
X. Lai et al. (Eds.): E-Forensics 2010, LNICST 56, pp. 90–98, 2011.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011

Network Connections Information Extraction of 64-Bit
Windows 7 Memory Images

Lianhai Wang*, Lijuan Xu, and Shuhui Zhang

Shandong Provincial Key Laboratory of Computer Network,
Shandong Computer Science Center,

19 Keyuan Road, Jinan 250014, P.R. China
{wanglh,xulj,zhangshh}@Keylab.net

Abstract. Memory analysis technique is a key element of computer live
forensics, and how to get status information of network connections is one of
the difficulties of memory analysis and plays an important roles in identifying
attack sources. It is more difficult to find the drivers and get network
connections information from a 64-bit win7 memory image file than its from a
32-bit operating system memory image file. In a this paper, We will describe
the approachs to find drivers and get network connection information from
windows 7 memory images. This method is reliable and efficient. It is verified
on Windows version 6.1.7600.

Keywords: computer forensics, computer live forensics, memory analysis,
digital forensics.

1 Introduction

Computer technology has greatly promoted the progress of human society.
Meanwhile, it also brought the issue of computer related crimes such as hacking,
phishing, online pornography, etc. Now, computer forensics has emerged as a distinct
discipline of knowledge in response to the increasing occurrence of computer
involvement in criminal activities, both as a tool of crime and as an object of crime,
and live forensics gains a weight in the area of computer forensics. Live forensics
gathers data from running systems, that is to say, collects possible evidence in real
time from memory and other storage media, while desktop omputers and servers are
running. Physical memory of a computer can be a very useful yet challenging
resource for the collection of digital evidence. It contains details of volatile data such
as running processes, logged-in users, current network connections, users’ sessions,
drivers, open files, etc. In some cases, such as encrypted file systems arrive on the
scene, the only chance to collect valuable forensic evidence is through physical
memory of the computer. We propose a model of computer live forensics based on
recent achievements of analysis techniques of physical memory image[1]. The idea is
to gather “live” computer evidence through analyzing the raw image of target
computer. See Fig. 1. Memory analysis technique is a key element of the model.

* Supported by Shandong Natural Science Foundation (Grant No. Y2008G35).

 Network Connections Information Extraction of 64-Bit Windows 7 Memory Images 91

Fig. 1. Model of Computer Live Forensics Based on Physical Memory Analysis

How to get status information of network connections is one of the difficulties of
memory analysis and plays an important roles in identifying attack sources. But it is
more difficult to get network connections information from a 64-bit win7 memory
image file than its from a 32-bit operating system memory image file. There are many
difference bewetten the methods for 64-bit system and the method for 32-bit system.
We will describe the approachs to get network connection information from 64-bit
windows 7 memory images.

2 Related Work

In 2005, the Digital Forensic Research Workshop (DFRWS) organized a challenge of
memory analysis (http://dfrws.org/2005/). And then Capture and analysis of the
content of physical memory, known as memory forensics, became an area of intense
research and experimentation. In 2006, A. Schuster analyzed the in-memory
structures and developed search patterns which will then be used to scan the whole
memory dump for traces of both linked and unlinked objects [2]. M. Burdach also
developed WMFT (Windows Memory Forensics Toolkit) and gave a procedure to
enumerate processes [3, 4]. Similar techniques in these works were also being used by
A. Walters in developing Volatility tool to analyze memory dumps for an incident
response perspective [5]. There are many others articles talked about memory
analysis.

Nowadays, there are two methods to acquire network connection status information
from physical memory of Windows XP operating system. One is searching for data
structure "AddrObjTable" and "ObjTable" from driver "tcpip.sys" to acquire network
connection status information. This method is implemented in Volatility[6], a tool to
analyze memory which dumps from Windows XP SP2 or Windows XP SP3 for an
incident response perpective developed by Walters and Petroni. The other one is
proposed by Schuster[7]. Schuster descirbes the steps necessary to detect traces of
network activity in a memory dump.His method is searching for pool allocations
labeled "TcpA" and a size of 368 bytes (360 bytes for the payload and 8 for the
_POOL_HEADER) on Windows XP SP2. These allocations will reside in the non-
paged pool.

92 L. Wang, L. Xu, and S. Zhang

The first method is feasible on Windows XP. But it doesn’t work on Windows
Vista and Win 7 ,because there is no data structure "AddrObjTable" or "ObjTable"
in driver "tcpip.sys". It is proven that there is no pool allocations labeled "TcpA" on
Windows 7 as well.

