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Abstract. The framework of digital signature based on qualified certificates and
X.509 architecture is known to have many security risks. Moreover, the fraud pre-
vention mechanism is fragile and does not provide strong guarantees that might
be regarded necessary for flow of legal documents.

Recently, mediated signatures have been proposed as a mechanism to effec-
tively disable signature cards. In this paper we propose further mechanisms that
can be applied on top of mediated RSA, so that we obtain signatures compatible
with the standard format, but providing security guarantees even in the case when
RSA becomes broken or the keys are compromised. Our solution is well suited
for deploying a large-scale, long-term digital signature system for signing legal
documents. Moreover, the solution is immune to kleptographic attacks as only
deterministic algorithms are used on user’s side.

Keywords: mRSA, PSS padding, signatures based on hash functions, kleptogra-
phy, deterministic signatures, pairing based signatures.

1 Introduction

Digital signature seems to be the key technology for securing electronic documents
against unauthorized modifications and forgery. However, digital signatures require a
broader framework, where cryptographic security of a signature scheme is only one of
the components contributing to the security of the system.

Equally important are answers to the following questions:

– how to make sure that a given public key corresponds to an alleged signer?
– how to make sure that the private signing keys cannot be used by anybody else but

its owner?

While there is a lot of research on the first question (with many proposals such as
alternative PKI systems, identity based signatures, certificateless signatures), the second
question is relatively neglected, despite that we have no really good answers for the
following specific questions:
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1. how to make sure that a key generated outside a secure signature-creation device is
not retained and occasionally used by the service provider?

2. how to make sure that an unauthorized person has not used a secure signature-
creation device after guessing the PIN?

3. if a secure signature-creation device has no keypad, how to know that the signatures
under arbitrary documents are created by the PC in cooperation with the signature
creation device?

4. how to make sure that there are no trapdoors or just security gaps in secure signature-
creation devices used?

5. how to make sure that a secure signature-creation device is immune to any kind of
physical and side-channel attacks? In particular, how to make sure that a card does
not generate faulty signatures giving room for fault cryptanalysis?

6. how to check the origin of a given signature-creation device, so that malicious
replacement is impossible?

Many of these problems are particularly hard, if signature creation devices are crypto-
graphic smart cards. Some surrogate solutions have been proposed:

ad 1) Retention of any such data has been declared as a criminal act. However, it is
hard to trace any activity of this kind, if it is carefully hidden. Technical solutions,
such as distributed key generation procedures have been proposed, so that a card
must participate in key generation and the service provider does not learn the whole
private key. However, in large scale applications these methods are not very attrac-
tive due to logistics problems (generation of keys at the moment of handing the
card to its owner takes time and requires few manual operations).

ad 2) Three failures to provide a PIN usually lead to blocking the card. However, the
attacker may return the card after two trials into the wallet of the owner and wait
for another chance. This is particularly dangerous for office applications.

ad 3) This problem might be solved with new technologies for inputing data directly
to a smart card. Alternatively, one may try to improve security of operating systems
and processor architecture, but it seems to be extremely difficult, if possible at all.

ad 4) So far, a common practice is to depend on declarations of the producers (!) or
examinations by specially designated bodies. In the latter case, the signer is fully
dependant on honesty of the examiner and completeness of the verification proce-
dure. So far, the possibilities of thorough security analysis of chips and trapdoor
detection are more a myth than technical reality. What the examiner can do is to
check if there are some security threats that follow from violating a closed set of
rules.

ad 5) Securing a smart card against physical attacks is a never ending game between
attacking possibilities and protection mechanisms. Evaluating the state of the art
of attacking possibilities as well as effectiveness of hardware protection requires
insider knowledge, where at least part of it is an industrial secret. So it is hard to
say whether declarations of the manufacturers are dependable or, may be, they are
based on their business goals.

ad 6) The main protection mechanism remains the protection of a supply chain and
visual protection mechanisms on the surface of the card (such as holograms). This
is effective, but not against powerful adversaries.
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Kleptographic Channels. In the context of securing signature creation devices we
especially focus on kleptographic attacks [1,2]. Kleptography is a set of cryptographic
techniques that allow implementation of a kleptographic side channel within the frame-
work of a randomized cryptographic protocol. Such channel is visible and usable only
for its creator. Information transmitted in the channel is protected by a “public” key
(i.e. asymmetric key used solely for encryption), information retrieval is possible with a
matching “private” key. Let us assume that a manufacturer has planted a kleptographic
channel in a batch of devices he produced. Then physical inspection of the tampered
devices and extracting the “public” key do not give access to information hidden in the
kleptographic channel of this or any other device.

