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Abstract. This paper investigates the local observer design for nonlinear con-
trol systems with real parametric uncertainty around equilibria. In this paper, new
results are derived for a general class of nonlinear systems with real parametric
uncertainty. In this paper, it is first shown that equilibrium-state detectability is a
necessary condition for the existence of local asymptotic observers for any non-
linear system and using this result, it is shown that for the classical case, when
the state equilibrium does not change with the real parametric uncertainty, and
when the plant output is purely a function of the state, there is no local asymp-
totic observer for the plant. Next, it is shown that in sharp contrast to this case, for
the general case of problems where we allow the state equilibrium to change with
the real parametric uncertainty, there generically exist local exponential observers
even when the plant output is purely a function of the state. In this paper, a charac-
terization and construction procedure for local exponential observers for a general
class of nonlinear systems with real parametric uncertainty has also been derived
under some stability assumptions. It is also shown that for the general class of
nonlinear systems considered, the existence of local exponential observers in the
presence of inputs implies, and is implied by the existence of local exponential
observers in the absence of inputs.

Keywords: Nonlinear observers, exponential observers, real parametric uncer-
tainty, nonlinear control systems.

1 Introduction

The design of observers is an important problem in the control literature because state
estimators are needed for system monitoring and for the implementation of state feed-
back control laws designed for control systems.

For linear control systems, the observer design problem was introduced and fully
solved by Luenberger [1]. For nonlinear control systems, the observer design problem
was introduced by Thau [2]. During the past three decades, a large research effort has
been devoted to the construction of observers for nonlinear control systems ([2]-[16]).

This paper investigates the nonlinear observer design problem for a general class of
nonlinear systems with real parametric uncertainty. In this paper, we consider a general
class of nonlinear systems described by
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ẋ = f(x, λ) + g(x, λ)u
y = h(x, λ)

(1)

where x ∈ IRn is the state, λ ∈ IRl is the real parametric uncertainty, u ∈ IRm the input
and y ∈ IRp the output. We assume that the state x is defined in an open neighbour-
hood of an isolated state equilibrium x̄ in IRn and the input u belongs to a class U of
admissible input functions.

In Sections 2 and 3, we assume that U consists of all locally C1 functions u with
u(0) = 0.

In Section 4, we assume that U consists of all inputs of the form

u = r(ω) (2)

where ω is the state of a neutrally stable exosystem given by

ω̇ = s(ω) (3)

We also assume that the parametric uncertainty λ takes values in an open neighbourhood
G of the origin of IRl. We set Y = h(X,G). We also assume that

f(x̄, 0) = 0, g(x̄, 0) = 0 and h(x̄, 0) = 0

In this paper, it is first shown that equilibrium-state detectability is a necessary condi-
tion for the existence of local asymptotic observers for the nonlinear system (1). Using
this condition, we establish that for the classical case of problems when the state equi-
librium does not change with the real parametric uncertainty, there does not exist any
local asymptotic observer for the nonlinear plant. Next, we show that in sharp contrast
to this case, for the general case of problems where we allow the state equilibrium
to change with the real parametric uncertainty, there typically exist local exponential
observers even when the plant output is purely a function of the state.

In this paper, we also derive necessary and sufficient conditions for local exponential
observers and using this, we deduce a simple construction procedure for the design of
exponential observers for the nonlinear plants with exogenous inputs. In this context, we
also derive a new result which states that under some stability assumptions on the plant,
the existence of local exponential observers for the nonlinear plant (1) in the presence
of inputs implies and is implied by the existence of local exponential observers for the
plant (1) in the absence of inputs. Thus, this new result simplifies the nonlinear observer
design problem significantly.

2 Basic Definitions

In this paper, we study the nonlinear observer design problem for the nonlinear plant
(1). Since λ is a real parametric uncertainty, it may not be available for measurement.
Thus, we may consider λ as an additional state variable and estimate λ as well.

Thus, we consider the plant (1) in an extended form as

ẋ = f(x, λ) + g(x, λ)u
λ̇ = 0
y = h(x, λ)

(4)
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In this paper, we derive new results for local asymptotic observers and exponential ob-
servers for the nonlinear plant (4) with real parametric uncertainty around the equilibria
(x, λ) = (x̄, 0) ∈ IRn × IRl.

