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Abstract. This paper deploys active feedback control method for achieving gen-
eralized projective synchronization (GPS) of double-scroll chaotic systems, viz.
identical Li systems (2009), and non-identical Lü-Chen system (2002) and Li
system. The synchronization results (GPS) derived in this paper using active
feedback control method have been established using Lyapunov stability theory.
Since the Lyapunov exponents are not required for these calculations, the active
feedback control method is very effective and suitable for achieving the general
projective synchronization (GPS) of double-scroll chaotic systems. Numerical
simulations are presented to demonstrate the effectiveness of the synchronization
results derived in this paper.
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1 Introduction

Chaotic systems are nonlinear dynamical systems, which are highly sensitive to initial
conditions. Chaos is an interesting nonlinear phenomenon and has been rigorously stud-
ied in the last two decades. In operation, a chaotic system exhibits an irregular behavior
and produces broadband, noise-like signals, thus it is found to be very useful in secure
communications [1].

In most of the chaos synchronization approaches, the master-slave or drive-response
formalism is used. If a particular chaotic system is called the master or drive system
and another chaotic system is called the slave or response system, then the idea of
synchronization is to use the output of the master system to control the slave system so
that the output of the slave system tracks the output of the master system asymptotically.

Since the seminal work by Pecora and Carroll ([2], 1990), a variety of impressive
approaches for chaos synchronization have been used for chaos synchronization such
as the PC method [2], sampled-data feedback synchronization method [3], OGY method
[4], time-delay feedback method [5], backstepping method [6], active control method
[7], adaptive control method [8], sliding control method [9], etc.

In generalized projective synchronization [10], the chaotic systems can synchronize
up to a constant scaling matrix. Complete synchronization [11], anti-synchronization
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[12], hybrid synchronization [13], projective synchronization [14] and generalized
synchronization [15] are special cases of generalized projective synchronization. The
generalized projective synchronization (GPS) has important applications in secure
communications.

This paper addresses the generalized projective synchronization (GPS) of double-
scroll chaotic systems, viz. Li system ([16], 2009) and Lü-Chen system ([17], 2002).

This paper is organized as follows. In Section 2, we derive results for the GPS be-
tween identical Li systems (2009). In Section 3, we derive results for the GPS between
non-identical Lü-Chen system (2002) and Li system (2009). Section 4 summarizes the
main results derived in this paper.

2 Generalized Projective Synchronization of Identical
Double-Scroll Systems

2.1 Main Results

In this section, we derive results for the generalized projective synchronization (GPS)
of identical Li systems ([16], 2009).

Thus, the master system is described by the Li dynamics

ẋ1 = a(x2 − x1)
ẋ2 = x1x3 − x2

ẋ3 = b − x1x2 − cx3

(1)

where x1, x2, x3 are the state variables and a, b, c are constant, positive parameters of
the system.

The Li system (1) is chaotic when a = 5, b = 16 and c = 1. Figure 1 depicts the
state orbits of the double-scroll attractor given by Li dynamics (1).
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Fig. 1. State Orbits of the Li System
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Also, the slave system is described by the controlled Li dynamics

ẏ1 = a(y2 − y1) + u1

ẏ2 = y1y3 − y2 + u2

ẏ3 = b − y1y2 − cy3 + u3

(2)

where y1, y2, y3 are the state variables and u1, u2, u3 are the active controls.
For the GPS of (1) and (2), the synchronization errors are defined as

e1 = y1 − α1x1

e2 = y2 − α2x2

e3 = y3 − α3x3

(3)

where the scales α1, α2, α3 are real numbers.
A simple calculation yields the error dynamics

ė1 = a(y2 − y1) − α1a(x2 − x1) + u1

ė2 = y1y3 − y2 − α2(x1x3 − x2) + u2

ė3 = b − y1y2 − cy3 − α3(b − x1x2 − cx3) + u3

(4)

We consider the active nonlinear controller defined by

u1 = −a(y2 − y1) + α1a(x2 − x1) − k1e1

u2 = −y1y3 + y2 + α2(x1x3 − x2) − k2e2

u3 = −b + y1y2 + cy3 + α3(b − x1x2 − cx3) − k3e3

(5)

where the gains k1, k2, k3 are positive constants.
Substitution of (5) into (4) yields the closed-loop error dynamics

ė1 = −k1e1

ė2 = −k2e2

ė3 = −k3e3

(6)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3

)
(7)

which is positive definite on IR3.
Differentiating (7) along the trajectories of the system (6), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 (8)

which is a negative definite function on IR3, since k1, k2, k3 are positive constants.
Thus, by Lyapunov stability theory [18], the error dynamics (6) is globally exponen-

tially stable. Hence, we obtain the following result.

Theorem 1. The active feedback controller (5) achieves global chaos generalized pro-
jective synchronization (GPS) between the identical Li systems (1) and (2).
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2.2 Numerical Results

For the numerical simulations, the fourth order Runge-Kutta method is used to solve
the two systems of differential equations (1) and (2) with the active controller (5).

The parameters of the identical Li systems are selected as a = 5, b = 16, c = 1 so
that the systems (1) and (2) exhibit chaotic behaviour.

