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Abstract. Satellite communications are an interesting and promising 
application field for Delay/Disruption Tolerant Networking (DTN). Although 
primarily conceived for deep space communications and sensor networks, it 
was immediately recognized that DTN was applicable to satellite environments, 
in particular to cope with the intermittent channels typical of LEO (Low Earth 
Orbit) constellation satellite systems. The aim of this paper is to assess the 
advantages of DTN when applied to LEO satellites. Qualitative assessments are 
supported in selected cases by preliminary results obtained on a testbed based 
on GNU/Linux machines. In particular, two application scenarios have been 
considered, both using a single LEO satellite. In the former, we have one LEO 
satellite for Earth observation, connected to its gateway stations only at 
intermittent scheduled intervals due to its orbital motion. The latter is one LEO 
satellite acting as a “data mule” between a terrestrial sensor network and a 
remote satellite gateway station, which are never in the satellite coverage area at 
the same time. The results show the feasibility and the advantages of DTN in 
LEO satellite communications. 

Keywords: DTN, LEO satellites, Satellite communications, Challenged 
networks, DTN2, ION. 

1   Introduction 

Delay/Disruption Tolerant Networking (DTN) aims to provide interoperable 
communications in “challenged networks”, i.e. those networks where one or more of 
the usual assumptions implicit in the use of the TCP/IP stack (short delays, negligible 
PER, existence of a continuous path between source and destination), no longer hold 
true. Such networks include deep space communications, a large variety of terrestrial 
and maritime sensor networks, satellite and airborne communications e.g. Unmanned 
Aerial Vehicles (UAVs) and many other in both the civil and military fields [1]-[7]. 

Concerning satellite communications, DTN represents an interesting alternative to 
the use of PEPs (Performance Enhancing Proxies) in GEO (Geosynchronous Earth 
Orbit) satellite systems, as shown in [8], but its use is particularly appealing in LEO 
(Low Earth Orbit) systems, because of DTN ability to cope with intermittent 
channels, disruption and lack of end-to-end connectivity, typical of both single LEO 
satellites and incomplete constellations [6], [9]. Hence, this paper aims to evaluate the 



 DTN for LEO Satellite Communications 187 

 

advantages of DTN when applied to LEO satellites, supporting our assessments with 
results and logs obtained on a real testbed, i.e. on DTN implementations running on 
GNU/Linux machines. 

In the tests we considered two possible applications, both using a single LEO 
satellite. In the first, a LEO satellite for Earth observation is connected to its gateway 
stations only at intermittent scheduled intervals. In the second, a single LEO satellite 
acts as “data mule” between a terrestrial sensor network and a remote control centre. 
In both cases, to cope with intermittent channel availability (and also the lack of a 
continuous path in the latter), file transfers using TCP/IP stack would require manual 
intervention. By contrast, as shown in the paper, file transfers can be performed 
automatically by DTN even in these challenging scenarios. 

2   DTN Outline 

2.1   Origin and Motivation 

DTN was first conceived to address space communications impairments, as it was 
glaringly obvious that the usual TCP/IP stack, alone, could not cope [1]. Later, DTN 
scope was enlarged to cover all challenged networks, whether spatial or terrestrial. To 
this end, in 2002 the IRTF Delay Tolerant Networks Research Group (DTNRG) was 
established to promote DTN. As the new architecture must tolerate not only long 
delays, but also link disruptions, the DTN acronym is often expanded as 
Delay/Disruption Tolerant Networking. The interested reader is referred to [2] for an 
informative study of TCP limits in challenged networks, and to [3] and [4] for an 
exhaustive survey of DTN development. Tutorials and other references can be found 
on the DTNRG website [5], which is the major source of DTN documentation and 
software. Although the DTN architecture based on the introduction of the Bundle 
protocol, described in [6], and [7], is not the sole possible option, it is the most 
common and we will refer to it in this paper. 