There are techniques of setting a kleptographic channel in nondeterministic crypto
protocols in such a way that the protocol runs according to the specification, the statis-
tical properties of its output are not altered, and, on top of that, the time characteristics
remain within acceptable interval [3]. In the case of a nondeterministic signature, the
information can be hidden in the signature itself. For deterministic protocols (like RSA
for example) the nondeterministic part is the key generation, so the information may be
hidden there (for details see e.g. [4], [5]).

Mediated Signatures as Secure Signing Environment. The idea of mediated signa-
tures is that signature creation requires not only using a private signing key, but also an
additional key (or keys) held by a security mediator or mediators (SEM). Particularly
straightforward is constructing mediated signatures on top of RSA. The idea is to split
the original private key and give its parts to the signer and the mediator. It can be done
in an additive way ([6,7,8]), or a multiplicative way ([7,9]). We focus on the former
variant, because it broadens the set of ready-to-use algorithms for distributed genera-
tion of RSA keys and facilitates the procedure described in Sect. 4. Specifically, if d is
the original private key, then the mediator gets d− du and the signer gets du, where du

is (pseudo)random generated and distributed according to private keys regime.
The idea presented in [8] is to use mediated signatures as a fundamental security

mechanism for digital signatures. The mediator is located at a central server which
keeps a black list of stolen/lost signature cards and refuses to finalize requests from
such cards. Therefore, a withheld card cannot create a signature, even if there is no
mechanism to block the card itself. It also allows for temporary disabling a card, for
instance outside the office hours of the signer or just on request of the owner. Note that
the mediator can also monitor activity of the card for accordance with its security policy
(e.g. a limited number of signatures per day). Moreover, in this scenario recording of
the time of the signature can be provided by the mediator which is not possible in the
traditional mode of using signature cards.

1.1 Our Contribution

We propose a couple of additional security mechanisms that are backwards compatible:
standard software can verify such signatures in the old way. We address the following
issues:

– protection against kleptographic attacks on RSA signatures exploiting padding bits
[5],
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– combining RSA signature with a signature based on discrete logarithm problem, so
that in case of breaking RSA a forged signature can be recognized,

– a method of generating signatures between the signer and the mediator, so that a
powerful adversary cannot create signatures even if he knows the keys.

This paper is not on new signature schemes but rather on system architecture that should
prevent or detect any misuse of cryptographic mechanisms.

2 Building Blocks

2.1 RSA Signatures and Message Encoding Functions

An RSA signature is a result of three functions: a hash function h applied to the message
m to be signed, a coding functionC converting the hash value to a number modulo RSA
numberN , and finally an exponentiation modulo N :

(C(h(m)))d mod N.

The coding function must be chosen with care (see attacks [10], [11]).
In this paper we use EMSA-PSS coding [12]. A part of the coding, important in tight-

ening security reduction (cf. [13]), is encoding a random salt string together with the
hash value. Normally, this may lead to many problems due to kleptographic attacks, but
we shall use the salt as place for embedding another signature. Embedding a signature
does not violate the coding – according to Sect. 8.1 of [12]: as salt even “a fixed value
or a sequence number could be employed (. . . ), with the resulting provable security
similar to that of FDH” (Full Domain Hashing).

Another issue, crucial for the embedded signature, is the length of salt. In Ap-
pendix A.2.3 of [12] a type RSASSA-PSS-params is described to include, among
others, a field saltLenght (i.e. octet length of the salt). [12] specifies the default
value of the field to be the octet length of the output of the function indicated in the
hashAlgorithm field. However, saltLength may be different: let modBits de-
note bitlength of N , and hLen denotes the length in octets of the hash function output,
then the following condition (see Sect. 9.1.1 of [12]) imposes an upper bound for salt
length:

�(modBits− 1)/8� − 2 ≥ saltLength+ hLen.