The initial values for the master system (1) are taken as

x1(0) = 4, x2(0) = 12, x3(0) = 6

The initial values for the slave system (2) are taken as

y1(0) = 20, y2(0) = 5, y3(0) = 14

The GPS scales αi are taken as α1 = −2.3, α2 = 0.5, α3 = 1.8.
We take the state feedback gains as k1 = 4, k2 = 4 and k3 = 4.
Figure 2 shows the time response of the error states e1, e2, e3 of the error dynamical

system (4) when the active nonlinear controller (5) is deployed. From this figure, it is
clear that all the error states decay to zero exponentially in 2 sec and thus, generalized
projective synchronization is achieved between the identical Li systems (1) and (2).
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Fig. 2. Time Responses of the Error States of (4)
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3 Generalized Projective Synchronization of Non-identical
Double-Scroll Systems

3.1 Main Results

In this section, we derive results for the generalized projective synchronization (GPS)
of non-identical double-scroll systems, viz. Lü-Chen system ([17], 2002) and Li system
([16], 2009).

Thus, the master system is described by the Lü-Chen dynamics

ẋ1 = p(x2 − x1)
ẋ2 = −x1x3 + rx2

ẋ3 = x1x2 − qx3

(9)

where x1, x2, x3 are the state variables and p, q, r are constant, positive parameters of
the system.

The Lü-Chen system (9) is chaotic when p = 36, q = 3 and r = 15.
Figure 3 depicts the state orbits of the double-scroll attractor given by Lü-Chen dy-

namics (9).
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Fig. 3. State Orbits of the Lü-Chen System

Also, the slave system is described by the controlled Li dynamics

ẏ1 = a(y2 − y1) + u1

ẏ2 = y1y3 − y2 + u2

ẏ3 = b − y1y2 − cy3 + u3

(10)

where y1, y2, y3 are the state variables and u1, u2, u3 are the active controls.
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For the GPS of (9) and (10), the synchronization errors are defined as

e1 = y1 − α1x1

e2 = y2 − α2x2

e3 = y3 − α3x3

(11)

where the scales α1, α2, α3 are real numbers.
A simple calculation yields the error dynamics

ė1 = a(y2 − y1) − α1p(x2 − x1) + u1

ė2 = y1y3 − y2 − α2(−x1x3 + rx2) + u2

ė3 = b − y1y2 − cy3 − α3(x1x2 − qx3) + u3

(12)

We consider the active nonlinear controller defined by

u1 = −a(y2 − y1) + α1p(x2 − x1) − k1e1

u2 = −y1y3 + y2 + α2(−x1x3 + rx2) − k2e2

u3 = −b + y1y2 + cy3 + α3(x1x2 − qx3) − k3e3

(13)

where the gains k1, k2, k3 are positive constants.
Substitution of (13) into (12) yields the closed-loop error dynamics

ė1 = −k1e1

ė2 = −k2e2

ė3 = −k3e3

(14)

We consider the quadratic Lyapunov function defined by

V (e) =
1
2

eT e =
1
2

(
e2
1 + e2

2 + e2
3

)
(15)

which is positive definite on IR3.
Differentiating (15) along the trajectories of the system (14), we get

V̇ (e) = −k1e
2
1 − k2e

2
2 − k3e

2
3 (16)

which is a negative definite function on IR3, since k1, k2, k3 are positive constants.
Thus, by Lyapunov stability theory [18], the error dynamics (14) is globally expo-

nentially stable. Hence, we obtain the following result.

Theorem 2. The active feedback controller (13) achieves global chaos generalized
projective synchronization (GPS) between the non-identical Lü-Chen system (9) and
Li system (10).
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3.2 Numerical Results

For the numerical simulations, the fourth order Runge-Kutta method is used to solve
the two systems of differential equations (9) and (10) with the active controller (13).

The parameters of the Lü-Chen system (9) and Li system (10) are taken as in the
chaotic case.

The initial values for the master system (9) are taken as

x1(0) = 14, x2(0) = 7, x3(0) = 4

The initial values for the slave system (10) are taken as

y1(0) = 3, y2(0) = 15, y3(0) = 22

The GPS scales αi are taken as α1 = 3.8, α2 = −0.3, α3 = −2.7.
We take the state feedback gains as k1 = 4, k2 = 4 and k3 = 4.
Figure 4 shows the time response of the error states e1, e2, e3 of the error dynamical

system (12) when the active nonlinear controller (13) is deployed. From this figure, it is
clear that all the error states decay to zero exponentially in 2 sec and thus, generalized
projective synchronization is achieved between the non-identical Lü-Chen system (9)
and Li system (10).
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Fig. 4. Time Responses of the Error States of (12)
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4 Conclusions

In this paper, active feedback control method has been deployed to achieve generalized
projective synchronization (GPS) of double-scroll chaotic attractors, viz. identical Li
systems (2009), and non-identical double-scroll attractors, viz. Lü-Chen system (2002)
and Li system (2009). The synchronization results derived in this paper have been
proved using Lyapunov stability theory. Since Lyapunov exponents are not required for
these calculations, the proposed active control method is very effective and suitable for
achieving GPS of the double-scroll chaotic attractors addressed in this paper. Numer-
ical simulations are presented to demonstrate the effectiveness of the synchronization
results derived in this paper.
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