2.2   DTN Bundle Protocol Architecture 

In order to support communication in challenged environments, the Bundle protocol 
DTN architecture [6], [7] is based on a new layer, located between Transport and 
Application, called “Bundle layer”. The related protocol (the Bundle protocol) can 
interface with various transport protocols (including TCP [10] and UDP, but also with 
new protocols, like Licklider [11], [12] or Saratoga [13]), through “convergence layer 
adapters”. In this new architecture (see Fig. 1), transport protocol end-to-end features 
are confined to homogeneous network segments (A, B and C), while end-to-end data 
transfer across the heterogeneous network is provided by the bundle layer; large data 
packets called “bundles” are exchanged between DTN nodes through a store-and-
forward relay. The main innovations of DTN architecture are summarized below. 
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Fig. 1. DTN architecture and protocol stack 

2.3   DTN Overlay 

First, although TCP/IP protocols are not necessarily replaced, their role is changed. 
By installing the Bundle protocol on end-points and some intermediate nodes, (e.g. on 
satellite gateways), the end-to-end path is divided into multiple DTN hops. On each 
DTN hop a different protocol stack can be used, or, when the same stack is retained, 
which is the most common case, just different protocols, like TCP, UDP, or different 
versions of the same protocol (e.g. different TCP variants). Readers familiar with 
satellite PEPs [14], [15] can easily realize that the DTN multi hop architecture can be 
seen as a generalization of the TCP splitting concept. In particular, both DTN and 
TCP splitting PEPs allow the use of specific protocols (or specific versions of the 
same protocol) on the satellite segment. In such a way, the same advantages of TCP 
splitting PEPs can be achieved, in terms of goodput, also by DTN [8]. However, it 
must be stressed that while in the DTN architecture the “splitting” is a direct 
consequence of the new protocol stack, in PEPs it implies a severe violation of the 
end-to-end TCP semantics. Concerning security, TCP splitting is incompatible with 
IPsec, while the DTN architecture has the advantage of a greater flexibility (both end-
to-end and hop-by-hop security can be provided). On the other hand, by contrast to 
PEPs, the DTN architecture is not transparent to end nodes. 

2.4   Storage at Intermediate Nodes 

The second difference between DTN and customary TCP/IP network is related to 
information storage. In standard networks, because of usual assumptions of 
continuous connectivity and short delays, information is supposed to be stored only at 
end nodes. By contrast, in DTN networks, where the usual assumptions do not hold 
anymore, information (i.e. data bundles) must be stored at intermediate DTN nodes 
for long period of times and, when the custody option [6], [7] is enabled, only on 
persistent memory (e.g. on local hard disks). This feature actually differentiates DTN 
architecture from usual PEPs, as it makes DTN much more robust against disruptions, 
disconnections, and temporary node failures [16]. 
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2.5   Bundle Fragmentation 

An interesting feature of DTN Bundle protocol is the possibility of fragmenting 
bundles. Fragmentation can be performed a priori (proactive fragmentation) or a 
posteriori (reactive fragmentation). The former has been conceived to cope with 
intermittent periodic connectivity, where there may be a stringent constraint on the 
maximum amount of data that can be transferred (contact volume) on a DTN hop at 
each availability time window (contact time). It allows large bundles to be divided “a 
priori” into multiple fragments compatible with the contact volume. This feature 
could be useful in single LEO satellite systems, where the contact volume is known in 
advance. By contrast, reactive fragmentation works a posteriori, triggered by a 
relatively long disruption. It could be advantageous in satellite communications (both 
GEO and LEO) with mobile terminals, when obstacles (buildings, tunnels, etc.) may 
disrupt the satellite signal reception. 

3   LEO Satellite Communications and DTN 

LEO satellites are characterized by low orbits with a reduced distance from the 
Earth’s surface (160 – 2000 km). Compared to GEO systems they offer the obvious 
advantage of reduced attenuation loss and a shorter propagation delay. On the other 
hand, to an observer on the Earth’s surface they do not appear fixed in the sky, but 
fast and constantly moving; for example, at an altitude of 520 km the revolution 
period necessary to counteract the Earth’s gravity is about ninety minutes. As a result, 
a single satellite can only provide intermittent connectivity with a fixed ground 
station, while continuous connectivity can be provided only by constellations of 
several tens of satellites, like those used in Iridium [17] or Globalstar [18], the two 
most well-known commercial systems. Because of their different implications, we 
will treat single and multiple satellite coverage separately. 

