
Disguisable Symmetric Encryption Schemes for

an Anti-forensics Purpose�

Ning Ding, Dawu Gu, and Zhiqiang Liu

Department of Computer Science and Engineering
Shanghai Jiao Tong University

Shanghai, 200240, China
{dingning,dwgu,ilu_zq}@sjtu.edu.cn

Abstract. In this paper, we propose a new notion of secure disguisable
symmetric encryption schemes, which captures the idea that the attacker
can decrypt a cipher text he encrypted to different meaningful values
when different keys are put to the decryption algorithm. This notion is
aimed for the following anti-forensics purpose: the attacker can cheat the
forensics investigator by decrypting an encrypted file to a meaningful file
other than that one he encrypted, in the case that he is catched by the
forensics investigator and ordered to hand over the key for decryption.

We then present a construction of secure disguisable symmetric en-
cryption schemes. Typically, when an attacker uses such encryption
schemes, he can achieve the following two goals: if the file he encrypted
is an executable malicious file, he can use fake keys to decrypt it to a
benign executable file, or if the file he encrypted is a data file which
records his malicious activities, he can also use fake keys to decrypt it to
an ordinary data file, e.g. a song or novel file.

Keywords: Symmetric Encryption, Obfuscation, Anti-forensics.

1 Introduction

Computer forensics is usually defined as the set of techniques that can be applied
to understand if and how a system has been used or abused to commit mischief
[8]. The increasing use of forensics techniques has led to the development of
“anti-forensics” techniques that can make this process difficult, or impossible
[2][7][6]. That is, the goal of anti-forensics techniques is to frustrate forensics
investigators and their techniques.

In general, the anti-forensics techniques mainly contains those towards data
wiping, data encryption, data steganography and techniques for frustrating foren-
sics software etc. When an attacker performs an attack on a machine (called the
target machine), there are much evidence of the attack left in the target machine
and his own machine (called the tool machine). The evidence usually includes
malicious data, malicious programs etc. used throughout the attack. To frustrate
� This work was supported by the Specialized Research Fund for the Doctoral Program

of Higher Education (No. 200802480019).

X. Lai et al. (Eds.): E-Forensics 2010, LNICST 56, pp. 241–255, 2011.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011

242 N. Ding, D. Gu, and Z. Liu

forensics investigators to gather such evidence, the attacker usually tries to erase
these evidence from the target machine and the tool machine after or during the
attack. Although erasing the evidence may be the most efficient way to prevent
the attacker from being traced by the forensics investigator, the attacker some-
times needs to store some data and malicious programs in the target machine
or the tool machine so as to continue the attack later. In this case the attacker
may choose to encrypt the evidence and then later decrypt it when needed.

A typical encryption operation for a file (called the plain text) is to first
encrypt it and then erase the plain text. Thus after this encrypting operation,
it seems that there is only the encrypted file (called the cipher text) in the hard
disk and does not exist the plain text. However, some forensics software can
recover the seemingly erased file or retrieve the plain text corresponding to a
cipher text in the hard disk by making use of the physical properties of hard
disks and the vulnerability of the operation systems. Thus, some anti-forensics
researchers proposed some techniques on how to really erase or encrypt data
such that no copy of the data or plain text still exists in the hard disk. By
adopting such anti-forensics techniques, it can be ensured that there exist only
encrypted data left in the machine. Thus, if the encryption scheme is secure in
cryptographic sense, the forensics investigator cannot find any information on
the data if he does not know the private key. Hence it seems that by employing
the really erasing techniques and a secure encryption scheme, the attacker could
realize secure encryption of malicious data and programs and avoid accusation
even if the forensics investigator can gather cipher texts from the target machine
or the tool machine since none can find any information from these cipher texts.
But is this really true in all cases?

Consider such a case. The attacker uses a secure encryption scheme to encrypt
a malicious executable file. But later the forensics investigator catches him and
also controls the tool or target machines absolutely. Suppose the forensics inves-
tigator can further find the encrypted file of the malicious program by scanning
the machine. Then the forensics investigator orders the attacker to hand over the
private key so as to decrypt the file to obtain the malicious program. In this case,
the attacker cannot hand over a fake key to the investigator since by using this
fake key as the decryption key, either the decryption cannot proceed successfully
or even if the decryption can proceed successfully, the decrypted file is usually
not an executable file. This shows to the investigator that the attacker lies to
him. Thus the inquest process will not end unless the attacker hands over the
real key. So it can be seen that the secrecy of the cipher text cannot be ensured
in this case.