Definition 1. [16] Consider the nonlinear system (candidate observer) defined by

ż = φ(z, μ, y, u)
μ̇ = ψ(z, μ, y, u) (5)

where the state z of the candidate observer (5) is defined locally (say, in the neighbour-
hoodX of x̄ of IRn) and the state μ of the candidate observer (5) is defined locally (say,
in the neighbourhood G of the origin of IRl). We assume that φ and ψ are locally C1

mappings such that

φ(x̄, 0, 0, 0) = 0 and ψ(x̄, 0, 0, 0) = 0

We say that the candidate observer (5) is a local asymptotic (resp. local exponential)
observer for the plant (4) if the following conditions are satisfied:

(O1) If (x(0), λ(0)) = (z(0), μ(0)), then (x(t), λ(t)) = (z(t), μ(t)) for all t ≥ 0 and
for all u ∈ U .

(O2) There exists a neighbourhoodV of the origin of IRn×IRl such that for all values of
(z(0), μ(0))−(x(0), λ(0)) in V , the measurement error (z(t)−x(t), μ(t)−λ(t))
decays to zero asymptotically (resp. exponentially) as t→ ∞. ��

We define the estimation error by

e
Δ=

[
e1
e2

]
=

[
z
μ

]
−

[
x
λ

]
(6)

Then the error satisfies the differential equation

ė1 = φ(x + e1, λ+ e2, y, u)− f(x, λ) − g(x, λ)u
ė2 = ψ(x + e1, λ+ e2, y, u)

We consider the composite system

ẋ = f(x, λ) + g(x, λ)u
λ̇ = 0
ė1 = φ(x + e1, λ+ e2, y, u)− f(x, λ) − g(x, λ)u
ė2 = ψ(x + e1, λ+ e2, y, u)

(7)

Next, we state a simple lemma which provides a geometric characterization of the con-
dition (O1) in Definition 1.

Lemma 1. ([16]) The following statements are equivalent.

(a) The condition (O1) in Definition 1 holds for the composite system (4)-(5).
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(b) For all x ∈ X,λ ∈ G and for all u ∈ U , we have

φ(x, h(x, λ), u) = f(x, λ) + g(x, λ)u and φ(x, h(x, λ), u) = 0

(c) The submanifold defined via e = 0 is invariant under the flow of the composite
system (7). ��

Lemma 2. ([16]) Consider the plant (4) and the candidate observer (5). Then the con-
dition (O1) of Definition 1 holds if and only if φ and ψ have the following form:

φ(z, μ, y, u) = f(z, μ) + g(z, μ)u+ α(z, μ, y, u)
ψ(z, μ, y, u) = β(z, μ, y, u)

where α and β are locally C1 mappings with

α(x̄, 0, 0, 0) = 0 and β(x̄, 0, 0, 0) = 0

and also such that

α(x, λ, h(x, λ), u) = 0 and β(x, λ, h(x, λ), u) = 0 ��

3 A Necessary Condition for Local Asymptotic Observers
for Nonlinear Systems

In this section, we shall show that if the plant (4) has a local exponential observer of
the form (5), then the plant (4) must be equilibrium detectable, i.e. if (x(t), λ(t)) is the
solution of the system (4) with small initial condition (x(0), λ(0)) = (x0, λ0) near the
equilibrium (x̄, 0) satisfying y(t) = h(x(t), λ(t) ≡ 0, then (x(t), λ(t)) must converge
to (x̄, 0) asymptotically as t→ ∞.

Since λ(t) ≡ λ0, the equilibrium-state detectability requirement is equivalent to
requiring that the solution (x(t), λ(t)) yielding zero-output for the plant (4) must be
such that x(t) → x̄ asymptotically as t→ ∞ and λ0 = 0.

Theorem 1. A necessary condition for the existence of a local exponential observer
for the plant (4) is that the plant (4) is equilibrium-state detectable, i.e. any solution
trajectory (x(t), λ(t)) of (4) with small initial condition (x0, λ0) near the equilibrium
(x̄, 0) satisfying

y(t) = h(x(t), λ(t)) ≡ 0

must be such that x(t) → x̄ asymptotically as t→ ∞ and λ0 = 0.

Proof. This is a simple consequence of Lemma 2 for local asymptotic observers.

In classical bifurcation theory, a standard assumption is that there is a trivial solution
from which the bifurcation is to occur ([17], p149). Thus, in the classical bifurcation
case, the control plant (4) is often assumed to satisfy

f(x̄, λ) = 0 and g(x̄, λ) = 0 (8)

Next, as a consequence of Theorem 1, we establish the following result.
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Theorem 2. Suppose that the plant (4) satisfies the assumption (8) so that x = x̄ is
an equilibrium for all values of the parameter λ and also that the output function y is
purely a function of x, i.e. it has the form y = γ(x). Then there is no local asymptotic
observer for the plant (4).