3.1   Single Satellite Coverage 

In the case of a single satellite we further distinguish between two possible 
applications. The first, a data transfer from a LEO satellite to a remote control centre; 
the second, a “data mule” data collection from a sensor network. 

3.2   Earth Observation Scenario 

Due to their low orbits, LEO satellites pass over a fixed ground station for short 
intervals (some minutes) many times a day, thus providing scheduled intermittent 
connectivity. In this scenario we consider data transmission from a LEO satellite to a 
terrestrial destination. For instance, a LEO satellite devoted to Earth observation 
which has to transfer large image files to a remote operation control centre. Here, we 
have to cope with intermittent scheduled end-to-end connectivity because of satellite 
motion. The short transmission time window and the possible limited channel 
bandwidth pose limits to “contact volume”, i.e. the total amount of data that can be 
transferred at each link availability interval. Image files larger than contact volume 
cannot be transferred during a single pass, and require to be divided into multiple 
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segments for transmission during consecutive passes. In this case DTN could benefit 
from the “proactive fragmentation” feature of the Bundle protocol. Alternatively, if 
this feature is not available in the implementation in use (or to avoid the complexity 
that can derive from the concurrent use of fragmentation and Bundle protocol security 
extensions), it is possible to use a DTN application, like DTNperf, which can segment 
a file into a series of bundles of the desired dimension. Further details will be 
provided in the numerical results section. 

3.3   Data Mule Scenario 

Here, we consider a source and a sink both located on Earth and connected through 
two ground stations and a LEO satellite. The two ground stations are a long distance 
apart, so are never concurrently in line of sight from the satellite. Consequently, there 
is not a continuous path between them and the LEO sat must act as a data mule. For 
example, imagine a remote sensor network connected to its control centre via satellite. 
Data must be first collected at a central node of the sensor network, with DTN and 
satellite capabilities (the first ground station); the data are then to be transferred to the 
second ground station. The LEO satellite is alternately in line of sight from one or 
other ground station, and data transfer can only performed by storing data on the 
satellite, which must therefore have adequate storage capacity. Note that as this 
scenario is the most challenging, it is also the most favorable to DTN. The total 
absence of end-to-end connectivity prevents the establishment of TCP (or TCP-like) 
connections, while it is perfectly suited to the DTN “store-and-forward” approach. 

3.4   Multi Satellite Coverage 

Unlike GEO systems, where one satellite can offer continuous coverage of a large 
area, with LEO systems continuous connectivity requires the deployment of a 
constellation of satellites (50-70). First generation LEO systems like Globalstar and 
Iridium, designed in the early ’90s and still in use, were primarily designed to provide 
voice communication and can offer only secondary data capabilities at low bit rates 
(max 128 kbit/s for the Iridium system). They are soon to be replaced by second-
generation systems designed mainly for data communications and Internet access. The 
present Iridium system, for example, will be replaced by “Iridium Next”, which will 
make use of the same orbits and number of satellites, but its enhanced payloads will 
be able to offer data communications at various rates up to 8 Mbit/s. Deployment of 
this second generation will require the launch of 66 active satellites (plus some 
spares), and is expected to take a couple of years. 

Until a LEO constellation is fully deployed, it is difficult to make use of the 
satellites already in orbit, because gaps in the, moving, coverage area cause 
intermittent connectivity. DTN could cope with this problem, thus enabling the first 
satellites deployed to enter into operation, with obvious economic advantage. For 
example, incomplete constellations could be used for file transfers and non real-time 
data exchange, thanks to the DTN ability to function despite intermittent connectivity 
and disruption. Moreover, even after complete constellation deployment, DTN could 
still offer significant advantages. It could, for example, counteract link disruptions 
frequently met when using mobile terminals, or remedy the possible temporary lack in 
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free channels during handovers between satellites (in LEO system handover are 
necessary even for fixed terminal due to the satellite motion). 

DTN use in LEO constellations will be the object of future research, and will 
therefore not further treated in the numerical result sections. 