It is analyzed that there are pool allocations labeled "TcpE" instead of "TcpA"
indicating network activity in a memory dump of Windows 7. Therefore, we can
acquire network connections from pool allocations labeled "TcpE" on Windows 7.
This paper proposes a method of acquiring current network connection informations
from physical memory image of Windows 7 according to memory pool. Network
connection informations including IDs of processes which established connections,
local address, local port, remote address, remote port, etc., can be get accurately from
physical memory image file of Windows 7 with this method.

3 A Method of Network Connections Information Extraction
from Windows 7 Physical Memory Images

3.1 The Structure of TcpEndpointPool

A data structure called TcpEndpointPool is found in driver "tcpip.sys" on Windows 7
operating system, and it is similar to its on Windows vista. This pool is a doubly-
linked list of which each node is the head of a singly-linked list.

The internal organizational structure of TcpEndpointPool is shown by figure1. The
circles represent heads of the singly-linked list. The letters in the circles represent
the flag of the head. The rectangles represent the nodes of singly-linked list. The
letters in the rectangles represent the type of the node.

Fig. 2. TcpEndpointPool internal organization

The structure of singly-linked list head is shown by figure 2, in which there is a
_LIST_ENTRY structure at the offset 0x40 by which the next head of a singly-linked
list can be found .

 Network Connections Information Extraction of 64-Bit Windows 7 Memory Images 93

0x0

0x08

0x28

0x24

The first node

Flag

0x50

0x40
FLINK

BLINK

Fig. 3. The structure of singly-linked list head

The relationship of two adjacent heads is shown by figure 4.

singly-linked
list head 1

singly-linked
list head 2

FLINK

BLINK

FLINK

BLINK

Fig. 4. The linked relationship of two heads

There is a flag at the offset 0x28 of the singly-linked list head by which the node
structure of the singly-linked list can be judged. If the flag is "TcpE", the singly-
linked list with this head is composed of TcpEndPoint structure and TCB structure
which describe the network connection information.

3.2 The Structure of TCB

TCB Structure under Windows 7 is quite different form its under Windows Vista or
XP. The definition and the offsets of fields related with network connections in the
TCB is shown as follows.

typedef struct _TCB {
 CONST NL_PATH *Path; +0x30
 USHORT TcbState; +0x78
 USHORT EndpointPort +0x7a
 USHORT LocalPort; +0x7c
 USHORT RemotePort; +0x7e
 PEPROCESS OwningProcess ; +0x238
 } TCB,*PTCB;

94 L. Wang, L. Xu, and S. Zhang

NL_PATH structure, NL_LOCAL_ADDRESS structure and NL_ADDRESS_
IDENTIFIER structure are defined as follows by which network connection local
address and remote address can be acquried.

 typedef struct _NL_PATH {
 CONST NL_LOCAL_ADDRESS *SourceAddress; +0x00
 CONST UCHAR *DestinationAddress; +0x10
} NL_PATH, *PNL_PATH;
typedef struct _NL_LOCAL_ADDRESS {
 ULONG Signature // Ipla（0x49706c61）
 CONST NL_ADDRESS_IDENTIFIER *Identifier; +0x10
} NL_LOCAL_ADDRESS, *PNL_LOCAL_ADDRESS;
typedef struct _NL_ADDRESS_IDENTIFIER {
 CONST UCHAR *Address; +0x00
} NL_ADDRESS_IDENTIFIER, *PNL_ADDRESS_IDENTIFIER;

3.3 Algorithms

The algorithm to find all of TcpE pools is given as follows:

Step1. Get the physical address of KPCR structure and achieve the function of
translation from virtual Address to physical address.

Because address stored in image file generally is virtual address, we can not
directly get the exact location of its physical address in memory image file via its
virutal address . First of all, we should achieve the function of translation from
virtual Address to physical address ,which is a difficult problem in memory ananlsis.
We can adopt a method, which is similar to the KPCR method[8], to achieve the
function ,but It require change as show below:

I) Find KPCR structure according to characteristics as blow: find the two
neighboring values is greater than 0xffff000000000000, and the difference
between these two values is 0x180, Take away 0x1c from the phyical
address of the first value , and we get the KPCR structure address.

II) The offset of CR3 Registe is not 0x410, but 0x1d0.