The above discussion shows that ordinary encryption schemes may be in-
sufficient for this anti-forensics purpose even if they possess strong security in
cryptographic sense (e.g. IND-CCA2). One method of making the attacker able
of cheating the forensics investigator is to let the encrypted file has multiple valid
decryptions. Namely, each encryption of an executable file can be decrypted to
more than one different executable files. Assuming such encryption schemes ex-
ist, in the above case when ordered to hand over the real key, the attacker can

Disguisable Symmetric Encryption 243

hand over one or more fake keys to the forensics investigator and the cipher text
can be correspondingly decrypted to one or many benign executable programs,
which are not the malicious program. Then the attacker can cheat the investiga-
tor that the program encrypted previously would be actually a benign program
instead of a malicious program. Thus, the forensics investigator cannot accuse
the attacker that he lies to the investigator. We say that an encryption scheme
with such security is disguisable (in anti-forensics setting).

It can be seen that the disguisable encryption may be only motivated for the
anti-forensics purpose and thus the standard encryption study does not inves-
tigate it explicitly and to our knowledge no existing encryption scheme is dis-
guisable. Thus, in this paper we are interested in the question how to construct
disguisable encryption schemes and try to provide an answer to this question.

1.1 Our Result

We provide a positive answer to the above question with respect to the symmet-
ric encryption. That is, we first put forward a definition of secure disguisable
symmetric encryption which captures the idea that a cipher text generated by
the attacker can be decrypted to different meaningful plain texts when using dif-
ferent keys to the decryption algorithm. A bit more precisely, the attacker holds
a real key and several fake keys and uses the real key to encrypt a file to output
the cipher text. Then if the attacker is controlled by the forensics investigator
and ordered to hand over the key to decrypt the cipher text, the attacker can
hand over one or more fake keys and claims that these keys include the real one.
We also require that the forensics investigator cannot learn any information of
the number of all the keys the attacker holds.

Then we present a construction of secure disguisable symmetric encryption
schemes. Informally, our result can be described as follows.

Claim 1. There exists a secure disguisable symmetric encryption scheme.

When an attacker encrypted a file using such encryption schemes, he can cheat
the forensics investigator later by decrypting the encryption of the malicious file
to another file. In particular, if an attacker used a secure disguisable symmetric
encryption scheme to encrypt a malicious executable file and later is ordered
to decrypt the cipher text, then the attacker can decrypt the cipher text to a
benign executable file, or decrypt it to a malicious program other than the real
encrypted one which, however, is unrelated to the attack. Or, if the attacker
encrypted some data file which records his malicious activities, then later he
can decrypt this cipher text to an ordinary data file, such as a song or a novel
file. In both cases, the forensics investigator cannot recognize attacker’s cheating
activities.

For an encryption scheme, all security is lost if the private key is lost. Thus
the attacker who uses a disguisable encryption scheme should ensure that the
keys (the real one and many fakes ones) can be stored in a secure way. In the last
part of this paper, we also provide some discussion on how to securely manage
the keys.

244 N. Ding, D. Gu, and Z. Liu

1.2 Our Technique

Our construction of disguisable symmetric encryption schemes heavily depends
on the the recent result of obfuscating multiple-bit point and set-membership
functions proposed by [4]. Loosely speaking, an obfuscation of a program P
is a program that computes the same functionality as P computes, but any
adversary can only use this functionality and cannot learn anything beyond
it, i.e., the adversary cannot reverse-engineering nor understand the code of
the obfuscated program. A multiple-bit point function MBPFx,y is the one
that on input x outputs y and outputs ⊥ on all other inputs. As shown by
[4], an obfuscation for multiple-bit point functions can be applied to construct
a symmetric encryption scheme: The encryption of a message m with key k is
letting O(MBPFk,m) be the cipher text. To decrypt the cipher text with k is
to compute O(MBPFk,m)(k), which output is m.

Inspired by [4], we find that an obfuscation for multiple-bit set-membership
functions can be used to construct a disguisable symmetric encryption scheme.
A multiple-bit set-membership function MBSF(x1,y1),(x2,y2),···,(xt,yt) is the one
that on input xi outputs yi for. Our idea for constructing a disguisable symmet-
ric encryption scheme is as follows: to encrypt y1 with the key x1, we choose
t − 1 more fake keys x2, · · · , xt and arbitrary y2, · · · , yt and let the obfuscation
of MBSF(x1,y1),(x2,y2),···,(xt,yt) be the cipher text. Thus the cipher text (also
viewed as a program) on input xi outputs yi. This means the cipher text can be
decrypted to many values. In this paper, we will formally illustrate and extend
this basic idea as well as some necessary randomized techniques to construct a
secure disguisable symmetric encryption scheme which can possess the required
security.