2.2 Deterministic Signatures Based on Discrete Logarithm

Most discrete logarithm based signatures are probabilistic ones. The problem with these
solutions is that there are many kleptographic schemes taking advantage of the pseudo-
random parameters for signature generation, that may be potentially used to leak keys
from a signature creation device. On the other hand, DL based signatures are based on
different algebraic structures than RSA and might help in the case when security of
RSA becomes endangered.
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Fortunetely, there are deterministic signatures based on DL Problem, see for instance
the BLS [14] or [15].

In this paper we use BLS: Suppose that G1, G2 are cyclic additive groups of prime
order q, and let P be a generator of G1. Assume that there is an efficiently computable
isomorphism ψ : G1 → G2, thus ψ(P ) is a generator of G2. Let GT be a multiplicative
group of prime order q, and ê : G1 × G2 → GT be a non-degenerate bilinear map,
that is:

1. for all P ∈ G1, Q ∈ G2 and a, b ∈ Z, ê([a]P, [b]Q) = ê(P,Q)ab, where [k]P
denotes scalar k multiplication of element P ,

2. ê(P, ψ(P )) �= 1.

For simplicity one may assume G2 = G1, and ψ ≡ id. In the BLS scheme G1 is a
subgroup of points of an elliptic curve E defined over some finite field Fpr , and GT

is a subgroup of the multiplicative group F∗
prκ , where κ is a relatively small integer,

say κ ∈ {12, . . . , 40}. The number κ is usually called the embedding degree. Note that
q|#E, but for security reasons we require that q2 � |#E.

The signature algorithm comprises of calculation of the first pointH(m) ∈ 〈P 〉 cor-
responding to a message m, and computing [xu]H(m), i.e. multiplication of elliptic
curve point H(m) by scalar xu being the private key of the user making the signature.
The signature is the x-coordinate of the point [xu]H(m). Verification of the signature
(see Sect. 3) takes place in the group F∗

prκ , and it is more costly than signature generation.

2.3 Signatures Based on Hash Functions

Apart from RSA and discrete logarithm based signatures there is a third family: sig-
natures based on hash functions. Their main advantage is fast verification, their main
disadvantage is limitation on the number of signatures one can create – basic schemes of
this kind are usually one-time signatures. This drawback can be alleviated by employ-
ing Merkle trees, and the resulting schemes (Merkle Signature Scheme – MSS) offer
multipe-time signatures. In this case however, the maximal number of signatures is de-
termined at the time of key generation. This in turn causes complexity issues, since
building a large, single Merkle tree is calculation demanding. In [16], the GMSS algo-
rithm loosens this limitation: even 280 signatures might be verified with the root of the
main tree.

2.4 Overview of System Architecture

The system is based on security mediator SEM, as in [17]. However, we propose to
split SEM into t sub-centers sub-SEMi, i = 1, . . . , t, t ≥ 2 (such decomposition would
alleviate the problems of information leakage from a SEM). System components on the
signer’s side are: a PC and a smart card used as a secure signature creation device.

When the signer wishes to compose a signature, then the smart card performes some
operations in interaction with the SEMs. The final output of the SEMs is a high quality
signature – its safety is based on many security mechanisms that on the whole address
the problems and scenarios mentioned in the introduction.
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3 Nested Signatures

Since long-term predictions about scheme’s security are given with large amount of
uncertainty, it seems reasonable to strengthen the RSA with another deterministic sig-
nature scheme — the BLS [14]. We combine them together using RSASSA-PSS, with
the RSA signature layer being the mediated one, while BLS is composed solely by the
smart card of the signer. Thanks to the way the message is coded the resulting signa-
ture can be input to a standard RSA verification software which will still verify the
RSA layer in the regular way. However, software aware of the nesting can perform a
thorough verification and check both signatures.

Fig. 1. Data flow for key generation. Operations in rounded rectangles are performed distribu-
tively.
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Key Generation. We propose that the modulus N and the secret exponent d of RSA
should be generated outside the card in a multiparty protocol (accordingly, we divide
the security mediator SEM into t sub-SEMs, t ≥ 2). This prevents any trapdoor or
kleptography possibilities on the side of the smart card, and makes it possible to use
high quality randomness. Last not least, it may speed up logistics issues (generation of
RSA keys is relatively slow and the time delay may be annoying for an average user).