Step 2. Find dirvers of system ,and get the address of TCPIP.SYS driver
As a 64-bit operating system , it is more difficult to find the drivers of system

from a 64-bit win7 memory image file than its from a 32-bit operating system
memory image file. In Windows 7 system, KdVersionBlock,a elements of the
structure KPCR, is always is zero, so we can’t get kernel variables thought it. We
find a way to get the dirvers of system as blow:

Step2.1 Locate the address of KPRCB structure
the KPCR structure address add 0x180 ,we will get the address of _KPRCB

structure.
_KPCR{

+0x108 KdVersionBlock : Ptr64 Void
 +0x180 Prcb : _KPRCB
}
Step2.2 Locate the address of pointer pointed to the current thread

 Network Connections Information Extraction of 64-Bit Windows 7 Memory Images 95

CurrentThread ,which is pointed the current thread of system, is a address pointer
pointed a KTHREAD structure, and it is stored at the offset 0x08 relative to KPRCB
structure address. We can get the phyical address which is pointed by the pointer
according to the translation described as Step1

_KPRCB{
 +0x008 CurrentThread : Ptr64 _KTHREAD
 }
Step2.3 Locate the address of pointer of current process according to the current

thread.
The virtual address of current process is stored at the offset 0x210 relative to

KTHREAD structure. We will get the phyical address of current process from the
virtual address according to the translation.

_KTHREAD{
+0x210 Process : Ptr64 _KPROCESS
}
Step 2.4 Locate the address of ActiveProcessLinks

_EPROCESS{
 +0x000 Pcb : _KPROCESS
 +0x188 ActiveProcessLinks : _LIST_ENTRY

 }
Step 2.5 Locate the address of the nt!PsActiveProcessHead variable
ActiveProcessLinks is the active process links, Throught it, we can get all of

process. When we can the address of system process, we can the the address of
the nt!PsActiveProcessHead variable from Blink of its ActiveProcessLinks .

_LIST_ENTRY{
 +0x000 Flink : Ptr64 _LIST_ENTRY
 +0x008 Blink : Ptr64 _LIST_ENTRY
}
Step 2.6 Locate the address of kernel variable psLoadedModuleList

The offset bewteen the virtual address of nt!psLoadedModuleList and the virtual
address of nt!PsActiveProcessHead is 0x1e320, so the address of
nt!PsActiveProcessHead add 0x1e320, we get the virtual address of
nt!psLoadedModuleList. We get the physical address of nt!psLoadedModuleList
according to the translation.

Step 2.7 Get the address of TCPIP.SYS driver through the kernel variable
psLoadedModuleList.

Step3 Find the virtual address of tcipip!TcpEndpointPool.
We can get the virtual address of tcpip!TcpEndpointPool from the virutal address

added 0x18a538.
Step4 Find the virtual address of the first singly-linked list head.
Firstly, transfer the virtual address of TcpEndpointPool to physical address and

locate the address in the memory image file, read 8 bytes at this position and transfer
the 8 bytes to physical address, locate the address in the memory image file.
Secondly , get the the virtual address of the pointer which is the 8 bytes at the offset
0x20 . this pointer points three virtual address pointer pointed the structures in
which singly-linked list head is the 8 bytes at the offset 0x40.

The search process on Windbg can be shown in Fig.5

96 L. Wang, L. Xu, and S. Zhang

Fig. 5. The process to find the virtual address of the first singly-linked list head on Windbg

Step5 Judge whether the head’s type is TcpEndpoint or not by reading the flag
which is set at the offset 0x20 relative to the head’s address. If the flag is “TcpE”, the
head’s type is TcpEndpoint , go to the step 6, otherwise go to the step 7.

Step6 Analyze the TcpEndpoint structure or TCB structure in the singly-linked list.
Analyzing algorithm is shown by figure 6.

Fig. 6. The flow of analyzing TCB structure or TcpEndpoint structure summary description

 Network Connections Information Extraction of 64-Bit Windows 7 Memory Images 97

Step7 Find the virtual address of the next head.
The virtual address of the next head can be found according to the _LIST_ENTRY

structure which is set at the offset 0x30 relative to the address of singly-linked list
head. Judging whether the next head’s virtual address equals to the first head’s
address or not. If the next head’s virtual address is equal to the first head’s address,
exit the procedure, otherwise go to the next step.

Step8 Judge whether the head is exactly the first head. If the head is exactly the
first head, exit, otherwise go to step 5.

The flow of analyzing TCB structure or TcpEndpoint structure is shown as
follows.

Step1 Get the virtual address of the first node in the singly-linked list.
Transfer the virtual address of singly-list head to physical address and locate the

address in memory image file. Read 8 bytes from this position which is the virtual
address of the first node.

Step2 Judge whether the address of node is zero or not. If the address is zero, exit
the procedure, otherwise go to the next step.