1.3 Outline of This Paper

The rest of this paper is as follows. Section 2 presents the preliminaries. Section
3 presents our result, i.e. the definition and the construction of the disguisable
symmetric encryption scheme as well as some discussion of how to securely store
and manage keys for an attacker. Section 4 summarizes this paper.

2 Preliminaries

This section contains the notations and definitions used throughout this paper.

2.1 Basic Notions

A function μ(·), where μ : N → [0, 1] is called negligible if μ(n) = n−ω(1) (i.e.,
μ(n) < 1

p(n) for all polynomial p(·) and large enough n’s). We will sometimes
use neg to denote an unspecified negligible function.

The shorthand “PPT” refers to probabilistic polynomial-time, and we denote
by PPT machines non-uniform probabilistic polynomial-time algorithms unless
stated explicitly.

Disguisable Symmetric Encryption 245

We say that two probability ensembles {Xn}n∈N and {Yn}n∈N are computa-
tionally indistinguishable if for every PPT algorithmA, it holds that |Pr[A(Xn) =
1]−Pr[A(Yn) = 1]| = neg(n). We will sometimes abuse notation and say that the
two random variables Xn and Yn are computationally indistinguishable when each
of them is a part of a probability ensemble such that these ensembles {Xn}n∈N and
{Yn}n∈N are computationally indistinguishable. We will also sometimes drop the
index n from a random variable if it can be infer from the context. In most of these
cases, the index n will be the security parameter.

2.2 Point Functions, Multi-bit Point and Set-Membership Functions

A point function, PFx : {0, 1}n → {0, 1}, outputs 1 if and only if its input
matches x, i.e., PFx(y) = 1 iff y = x, and outputs 0 otherwise. A point function
with multiple-bit output, MBPFx,y : {0, 1}n → {y,⊥}, outputs y if and only
if its input matches x, i.e., MBPFx,y(z) = y iff z = x, and outputs ⊥ other-
wise. A multiple-bit set-membership function, MBSF(x1,y1),···,(xt,yt) : {0, 1}n →
{y1, · · · , yt,⊥} outputs yi if and only if the input matches xi and outputs ⊥
otherwise, where t is at most a polynomial in n.

2.3 Obfuscation

Informally, an obfuscation of a program P is also a program that computes
the same functionality as P but its code can hide all information beyond the
functionality. That is, the obfuscated program is fully “unintelligent” and any
adversary cannot understand nor reverse-engineering it. This paper adopts the
definition of obfuscation proposed by [4][3][9].

Definition 1. Let F be a family of functions. A uniform PPT O is called an
obfuscator of F, if:

Approximate Functionality: for any F ∈ F, Pr[∃x, O(F (x)) �= F (x)] is neg-
ligible. Here the probability is taken over the coin tosses of O.

Polynomial Slowdown: There exists a polynomial p such that, for any F ∈ F,
O(F) runs in time at most p(TF), where TF is the worst-case running-time of F .

Weak Virtual black-box property: For every PPT distinguisher A and any
polynomial p, there is an (non-uniform) PPT simulator S, such that for any
F ∈ F, Pr[A(O(F)) = 1]− Pr[A(SF (1|F |)) = 1] ≤ 1

p(n) .

The theoretical investigation of obfuscation was initialized by [1]. [4] presented
a modular approach to construct an obfuscation for multiple-bit point and set-
membership functions based on an obfuscation for point functions [3][5].

2.4 Symmetric Encryption

We recall the standard definitions of a symmetric (i.e. private-key) encryption
scheme. We start by presenting the syntax definition as follows:

246 N. Ding, D. Gu, and Z. Liu

Definition 2. (Symmetric encryption scheme). A symmetric or private-key en-
cryption scheme SKE = (G; E; D) consists of three uniform PPT algorithms with
the following semantics:
1. The key generation algorithm G samples a key k. We write k← G(1n) where
n is the security parameter.
2. The encryption algorithm E encrypts a message m ∈ {0, 1}poly(n) and pro-
duces a cipher text C. We write C ← E(k; m).
3. The decryption algorithm D decrypts a cipher text C to a message m. We
write m ← D(k; C). Usually, perfect correctness of the scheme is required, i.e.,
that D(k; E(k; m)) = m for all m ∈ {0, 1}poly(n) and all possible k.

Security of encryption schemes. The standard security for encryption is
computational indistinguishability, i.e., for any two different messages m1, m2

with equal bit length, their corresponding cipher texts are computationally in-
distinguishable.

3 Our Result

In this section we propose the definition and the construction of disguisable
symmetric encryption schemes. As shown in Section 1.1, the two typical goals
(or motivation) of this kind of encryption schemes is to either let the attacker
disguise his malicious program as a benign program, or let the attacker disguise
his malicious data as ordinary data.