4   DTN Implementations and Tools 

4.1   DTN2: Bundle Protocol Reference Implementation 

DTN2 is the Delay Tolerant Networking reference implementation. In addition to the 
reference Bundle protocol implementation, the DTN2 package also contains some 
DTN basic applications (DTNping, DTNsend, etc.) and DTNperf_2, the DTN 
evaluation tools used in our experiments and described below. The DTN2 goal is 
twofold: “to clearly embody the components of DTN architecture, while also 
providing a robust and flexible software framework for experimentation, extension, 
and real-world deployment” [5]. In other words, DTN2 aims to be suitable for both 
study and real use. It runs on Linux (x64 and x86) and other platforms as well. DTN2 
can be downloaded from Source Forge (see [5]). The latest release is 2.7. Installation 
is complex, but configuration is relatively simple, being based on one configuration 
file for each DTN node. To enable DTN capabilities, it is enough to launch DTN2 as 
a daemon, which can be done at boot time. Once launched, all users can easily start 
DTN applications, like DTNperf, on top of it. 

4.2   ION: NASA Bundle Protocol Implementation 

ION (Interplanetary Overlay Network) is an implementation of the Bundle protocol 
developed by NASA JPL (Jet Propulsion Laboratory), with the contributions of Ohio 
and other Universities, and explicitly focused on deep space applications [20]. As in 
these environments TCP cannot be used because of excessive RTTs, ION distribution 
also contains an implementation of Licklider Transport Protocol (LTP), which was 
designed to offer reliable service in environments characterized by very long delays, 
and can be suitably used as convergence layer in DTN architecture [11], [12]. 
Although some features, like DTN node naming, have been specifically designed for 
space applications, ION software can be used in other environments as well. 
Moreover, it offers a good interoperability with DTN2 nodes. ION is written in C and 
currently runs on various Linux platforms, OS/X, FreeBSD, Solaris, VxWorks, and 
RTEMS.  

The ION source code is available as open source from the Open Channel 
Foundation [21]. The latest release is 2.3 and includes implementations of Contact 
Graph Routing and several convergence-layer adapters, including TCPCL 
(interoperable with DTN2), UDPCL (likewise interoperable with DTN2) and LTPCL. 
ION configuration and use appears somewhat more complex than DTN2; however, it 
offers some features of particular interest here, like intermittent links, which have not 
yet been implemented in DTN2. It should be noted, however, that scheduled links in 
ION require the use of LTP at convergence layer. Moreover, ION offers limited 
support of bundle fragmentation. 
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4.3   DTNperf_2 

DTNperf is a client-server evaluation tool designed to assess goodput and to provide 
logs in DTN bundle layer architectures [22]. It is named after the famous Iperf 
application, widely used to test TCP and UDP performance in ordinary (i.e. non 
DTN) networks, and it is included in the official DTN2 package released by DTNRG. 
As DTNperf versions 2.x are significantly improved with respect to previous 1.x 
versions, they are called DTNperf_2, to stress this difference. The latest DTNperf_2 
versions are available for downloading from the “bleeding edge” DTN2 version using 
Mercurial [23]. They are under an open-source license (Apache License 2.0). 

DTNperf is intended to complement other debugging and testing tools included in 
DTN2, like DTNping (the DTN equivalent of “ping”), DTNsend and DTNrecv (to 
create, send and receive one bundle), or basic applications, like DTNcat (to send 
standard input data to another DTN node) or DTNcp (to copy a file between DTN 
nodes). By contrast, however, and like Iperf, DTNperf is focused on performance 
evaluation in terms of goodput. Moreover, it allows the user to easily collect the 
informative DTN “status reports” sent by DTN nodes, (i.e. sent, forwarded, received, 
custody accepted, delivered, deleted, etc), which are essential in the study of bundle 
transmission on complex DTN networks. 

DTNperf_2 is written in C language, to maintain full compatibility with the DTN2 
bundle layer reference implementation APIs. A version also compatible also with 
ION is envisaged but at present has not been developed. A distinctive feature of 
DTNperf_2 is examined in detail below because of its relevance in our tests. 