Step3 Judge whether the node is Tcb structure or not.
if LocalPort#0 and RemotePort#0 then it is a TCB Structure , furthermore, if

TcbState#0 it is valid TCB Structure ,or it is a tcb structure which it indicate the
network connection is close.

if LocalPort=0 and RemotePort=0 and EndpointPort#0 then it is a
TCP_ENDPOINT structure

Step4 Analyze TCB structure.
Step4.1 Get PID (process id) which is the ID of the process which established this

connection. The pointer which points to the process’s EPROCESS structure which
established this connection is set at the offset +0x238 relative to TCB structure.
Firstly, read 8 bytes which represents the virtual address of EPROCESS structure at
buffer’s offset 0x164 and transfer it to physical address. Secondly, locate the address
in the memory image file and read 8 bytes which represents PID at the offset 0x180
relative to EPROCESS structure’s physical address.

Step4.3 Get the local port of this connection. The number is set at offset 0x7c of
TCB structure. Read 2 bytes at offset 0x7C of the buffer and transfer it to a decimal
which is the local port of this connection.

Step4.4 Get the remote port of this connection. The number is set at the offset 0x7e
of TCB structure. Read 2 bytes at offset 0x7e of the buffer and transfer it to a decimal
which is the remote port of this connection.

Step4.5 Get local address and remote address of this connection. The pointer
which points to NL_PATH structure is set at the offset 0x30 of TCB structure. The
pointer which points to the remote address is set at the offset 0x10 of NL_PATH
structure. The special algorithm is as followes: read 8 bytes which represents the
virtual address of NL_PATH structure at the offset 0x30 of TCB structure,
transfer the virtual address of NL_PATH structure to physical address, locate the
address+0x10 in the memory image file and read 8 bytes which represents
remote address at this position. The pointer which points to NL_LOCAL_ADDRESS
structure is set at the offset 0x0 of the NL_PATH structure, The pointer which
points to NL_ADDRESS_IDENTIFIER structure is set at the offset 0x10 of

98 L. Wang, L. Xu, and S. Zhang

NL_LOCAL_ADDRESS structure, local address is set at the offset 0x0 of the
NL_ADDRESS_IDENTIFIER structure. Therefore, local address can be acquired
from the above three structures.

Step5 Get 8 bytes which represents the next node’s virtual at the offset 0 of the
buffer and go to step2.

4 Conclusion

In this paper, a method which can acquire network connection information from 64-
bit Windows 7 memory image file based on memory pool allocation strategy is
proposed. This method is proved to be right for memory image file of Windows
version 6.1.7600. This method is reliable and efficient, because the data structure
TcpEndpointPool exists in driver tcpip.sys for different Win7 operation system
versions and TcpEndpointPool structure will not change when Win 7 operation
system version changed.

References

1. Wang, L., Zhang, R., Zhang, S.: A Model of Computer Live Forensics Based on Physical
Memory Analysis. In: ICISE 2009, Nanjing China (December 2009)

2. Schuster, A.: Searching for Processes and Threads in Microsoft Windows Memory Dumps.
In: Proceedings of the 2006 Digital Forensic Research Workshop, DFRWS (2006)

3. Burdach, M.: An Introduction to Windows Memory Forensic[OL] (July 2005),
http://forensic.seccure.net/pdf/introduction_to_windows_memor
y_forensic.pdf

4. Burdachz, M.: Digital Forensics of the Physical Memory [OL] (March 2005),
http://forensic.seccure.net/pdf/mburdach_digital_forensics_of
_physical_memory.pdf

5. Walters, A., Petronni Jr., N.L.: Volatools: Integrating volatile Memory Forensics into the
Digital Investigation Process. In: Black Hat DC (2007)

6. Volatile Systems: The Volatility Framework: Volatile memory artifact extraction utility
framework (accessed, June 2009),
https://www.volatilesystems.com/default/volatility/

7. Andreas, S.: Pool allocations as an information source in windows memory forensics. In:
Oliver, G., Dirk, S., Sandra, F., Hardo, H., Detlef, G., Jens, N. (eds.) IT-incident
management & IT-forensics-IMF 2006, October 18. Lecture notes in informatics, vol. P-97,
pp. 104–115 (2006b)

8. Zhang, R., Wang, L., Zhang, S.: Windows Memory Analysis Based on KPCR. In: Fifth
International Conference on Information Assurance and Security, IAS 2009, vol. 2, pp.
677–680 (2009)

	Network Connections Information Extraction of 64-Bit Windows 7 Memory Images

	Introduction
	Related Work
	A Method of Network Connections Information Extraction from Windows 7 Physical Memory Images

	The Structure of TcpEndpointPool
	The Structure of TCB
	Algorithms

	Conclusion
	References

