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Abstract. This paper evaluates the performance of the NORM multicast 
transport protocol, when used in mobile satellite channels that behave as in 
delay-tolerant and disruptive networks (DTN). Comparisons are made between 
multicast transmissions with and without interleaver when NORM is used in 
“confirmed delivery” mode. 
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1   Introduction 

Communications in delay-tolerant networks (DTN) are characterized by intermittent 
connectivity (congested links or disrupted links), long and variable delays, 
unbalanced traffic, and high error rates [1]. A DTN is a network of regional networks, 
which bases its communications on the asynchronous message forwarding paradigm 
(called bundle) implemented by the Bundle protocol (BP) [2], which lies between the 
transport and upper layers, thus augmenting to eight the number of the OSI layers. 
DTN concepts, such as asynchronously connected nodes, store-and-forwarding 
principles, and routing for opportunistic connectivity-based networks, can be applied 
in scenarios where mobile satellite links are present. 

An example of this type of scenarios is shown in Figure 1: a data server (the data 
source) has (directly or indirectly) access to a wide-area broadcast medium, such as a 
DVB geostationary satellite link, that covers the area where the final receivers 
(moving people) are located. It is unrealistic to assume that each final receiver has the 
capability to receive data directly from the broadcast medium. For reasons of cost-
efficiency and power conservation, receivers on broadcast links would rather be 
established as routers (the vans or the helicopters, in Fig. 1) that store and forward 
data either towards other intermediate routing nodes, thus acting as bent pipe 
repeaters, or towards the final receivers (people) via a more efficient terrestrial 
wireless technology. This is an example of an application that operates in a group-
based manner, thus requiring efficient network support for group communications 
(multicast transmissions).  
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(RPL), over a mobile satellite channel in rural and suburban environments, which 
behaves as in a DTN. We stress that reducing the residual packet loss implies 
reducing the number of retransmission requests to the sender; as a consequence, the 
end-to-end delivery delay of a file is reduced. 

2   The Channel Model Assumed  

The mobile satellite channel has been modelled as a two-state Gilbert channel [11], by 
means of a discrete time Markov chain (DTMC) model, defined by a transition 
matrix: 

T = 1− b b
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The stationary probability vector P∞ is a normalized eigenvector relative to the 
dominant eigenvalue λ=1, which characterizes the matrix T; we have:  
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In [11], the mobile satellite channel has been modelled for four environments: urban, 
suburban, rural, and highway. We selected mobile suburban and highway 
environments only since rural mobile channel has fading characteristics close to the 
suburban one, while urban fading is too adverse and other wireless technologies (like 
WIFI, WIMAX or HSDPA) are reasonably preferable in fully connected cities. The 
numeric values of the elements of the transition matrix T are reported in Table 1 for 
the two different types of environment considered. 

Table 1. Channel parameters of the DTMC model in suburban and highway environments  

Environment Transition matrix Stationary probabilities 
Suburban 0.995671  0.004329 

0.017241  0.982759   
0.799308 
0.200692 

Highway 0.998069  0.001931  
0.017241  0.982759  

0.899306  
0.100694 

3   The Advantage of Using the Interleaver  

The sender segments NORM data into symbols and transforms them in FEC coding 
blocks before transmission. In NORM, a FEC encoding symbol directly corresponds 
to the payload of a "segment". When systematic FEC codes are used, data symbols are 
sent in the first portion of a FEC encoding block and are followed by parity symbols 
generated by the encoder. These parity symbols are generally sent in response to 
repair requests, but some of them may be sent proactively in each encoding block in 
order to reduce the volume of feedback messages. When non-systematic FEC codes 
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In all the interleaved cases, an extra buffering time has to be accounted for, since 
the interleaver must be fulfilled before starting the decoding process. This time 
interval, in practice, occurs between the subscription of the file and the reception of 
the first packet. Interleaving delay is given by I(n-1)pt, where pt is the packet time 
equal to 0.03325s in our simulations. The interleaver delay may rise up to 191s, 
referring to the worst case in suburban PP=10 and I=140 of Fig. 4. Thus, the 
download time, i.e. the time between the notification of the file transmission (notified 
by the sender through a command message and acknowledged by the receivers) and 
the end of the file delivery, is given by the delivery time and the interleaving delay. 

5   Conclusions and Future Works 

The combined adoption of FEC and interleaving fosters the NORM’s performance in 
terms of scalability and delivery time, in land mobile satellite environments. 
Interleaving allows limiting the packet error rate on the channel by means of a small 
amount of proactive parity. However, the interleaver depth is closely related to the 
channel correlation factor, which is responsible for bursts of errors. Scaling on the 
transmission rate results in longer error bursts, which require a deeper interleaver. In 
delay-tolerant networks, interruptions due to unpredictable obstacles, fading events, or, 
more generally, channel interruptions can last for unpredictable times; to counteract 
blockages that overcome a certain threshold, the interleaver may be so long to be no 
more convenient, as it reduces the transmission time but it may sensibly increase the 
user’s perceived downloading time, because the adoption of the interleaver implies a 
pre-buffering time. This consideration encourages deepening our studies in order to 
optimize the tradeoff among bandwidth, end-to-end delivery time, and required 
computing power.  
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