Multiparty generation of RSA keys has been described in the literature: [18] – for
at least 3 participants (for real implementation issues see [19], for a robust version see
[20]), [21] – for two participants, or a different approach in [22].

Let us describe the steps of generating the RSA and BLS keys in some more detail
(see also Fig. 1):

Suppose that the card holds some single, initial, unique priate key sk (set by the
card’s producer) for deterministic one-time signature scheme. Let the public part pk of
the key be given to SEM before the following protocol is executed. Assume also that
the card’s manufacturer has placed into the card SEM’s public key for verification of
SEM’s signatures.

1. sub-SEM1 selects an elliptic curve defined over some finite field (the choice de-
termines also a bilinear mapping ê) and a basepoint P of prime order q. Then
sub-SEM1 transmits this data together with definition of ê to the other sub-SEM’s
for verification.

2. If the verification succeeded, each sub-SEMi picks xi ∈ {0, . . . , q − 1} at random
and broadcasts the point [xi]P to other sub-SEMs.

3. Each sub-SEM calculates
∑t

i=1[xi]P , i.e. calculates [
∑t

i=1 xi]P .
4. The sub-SEMs generate the RSA-keys using a multiparty protocol: let the resulting

public part be (e,N) and the secret exponent be d =
∑t

i=1 d̃i, where d̃i ∈ Z is
known only to sub-SEMi.

5. All sub-SEMs now distributively sign all public data D generated so far, i.e.: the
public one time key pk (which serves as identifier of the addressee of data D),
the definition of the field, curve E, points P , [xi]P , i = 1, . . . , t, order q of P ,
map ê and RSA public key (e,N). The signature might also be a nested signature,
even with the inner signature being a probabilistic one, e.g. ECDSA (to mitigate
the threat of klepto channel each sub-SEM might xor outputs from a few random
number generators).

6. Let � is a fixed element from the set {128, . . . , 160} (see e.g. the range of additive
sharing over Z in Sect. 3.2 of [22], andΔ in S-RSA-DEL delegation protocol in Fig.
2 of [23]). Each sub-SEMi, i = 1, . . . , t picks di,u ∈ {0, . . . , 2�log2 N�+1+� −1} at
random and calculates integer di,SEM = d̃i − di,u. Note that di,u can be calculated
independently of N (e.g. before N ), only the length of N must be known.

7. The card contacts sub-SEM1 over a secure channel and receives the signed data
D. If verification of the signature succeeds the card picks its random element x0 ∈
{0, . . . , q − 1}, and calculates [x0]P .

8. For each i ∈ {1, . . . , t} the card contacts sub-SEMi over a secure channel and
sends it [x0]P and sigsk([x0]P ). The sub-SEMi verifies the signature and only
then does it respond with xi and di,u and a signature thereof (a certificate for the
sub-SEMi signature key is distributiely signed by all sub-SEMs, and is transferred
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to the card together with the signature). The card immediately checks xi against P ,
[xi]P from D.

9. At this point all sub-SEMs compare the received element [x0]P ∈ E (i.e. they
check if the sk was really used only once). If this is so, then the value is taken as
ID-card’s part of the BLS public key. Then the sub-SEMs complete calculation of
the key: E,P ∈ E, Y = [x0]P + [

∑t
i=1 xi]P , and issue an X.509 certificate for

the card that it possesses the RSA key (e,N). In some extension field the certificate
must also contain card’s BLS public key for the inner signature. The certificate is
signed distributively. Sub-SEMt now transfer the certificate to the ID-card.

10. The card calculates its BLS private key as xu =
∑t

i=0 xi mod q and its part
of RSA private key as integer du =

∑t
i=1 di,u. Note that the remaining part

dSEM =
∑t

i=1 di,SEM of the secret key d is distributed among sub-SEMs, who
will participate in every signing procedure initiated by the user. Neither he nor the
sub-SEMs can generate valid signatures on their own.