4.4   DTNperf_2 Transmission Window 

The first release of DTNperf, like other DTN tools, did not allow the source to send 
more than one bundle at a time, i.e. it was necessary to wait for the reception of an 
“acknowledgment” of the bundle sent before starting the transmission of a new 
bundle. This resulted in an obvious goodput ceiling of one bundle per RTT, and a less 
obvious additional delay for each intermediate DTN nodes due to the store and 
forward transmission mechanism. To overcome these limitations, which had a 
significant impact on goodput [8], DTNperf_2 introduced a transmission window that 
allows multiple bundle transmissions. The length of the Tx window, W, represents the 
maximum number of bundles that can be concurrently in-flight (i.e. sent but not 
acknowledged yet). By default, bundle acknowledgments are represented by the 
“delivery status report” [6], [7], (“status delivered”, in short) sent by the receiver 
node. The DTNperf_2 transmission window is similar to TCP transmission window 
[8], with the difference that in-flight bundles can be non-consecutive to cope with the 
non-ordered delivery of the bundle protocol. 

5   Numerical Results 

In this section, experimental results obtained according to the scenarios presented in 
3.2 and 3.3 are discussed. The experiments were carried out by means of a DTN 
testbed consisting of five GNU/Linux OS machines, with either DTN2 or ION 
installed. The rationale for the concurrent use in the same testbed of two Bundle 
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protocol implementations, although on different machines, is to take advantage of 
both advanced DTNperf_2 features, including multiple bundle transmission (W>1), 
bundle logs, and bundle reordering, and ION link management capabilities, such as 
scheduled links and transmission speed regulation. General assumptions and scenario 
characteristics are summarized in Table 1. 

Table 1. General assumptions and scenario characteristics 

Characteristic Value 

LEO-ground station link type 

Intermittent (10 min every 100 min); 
first contact 5 min after transfer start 
(Earth observation case). 
Intermittent (10 min every 50 min); 
first contact 5 min after transfer start 
(data mule case). 

Ground stations-other terrestrial 
nodes link type 

Wired link, always available, 
100 Mbit/s, negligible delays. 

LEO-ground station RTT 130 ms 
LEO-ground station Bandwidth 1 Mbit/s (symmetric) 
LEO-ground station PER Not present 

Number of ground stations 
1 (Earth observation case) 
2 (data mule case) 

Number of total contacts between 
LEO and ground stations 

2 (Earth observation case) 
3 (data mule case) 

Max contact volume 75 MB 

File to transfer 
80 MB (Earth observation case) 
20 MB (data mule case) 

Bundle size 200 kB 

Bundle number 
400 (Earth observation case) 
100 (data mule case) 

DTNperf_2 transmission 
window, W 

200 (Earth observation case) 
100 (data mule case) 

Custody option ON (all nodes) 

5.1   Earth Observation Scenario 

Here we assume that the LEO satellite takes images of Earth and, as soon as passes 
over the ground station, sends them toward the control center (Fig. 2-a). The 
corresponding testbed topology is shown in Fig. 3. It is worth noting that the LEO 
satellite has both a DTN2 and an ION node on board. The first acts as DTNperf_2 
source (client), while the second is necessary to establish an LTP scheduled link with 
the ground station. Note that the use of LTP on scheduled links is mandatory in ION. 

According to Table 1, maximum contact volume on the LEO-ground station link, 
obtained using full-speed transfer for the entire contact time, is 75 Mbyte. Depending 
on file length, file transfer can be completed in one or more passes. In the first case 
the transfer is quite simple and can be completed as soon as the LEO satellite comes 
into line of sight with its ground station. The second case is more interesting, and 
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therefore is the sole considered here. Assuming an 80 MB file transfer, two satellite 
passes are necessary. At the control center, the DTNperf_2 server application, running 
on a DTN2 machine, has to reassemble the transmitted file by collecting and 
reordering all arriving bundles. 

a) b)  

Fig. 2. Experimental cases: a) Earth observation, b) data mule 

 