Proof. We show that the plant (4) is not equilibrium-state detectable. Suppose that we
take x(0) = x̄ and λ(0) = λ0, where λ0 	= 0 is any small initial condition. Then we
have x(t) ≡ x̄ for all t and it follows that

y(t) = h(x(t), λ(t)) = γ(x(t)) = γ(x̄) = 0

However, λ(t) = λ0 	= 0. This shows that the plant (4) is not equilibrium-state de-
tectable. From the necessary condition given in Theorem 1, it is then immediate that
there is no local asymptotic observer for the plant (4). ��

4 Observer Design for Nonlinear Systems around Equilibria

In this section, we suppose that the class U consists of inputs u of the form

u = r(ω), (9)

where ω satisfies the autonomous system (exosystem)

ω̇ = s(ω) with s(0) = 0 (10)

The state ω of the exosystem (10) lies in an open neighbourhood W of the origin of
IRq . One can view the equations (9) and (10) as an input generator. We assume that
the exosystem dynamics (10) is neutrally stable at ω = 0. Basically, this requirement
means that the exosystem (10) is Lyapunov stable in both forward and backward time
at ω = 0.

In this section, we first derive a basic theorem that completely characterizes the ex-
istence of local exponential observers of the form (5) for nonlinear plants of the form
(4). We note that this result holds for both classical and general cases of systems with
real parametric uncertainty.

Using (9) and (10), the plant (4) can be expressed as

ẋ = f(x, λ) + g(x, λ)r(ω)
λ̇ = 0
ω̇ = s(ω)
y = h(x, λ)

(11)

Also, the composite system (7) can be written as

ẋ = f(x, λ) + g(x, λ)r(ω)
λ̇ = 0
ω̇ = s(ω)
ė1 = φ(x + e1, λ+ e2, h(x, λ), r(ω)) − f(x, λ) − g(x, λ)r(ω)
ė2 = ψ(x+ e1, λ+ e2, h(x, λ), r(ω))

(12)
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Theorem 3. Suppose that the plant dynamics in (11) is Lyapunov stable at the equi-
librium (x, λ, ω) = (x̄, 0, 0). Then the candidate observer (5) is a local exponential
observer for the plant (11) if and only if

(a) The submanifold defined via e = 0 is invariant under the flow of the composite
system (12).

(b) The dynamics
ė1 = φ(e1, e2, 0, 0)
ė2 = ψ(e1, e2, 0, 0) (13)

is locally exponentially stable at e = 0.

Proof. The necessity follows immediately from the Definition 1 for local exponential
observers and Lemma 1. The sufficiency can be established using Lyapunov stability
theory as in [16]. ��
As an application of Theorem 3, we establish the following result which states that when
the plant dynamics in (11) is Lyapunov stable at (x, λ, ω) = (x̄, 0, 0), the existence of
a local exponential observer for the plant (11) in the presence of inputs implies and is
implied by the existence of a local exponential observer for the plant (11) in the absence
of inputs.

For the purpose of stating this result, we note that the unforced plant corresponding
to ω = 0 is given by

ẋ = f(x, λ)
λ̇ = 0
y = h(x, λ)

(14)

Theorem 4. Suppose that the plant dynamics in (11) is Lyapunov stable at (x, λ, ω) =
(x̄, 0, 0). If the system

ż = φ(z, μ, y, u)
μ̇ = ψ(z, μ, y, u)

is a local exponential observer for the full plant (11), then the system defined by

ż = φ(z, μ, y, 0)
μ̇ = ψ(z, μ, y, 0)

is a local exponential observer for the unforced plant (14). Conversely, if the system

ż = η(z, μ, y)
μ̇ = σ(z, μ, y)

is a local exponential observer for the unforced plant (14) near (x, λ) = (x̄, 0), then
the system defined by

[
ż
μ̇

]
=

[
φ(z, μ, y, u)
ψ(z, μ, y, u)

]
=Δ=

[
η(z, μ, y)
σ(z, μ, y)

]
+

[
g(z, μ)u

0

]

is a local exponential observer for the full plant (11) near (x, λ, ω) = (x̄, 0, 0).
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Proof. The first part of this theorem is straightforward. The second part of the theorem
follows by verifying the conditions (a) and (b) given in Theorem 3. ��
Let (C�, A�) denote the linearization pair for the unforced plant (14), i.e.