11. The card compares the certificate received from the last sub-SEM with D received
from the first sub-SEM. As the last check the card initializes the signature gener-
ation protocol (see below) to sign the certificate. If the finalized signature is valid
the card assumes that du is valid as well, and removes all partial di,u and partial
xi together with their signatures. Otherwise the card discloses all data received,
together with their signatures.

Each user should receive a different set of keys, i.e. different modulus N for RSA
system and a unique (non-isomorphic with the ones so far generated) elliptic curve
for the BLS signature. This can minimize damages that could result by breaking both
systems using adequately large resources.

Signature Generation

1. The user’s PC computes the hash value h(m) of the message m to be signed, and
sends it to the smartcard.

2. the smartcard signs h(m) using BLS scheme: the first point H(h(m)) of the group
〈P 〉, corresponding to h(m), is calculated deterministically, according to the proce-
dure from [14] (alternatively, the algorithm from [24] might be used, complemented
by multiplication by scalar #E/q to get a point in the subgroup of order q), next
H(h(m)) is multiplied by the scalar xu, which yields point [xu]H(h(m)). The BLS
signature of h(m) is the x-coordinate x([xu]H(h(m))) of the point [xu]H(h(m)).
The resulting signature is unpredictable to both the card’s owner as well as other
third parties. We call this signature the salt.

3. Both h(m) and salt can now be used by the card as variables in execution of
RSASSA-PSS scheme: they just need to be composed according to EMSA-PSS
[12] and the result μ can now be simply RSA-exponentiated.

4. In the process of signature generation, the user’s card calculates the du’th power
of the result μ of EMSA-PSS padding and sends it, along with the message di-
gest h(m) and the padding result itself, to the SEM. That is, it sends the triple
(h(m), su, μ), where su = μdu mod N .

5. The sub-SEMs finalize the RSA exponentiation: s = su · ∏t
i=1 μ

di,SEM mod N ,
thus finishing the procedure of RSA signature generation.
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6. At this point a full verification is possible: SEM verifies the RSA signature, checks
the EMSA-PSS coding – this includes salt recovering and verification of the inner
signature (it also results in checking if the card had chosen the first possible point
on the curve while encoding h(m)). If the checks succeed, the finalized signature
is sent back to the user. A failure means that the card has malfunctioned or behaved
maliciously – as we see, the system-internal verification is of vital importance.

Note that during the signature generation procedure the smartcard and sub-SEMs cannot
use CRT, as in this case the factorization of N would be known to all parties. This
increases signing time, especially on the side of the card. But, theoretically, this can
be seen as an advantage. For example, the signing time longer than 10 sec. means that
one cannot generate more than 225 signatures over the period of 10 years; we therefore
obtain an upper limit on power of the adversary in results of [25] and [13]. In fact the
SEM might arbitrarily set a lower bound for the period of time it must pass between
two consecutive finalizations of signatures of the same user. Moreover, if CRT is not in
use, then some category of fault attacks is eliminated ([26,27]).

Signature Verification. For givenm and its alleged signature s:

1. The verifier calculates h(m) and the point H(h(m)) ∈ 〈P 〉.
2. Given the RSA public key (e,N) the verifier first calculates μ = se mod N , and

checks the EMSA-PSS coding against h(m) (this includes salt recovery).
3. If the coding is valid then, given BLS public key E, P , Y , q, and ê, the verifier

checks the inner signature. From salt = x([xu]H(h(m))) one of the two points
±[xu]H(h(m)) is calculated, denote this point by Q. Next, it is checked whether
the order of Q equals q. If it does, then the verifier checks if one of the conditions
holds: ê(Q,P ) = ê(H(h(m)), Y ) or ê(Q,P ) = (ê(H(h(m)), Y ))−1.

4 Floating Exponents

Let us stress the fact that splitting the secret exponent d from the RSA algorithm be-
tween the user and the SEM has additional benefits. If the RSA and inner signature [14]
keys are broken, it is still possible to verify if a given signature was mediated by the
SEM or not, provided that the later keeps a record of operations it performed. Should
this verification fail, it becomes obvious that both keys have been broken and, in partic-
ular, the adversary was able to extract the secret exponent d. On the other hand, if the
adversary wants to trick the SEM by offering it a valid partial RSASSA-PSS signature
with a valid inner signature [14], he must know the right part du of the exponent d of the
user whose keys he had broken. Doing this equals solving a discrete logarithm problem
taken modulus each factor of N (though the factors length equals half of that of N ).
Therefore it is vital that no constraints, in particular on length, be placed on exponents
d and their parts.