Fig. 3. Earth observation topology 

Some details of bundle transfer are given in Fig. 4, taken from DTNperf_2 logs. At 
time zero the first bundles are transferred by the DTNperf_2 client to the Bundle 
protocol of the source DTN2 node and from here to the ION node inside the LEO 
satellite, where are taken into custody waiting for satellite link availability (first part 
of the “SENT/Custody on LEO” series). In order not to exceed the ION node storage 
limits (about 60 MB), we used a W=200 DTNperf_2 transmission window, which 
limits to 40 MB (half of the file) the amount of data to be stored on the ION node. As 
soon as the LEO-ground station link becomes available (at 300 s from time zero), 
bundles start to be progressively transferred to the ground station (at 1 Mbit/s) and 
from there to the control center (at 100 Mbit/s). Bundle deliveries are immediately 
confirmed to the DTNperf_2 client on the source by “delivered” status reports. At the 
sender side, the arrival of each status report (“DELIVERED ACK” series in the chart) 
triggers a corresponding sliding of the DTNperf_2 transmission window, thus 
allowing the remaining 200 bundles to be progressively sent and then taken into 
custody by the ION node inside the LEO satellite (second part of the “SENT/Custody 
on LEO” series). When the LEO link closes (at 900 s) all the bundles (400) have been 
sent by the source and taken into custody by the LEO ION node, but only a part (344, 
i.e. 68.8 MB) have actually been transferred to the control center as yet. 
Consequently, it is necessary to wait for the second contact (at 6300 s) to transmit the 
bundles still in custody (56, i.e. 11.2 MB) and complete the file transfer. LEO link 
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availability is highlighted through horizontal segments in the figure. As a final 
remark, note that the transmission of 68.8 MB on the first pass, given a theoretical 
contact volume of 75 MB, is an excellent result, as link utilization efficiency is 
greater than 0.9. 
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Fig. 4. Earth observation: bundle transmission logs 

5.2   Data Mule Scenario 

Here (Fig. 2-b) a 20 MB data transfer from two terrestrial nodes connected via one 
LEO satellite is considered. The LEO satellite forwards data from the first ground 
station to the second, alternately in line of sight with the satellite. The corresponding 
testbed topology is shown in Fig. 5.  

 

Fig. 5. Data mule topology 
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The file dimension has been assumed here lower than the maximum contact 
volume (75 MB as before, Table 1), which allows the file to be transferred in a single 
pass. Therefore, when LEO passes over the first ground station it is able to get the 
entire file; then, as soon as it is in line of sight with the second ground station, the file 
is transferred entirely toward the destination station. A second and last contact with 
the first ground station has the sole purpose of transmitting bundle acknowledgments 
(i.e., “delivered” status reports) to the source station running the DTNperf_2 client. 
As in the previous case, in the destination station the DTNperf_2 server application 
reassembles the transmitted file by collecting and reordering the arriving bundles. 

Bundle transfer is illustrated in Fig. 6. At time zero all bundles are immediately 
transferred by the DTNperf_2 client to the source station bundle layer (“SENT” 
series) and from here to the first ground station, where they wait in custody for the 
next satellite link contact. “Custody” status reports generated by both the source and 
the first ground station are not shown, as they would overlap the “SENT” series. 
When the LEO satellite passes over the first ground station (300 s after time zero), 
bundles are progressively transferred on board (at 1 Mbit/s) and taken into custody 
(“Custody on LEO” series). The transfer time is about 160 s. When the satellite comes 
into line of sight with the second ground station (at 3300 s), bundles are downloaded 
(at 1 Mbit/s) and transferred at high speed (100 Mbit/s) to destination, which, in turns, 
sends back “delivered” status reports. The “DELIVERED” series in the chart 
represents here the time at which bundles are actually delivered (this information is 
contained in the “timestamp” field of “delivered” status reports). On their way back, 
the “delivered” reports have to stay on board the satellite until the next pass on the 
first ground station (at 6300 s), when they can finally be transferred to the source 
(“DELIVERED ACK” series). Their transfer time is almost instantaneous (vertical 
slope in the chart) because status reports consist of only few tents of bytes. 
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Fig. 6. Data mule: bundle transmission logs 
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6   Conclusions 

In this paper the advantages of DTN when applied to LEO satellite communications 
have been assessed, considering both single satellites and constellations. In the former 
case, some preliminary results, obtained on a real testbed based on GNU/Linux 
machines are discussed. The tests were performed using both DTN2 and ION Bundle 
protocol implementations, and the DTNperf_2 evaluation tool. In both the 
applications considered, namely Earth observation and data mule communications, 
the results show the feasibility and the advantages of DTN in LEO satellite 
communications. In fact, both cases are characterized by intermittent connectivity on 
scheduled intervals, a challenge that would prevent the use of ordinary file transfer 
protocols and TCP/IP stack, but which is effectively tackled by DTN, as shown in the 
paper. 
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