C� = [C Z ] and A� =
[
A P
0 0

]

where

C =
∂h

∂x
(x̄, 0), Z =

∂h

∂λ
(x̄, 0), A =

∂f

∂x
(x̄, 0), P =

∂f

∂λ
(x̄, 0),

In view of the reduction procedure outlined in Theorem 4, we first derive some impor-
tant results on the exponential observer design for the unforced plant (14). First, we
state the following necessary condition for the local exponential observers that can be
established in [16].

Theorem 5. If the unforced plant (14) has a local exponential observer near the equi-
librium (x, λ) = (x̄, 0), then the pair (C�, A�) is detectable. ��
Corollary 1. If the full plant (11) has a local exponential observer near the equilibrium
(x, λ, ω) = (x̄, 0, 0), then the pair (C�, A�) is detectable.

Proof. The assertion follows immediately from Theorems 4 and 5. ��
Using the necessary condition given in Theorem 5, we establish the following result,
which gives a simple necessary condition for the existence of local exponential ob-
servers for the unforced plant (14).

Theorem 6. If the unforced plant (14) has a local exponential observer near the equi-
librium (x, λ) = (x̄, 0), then the pair (C,A) is detectable and

rank

[
Z
P

]
= l = dim(λ)

Proof. Suppose that the unforced plant (14) has a local exponential observer near the
equilibrium (x, λ) = (x̄, 0). Then by Theorem 5, the pair (C�, A�) is detectable. Note
that by PBH rank test [19], a necessary and sufficient condition for (C�, A�) to be
detectable is that

rank

[
C�

ξI −A�

]
= n+ l (15)

for all complex numbers ξ in the closed right-half plane (RHP), i.e. in the region, where
Re(ξ) ≥ 0.

We note that [
C�

ξI −A�

]
=

⎡
⎣ C Z
ξI −A −P

0 ξI

⎤
⎦
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Thus, it is immediate that (15) holds for all complex numbers ξ in the closed RHP only
if [

C
ξI −A

]
= n

for all complex numbers ξ in the closed RHP and

rank

[
Z
P

]
= l.

In view of the PBH rank test for detectable [19], the above necessary condition is the
same as requiring that (C,A) is detectable and

rank

[
Z
P

]
= l.

This completes the proof. ��
Corollary 2. If the full plant (11) has a local exponential observer near the equilibrium
(x, λ, ω) = (x̄, 0, 0), then the pair (C,A) is detectable and

rank

[
Z
P

]
= l = dim(λ)

Proof. This is a simple consequence of Theorems 4 and 6. ��
Next, we show that the necessary condition given in Theorem 5 is also sufficient for the
existence of a local exponential observer for the unforced plant (14) when the unforced
plant dynamics in (14) is Lyapunov stable.

Theorem 7. Suppose that the plant dynamics in (14) is Lyapunov stable at (x̄, 0) and
suppose also that the matrix A� − K�C� is Hurwitz for some matrix K�. Then the
system defined by [

ż
μ̇

]
=

[
f(z, μ)

0

]
+K� [y − h(z, μ)] (16)

is a local exponential observer for the unforced plant (14) near (x, λ) = (x̄, 0).

Proof. It is easy to check that the candidate observer (16) satisfies the conditions (a)
and (b) of Theorem 3.

When (C�, A�) is detectable, by the reduction procedure outlined in Theorem 4, we
can use the local exponential observer (16) constructed for the unforced plant (14) to
construct a local exponential observer for the full plant (11).

Theorem 8. Suppose that the plant dynamics in (11) is Lyapunov stable at (x̄, 0, 0)
and suppose also that the matrix A� −K�C� is Hurwitz for some matrix K�. Then the
system defined by [

ż
μ̇

]
=

[
f(z, μ) + g(z, μ)u

0

]
+K� [y − h(z, μ)] (17)

is a local exponential observer for the full plant (11) near the equilibrium (x̄, 0, 0).
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Proof. The assertion is a simple consequence of the reduction procedure outlined in
Theorems 4 and 7 . ��
Corollary 3. Suppose that the plant dynamics in (11) is Lyapunov stable at (x̄, 0, 0)
and that the output function y is purely a function of x, i.e. it has the form y = γ(x).
Assume that equilibrium x = x̄ of the plant dynamics of x in (11) changes with the real
parametric uncertainty λ. In this case, the system linearization pair (C�, A�) has the
form

C� = [C 0 ] and A� =
[
A P
0 0

]
.

