithms which can be applied in wireless sensor networks. The 
existing partitioning algorithms partition the network into number of sub-partitions, 
whereas the proposed algorithms partition the network according to the available 
sinks. The simulation results demonstrate that the proposed algorithms have low 
execution time and low edge cut. Since WSN applications need fast response 
therefore the proposed algorithms are suitable for critical WSN applications, like 
disaster monitoring. 

 

Fig. 15. Execution time with different sizes of network 
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