To mitigate the problem of smaller length of the factors of N , which allows solving
the discrete logarithm problem with relatively small effort, a technique of switching
exponent parts can be used. Let the SEM and the card share the same secret key K ,
which is unique for each card. After a signature is generated, the key deterministically
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evolves on both sides. For each new signature, K is used as an initialization vector for
a secure pseudo-random number generator (PRNG) to obtain a value that is added by
the card to the part of the exponent it stores, and subtracted by the SEM from the part
stored therein. This way, for each signature different exponents are used, but they still
sum up to the same value. A one-time success at finding the discrete logarithm brings
no advantage to the attacker as long as PRNG is strong and K remains secret.

To state the problem more formally, let Ki be a unique key shared by the card and
sub-SEMi, i = 1, . . . , t (t ≥ 1). To generate an RSA signature the card does the
exponentiation of the result of EMSA-PSS coding to the exponent equal to

du ±
t∑

i=1

(−1)i ·GEN(Ki), (1)

where GEN(Ki) is an integer output of a cryptographically safe PRNG (see e.g. gen-
erators in [28], excluding the Dual_EC_DRBG generator – for the reason see [29]). It
suffices if length ofGEN(Ki) equals �+�log2N�+1, where � is a fixed element from
the set {128, . . . , 160}. Operator “±” in Eq. (1) means that the exponent is alternately
“increased” and “decreased” every second signature: this and multiplier (−1)i lessen
changes of length of the exponent. Next, for each Ki the card performs a deterministic
key evolution (sufficiently many steps of key evolution seem to be feasible on nowa-
days smart cards, cf. [30] claiming on p. 4, Sect. “E2PROM Technology”, even 5 · 105

write/erase cycles). To calculate its part of the signature, each sub-SEMi exponentiates
the result μ of EMSA-PSS coding (as received from the user along with the partial re-
sult of exponentiation) to the power of di,SEM∓(−1)i ·GEN(Ki). Next, the sub-SEMi

performs a deterministic evolution of the key Ki.
Note that should the card be cloned it will be revealed after the first generation of

a signature by the clone – the SEM will make one key-evolution step further than the
original card and the keys will not match. Each sub-SEMi shall keep apart from its
current state, the initial value of Ki to facilitate the process of investigation in case
the keys get de-synchronized. To guarantee that the initial Ki will not be changed by
sub-SEMi, the following procedure might be applied: At point 2 of key generation
procedure each sub-SEM commits to the initial Ki by broadcasting its hash h(Ki) to
other sub-SEMs. Next, at point 5 all broadcasted hashes are included in data set D, and
are distributively signed by sub-SEMs with all the public data. Note that these hashes
are sent to the card at point 7, and at points 7, 8 the card can check Ki against its
commitment h(Ki), i = 1, . . . , t.

In order to force the adversary into tricking the SEM (i.e. make it even harder for
him to generate a valid signature without participation of the SEM), one of the sub-
SEMs may be required to place a timestamp under the documents (the timestamp would
contain this sub-SEM’s signature under the document and under the user’s signature fi-
nalized by all the sub-SEMs) and only timestamped documents can be assumed valid.
Such outer signature in the timestamp must be applied both to the document and to the
finalized signature of the user. The best solution for it seems to be to use a scheme based
on a completely different problem, to use a hash function signature scheme for instance.
The Merkle tree traversal algorithm provides additional features with respect to times-
tamping: if a given sub-SEM faithfully follows the algorithm for any two document
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signatures it is possible to reconstruct (based on the signature only, without an addi-
tional timestamp) the succession in which the documents have been signed. Note that
other sub-SEMs will verify the outer hash-based signature as well as the tree traversal
order.

If hash-based signatures are implemented in SEM, it is important to separate the
source of randomness from implementation of the signatures (i.e. from key generation
— apart from key generation this signature scheme is purely deterministic). Instead of
one, at least two independent sources of randomness should be utilized and their outputs
combined.