If the pair (C�, A�) is detectable, then the full plant (11) has a local exponential ob-
server given by Eq. (17), where K� is any matrix such that A� −K�C� is Hurwitz. ��
Remark 1. It is a well-known result in Control Systems that the system linearization
pair (C�, A�) is generically observable [20]. Thus, from Corollary 3, there generically
exist local exponential observers of the form (17) for the full plant (11) under the fol-
lowing conditions:

(a) The plant dynamics in (11) is Lyapunov stable at (x, λ, ω) = (x̄, 0, 0).
(b) The equilibrium x = x̄ of the plant dynamics in x changes with the real parametric

uncertainty.
(c) The output function y is purely a function of x, i.e. it has the form y = γ(x). ��

5 Conclusions

In this paper, we showed that equilibrium-state detectability is a necessary condition for
the existence of local asymptotic observers for any nonlinear system. Using this result,
we established that for the classical case, when the equilibrium does not change with
the parametric uncertainty and when the plant output is purely a function of the state,
there is no local asymptotic observer for the plant. We also showed that in sharp contrast
to this case, for the general case of problems where we allow the state equilibrium to
change with the parametric uncertainty, there typically exist local exponential observers
even when the plant output is purely a function of the state. Next, we derived a proce-
dure for local exponential observers for a general class of nonlinear systems with real
parametric uncertainty under some stability assumptions and showed that the existence
of local exponential observers in the presence of inputs implies, and is implied by the
existence of local exponential observers in the absence of inputs.

References

1. Luenberger, D.: Observing the state of a linear system. IEEE Trans. Military Electronics 8,
74–80 (1964)

2. Thau, F.E.: Observing the states of nonlinear dynamical systems. Internat. J. Control 18,
471–479 (1973)

3. Kou, S.R., Elliott, D.L., Tarn, T.J.: Exponential observers for nonlinear dynamical systems.
Inform. Control 29, 204–216 (1975)



30 V. Sundarapandian

4. Krener, A.J., Isidori, A.: Linearization by output injection and nonlinear observers. Systems
& Control Letters 3, 47–52 (1983)

5. Bestle, D., Zeitz, M.: Canonical form observer design for nonlinear time-variable systems.
Internat. J. Control 38, 419–431 (1983)

6. Krener, A.J., Respondek, W.: Nonlinear observers with linearizable error dynamics. SIAM J.
Control & Optimiz. 23, 197–216 (1985)

7. Xia, X.H., Gao, W.B.: Nonlinear observer design by canonical form. Internat. J. Control 47,
1081–1100 (1988)

8. Xia, X.H., Gao, W.B.: On exponential observers for nonlinear systems. Systems & Control
Letters 11, 319–325 (1988)

9. Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems - Appli-
cations to bioreactors. IEEE Trans. Automatic Control 37, 875–880 (1992)

10. Tsinias, J.: Observer design for nonlinear systems. Systems & Control Lett. 13, 135–142
(1989)

11. Tsinias, J.: Further results on the observer design problem. Systems & Control Lett. 14, 411–
418 (1990)

12. Phelps, A.R.: On constructing nonlinear observers. SIAM J. Control Optimiz. 29, 516–534
(1991)

13. Gauthier, J.P., Kupka, I.A.K.: Observability and observers for nonlinear systems. SIAM J.
Control Optimiz. 32, 975–994 (1994)

14. Krener, A.J., Kang, W.: Locally convergent nonlinear systems. SIAM J. Control Optimiz. 42,
155–177 (2003)

15. Sundarapandian, V.: Observers for nonlinear systems (D.Sc. Dissertation). Washington Uni-
versity, St. Louis (1996)

16. Sundarapandian, V.: Local observer design for nonlinear systems. Math. Computer Mod-
elling 35, 25–36 (2002)

17. Guckenheimer, J., Holmes, P.: Nonlinear oscillations, Dynamical Systems and Bifurcations
of Vector Fields. Springer, New York (1983)

18. Isidori, A.: Nonlinear Control Systems. Sprigner, New York (1989)
19. Rugh, W.J.: Linear System Theory. Prentice, New Jersey (1996)
20. Wonham, W.M.: Linear Multivariable Control. Springer, Berlin (1974)


	The Design of Observers for Nonlinear Control Systems around Equilibria
	Introduction
	Basic Definitions
	A Necessary Condition for Local Asymptotic Observers for Nonlinear Systems
	Observer Design for Nonlinear Systems around Equilibria
	Conclusions
	References