5 Forensic Analysis

As an example of forensic analysis consider the case of malicious behavior of one of
the sub-SEMs. Suppose that the procedure of distributed RSA key generation bounds
each sub-SEMi to its secret exponent d̃i (see point 4 of the ID-card’s key generation
procedure), for example by some checking signature made at the end of the internal
procedure of generating the RSA key.

As we could see, the sub-SEMi cannot claim that the initial value ofKi was different
than the one passed to the card. If correct elements di,SEM, Ki, i = 1, . . . , t, were used
in RSA signature generation at point 11 of the key generation procedure, and correct
di,u were passed to the ID-card, then the signature is valid. The sub-SEMs should then
save all values βi = μαi mod N generated by sub-SEMi, i = 1, . . . , t, to finalize the
first cards partial signature su:

s = su

t∏

i=1

μαi mod N.

Since αi = di,SEM − (−1)i · GEN(Ki), and the initial value of Ki is bounded by
h(Ki), value βi is a commitment of correct di,SEM.

Now consider the case of the first signature being invalid. First, the ID-card is checked:
it reveals all values received: Ki, as well as received d′i,u, i = 1, . . . , t. Next, raising μ

to power (
∑t

i=1 d
′
i,u)+

∑t
i=1(−1)i ·GEN(Ki) is repeated to check if partial signature

su was correct. If it was, it is obvious that at least one sub-SEM behaved maliciously.
All d̃i must be revealed, and integers d′i,SEM = d̃i − d′i,u are calculated. Having d′i,SEM
and Ki it is easy to check correctness of each exponentiation μαi mod N .

6 Implementation Recommendations

Hash Functions. Taking into account security aspects of long-term certificates used
for digital signatures a hash function h used to make digests h(m) should have long-
term collision resistance. Therfore we propose to use the zipper hash construction [31],
which utilizes two hash functions that are feed with the same message.

To harden the zipper hash against general techniques described in [32], we propose
to use as the first hash function some non-iterative one, e.g. a hash function working
analogously to MD6, when MD6’s optional, mode control parameter L is greater than
27 (see Sect. 2.4.1 in [33]) – note that L = 64 by default.
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RSA. It is advisable that modulus N of the RSA algorithm be a product of two strong
primes [22]. Let us assume that the adversary succeeded in factorizing N into q and p.
We do not want him to be able to gain any knowledge on the sum (1), that is indirectly
on outputs ofGEN(Ki) for i = 1, . . . , t. However, if p−1 or q−1 has a large smooth
divisor, then by applying Pohling-Hellman algorithm he might be able to recover the
value of sum (1) modulo the smooth divisor. Here “smooth” depends on adversary’s
computational power, but if p, q are of the form 2p′ + 1, 2q′ + 1, respectively, where
p′, q′ are prime, then the smooth divisors for this case equal two only. Additionally,
if the card and all the sub-SEMi unset the least significant bit of GEN(Ki) then the
output of the generator will not be visible in the subgroups of order two. In order to
learn anything about (1), the adversary needs to perform an attack on discrete logarithm
problem in the subgroup of large prime order (i.e. p′ or q′). A single value does not
bring much information and the same calculations must be carried out for many other
intercepted signatures in order to launch cryptanalysis recovering keys Ki.

Elliptic Curves. The elliptic curve for the inner signature should have embedding de-
gree ensuring at least 128-bit security (cf. [34]). Note that the security of the inner
signature may not be entirely independent of the security of RSA – a progress made in
attacks utilizing GNFS may have serious impact on index calculations (see last para-
graph on p. 29 of online version [35]). Meanwhile, using pairing we need to take into
account the fact, that the adversary may try to attack the discrete logarithm problem in
the field in which verification of the inner signature takes place. Therefore we recom-
mend a relatively high degree of security for the inner signature (see that according to
Table 7.2 from [36], 128-bit security is achieved by RSA for 3248-bit modulus N , and
such long N could distinctly slow down calculations done on the side of a smart card).

The proposed nested signature scheme with the zipper hash construction, extended
with the secret keys shared between the card and sub-SEMs used for altering the expo-
nent, and the SEM hash-signature under a timestamp, taken together increase the prob-
ability of outlasting the crypto analytical efforts of the (alleged) adversary. We hope that
on each link (card → SEM, SEM → finalized signature with a timestamp) at least one
out of three safeguards will last.

6.1 Resources and Logistics

If the computational and communication costs of distributed computation of strong
RSA keys are prohibitively big to use this method on a large scale, one could con-
sider the following alternative solution. Suppose there is a dealer who generates the
RSA keys and splits each of them into parts that are distributed to the card and a num-
ber of sub-SEMs. When parts of the key are distributed, the dealer destroys its copy of
the key.

Assume that the whole procedure of keys generation and secret exponents partition
is deterministic, dependent of a random seed that is distributively generated by the
dealer and sub-SEMs. For the purpose of verification for each key the parties must first
commit to the shares of the seed they generated for that key. Next, some portion of the
keys produced by the dealer as well as the partition of the secret exponents undergo
a verification against commited shares of the seed. The verified values are destroyed
afterwards.
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The BLS key should be generated as described in Subsect. 3, necessarily before the
RSA key is distributed.

Furthermore, each sub-SEMi generates its own secret key Ki to be used for altering
the exponent, and sends it to the card (each sub-SEMi should generate Ki before it
has obtained its part of the RSA exponent). One of the sub-SEMs or a separate entity
designated for timestamping, generates its public key for timestamp signing (also before
the RSA key is distributed). Note that this way there are components of the protocol
beyond the influence of the trusted dealer (the same applies to each of the sub-SEMs).

Another issue are resources of the platform on which the system is implemented on
signer’s side. If the ID-card does not allow to generate the additional, inner signature
efficiently, when the non-CRT implementation of RSA signatures must be executed,
HMAC [37] function might be used as a source of a salt for the EMSA-PSS encoding.
Let KMAC be a key shared by the ID-card and one of the sub-SEM’s, say sub-SEMj .
To generate a signature under message’s digest h(m), salt = HMAC(h(m),KMAC)
is calculated by the ID-card, and the signature generation on the user’s side proceeds
further as described above. On the SEM’s side, after finalization of the RSA signature
the EMSA-PSS encoding value μ is verified. The sub-SEMj possessing KMAC can
now check validity of salt. Note that KMAC might evolve as keys Ki do, and KMAC

might be used instead of Kj (thus one key might be dropped from Eq. (1)). In case
of key-evolution the initial value of KMAC should also be stored by sub-SEMj, to
facilitate a possible investigation.

If BLS is replaced by HMAC, then a more space-efficient encoding function [38]
may be used instead of EMSA-PSS. The scheme uses a single bit value produced by
a pseudorandom number generator on the basis of a secret key (the value is duplicated
by the encoding function). Thus this bit value might be calculated from HMAC(h(m),
KMAC). Note that also in this case the evolution of KMAC is enough to detect the fact
that ID-card has been cloned, even if other keysKi from (1) are not used in the system:
usually a pseudorandom sequence and its shift differ every few possitions.

Yet another aspect that influences the system is the problem of trusted communi-
cation channels between the dealer and the card, and between each sub-SEM and the
card. If these are cryptographic (remote) channels, then, above all, security of the whole
system will depend on the security of the cipher in use. Moreover, if a public-key cipher
is to be used, the question remains as to who is going to generate the public key (and
the corresponding secret key) of the card? It should not be the card itself, neither its
manufacturer. If, on the other hand, a symmetric cipher was used, then how to deliver
the key to the card remains an open question. A distinct symmetric key is needed on the
card for each sub-SEM and, possibly, for the dealer.

Therefore (above all, in order to eliminate the dependence of the signing schemes
from the cipher scheme(s)), the best solution would be to transfer the secret data into
the card directly on site where the data is generated (i.e. at the possible dealer and all the
subsequent sub-SEMs). Such a solution can have its influence on the physical location
of sub-SEMs and/or means of transportation of the cards.

Final Remarks

In this paper we have shown that a number of practical threats for PKI infrastructures
can be avoided. In this way we can address most of the technical and legal challenges
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for proof value of electronic signatures. Moreover, our solutions are obtained by cryt-
pographic means, so they are independent from hardware security mechanisms, which
are hard to evaluate by parties having no sufficient technical insight. In contrast, our
cryptographic solutions against hardware problems are platform independent and self-
evident.
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