Although we can present the definition of disguisable symmetric encryption
schemes in a general sense without considering the goal it is intended to achieve,
we still explicitly contain the goal in its definition to emphasis the motivation
of such encryption schemes. In this section we illustrate the definition and con-
struction with respect to the goal of disguising executable files in detail, and omit
those counterparts with respect to the goal of disguising data files. Actually, the
two definitions and constructions are same if we do not refer to the type of the
underlying files.

In Section 3.1, we present the definition of disguisable symmetric encryption
schemes and the security requirements. In Section 3.2 we present a construction
of disguisable symmetric encryption schemes which can satisfy the required secu-
rity requirements. In Section 3.3 we provide some discussion on how to securely
store and manage the keys in practice.

3.1 Disguisable Symmetric Encryption

In this subsection we present the definition of secure disguisable symmetric en-
cryption as follows.

Definition 3. A disguisable symmetric encryption scheme DSKE = (G; E; D)
(for encryption of executable files) consists of three uniform PPT algorithms with
the following semantics:

Disguisable Symmetric Encryption 247

1. The key generation algorithm G on input 1n, where n is the security parame-
ter, samples a real key k and several fake keys FakeKey1, · · · , FakeKeyr. (The
fake keys are also inputs to the encryption algorithm.)

2. The encryption algorithm E on input k, an executable file File ∈ {0, 1}poly(n)

to be encrypted, together with FakeKey1, · · · , FakeKeyr, produces a cipher
text C.

3. The (deterministic) decryption algorithm D on input a key and a cipher text
C (promised to be the encryption of the executable file File) outputs a plain
text which value relies on the key. That is, if the key is k, D’s output is
File. If the key is any fake one generated previously, D’s output is also an
executable file other than File. Otherwise, D outputs ⊥. We require compu-
tational correctness of the scheme. That is, for the random keys generated by
G and E’s internal coins, D works as required except negligible probability.

We remark that in a different viewpoint, we can view that the very key used in
encryption consists of k and all FakeKeyi, and k, FakeKeyi can be named seg-
ments of this key. Thus in this viewpoint our definition essentially means that
decryption operation only needs a segment of the key and behaves differently
on input different segments of this key. However, since not all these segments
are needed to perform correct decryption, i.e., there is no need for the users
of such encryption schemes to remember all segments after performing the en-
cryption, we still name k and all FakeKeyi keys in this paper. We only require
computational correctness due to the obfuscation for MBSF functions underlying
our construction which can only obtain computational approximate functional-
ity (i.e., no PPT algorithm can output a x such that O(F (x)) �= F (x) with
non-negligible probability).

Security of disguisable symmetric encryption schemes. We say DSKE is
secure if the following conditions hold:

1. For any two different executable files File1, File2 with equal bit length, their
corresponding cipher texts are computationally indistinguishable.

2. Assuming there is a public upper bound B on r known to everyone, any
adversary on input a cipher text can correctly guess the value of r with
probability no more than 1

B + neg(n). (This means r should be uniform and
independent of the cipher text.)

3. After the user hands over to the adversary 1 ≤ r′ ≤ r fake key(s) and claims
one of them is the real key and the remainders are fake keys (if r′ ≥ 2), the
adversary cannot distinguish the cipher texts of File1, File2 either. Further,the
conditional probability that the adversary can correctly guess the value of r
is no more than 1

B−r′ + neg(n) if r′ < B. (This means r is still uniform and
independent of the cipher text on the occurrence that the adversary obtains
the r′ fake keys.)

We remark that the first requirement originates from the standard security of
encryption, and that the second requirement basically says that the cipher text
does not contain any information of r (beyond the public bound B), and that the

248 N. Ding, D. Gu, and Z. Liu

third requirement says the requirements 1 and 2 still hold even if the adversary
obtains some fake keys. In fact the second and third requirements are proposed
for the anti-forensics purpose mentioned previously.

3.2 Construction of the Encryption Schemes

In this subsection we present a construction of the desired encryption scheme.
Our scheme heavily depends on the current technique of obfuscating multiple-
bit set-membership functions presented in [4]. The construction in [4] is modular
based on the obfuscation for point functions. As shown by [4], this modularization
construction is secure if the underlying obfuscation for point functions satisfies
some composability. Actually, the known construction of obfuscation for point
function in [3] when using the statistically indistinguishable perfectly one-way
hash functions [5] satisfies such composability, which results in that the construc-
tion in [4] is a secure obfuscation with computational approximate functionality.
We will not review the definitions and constructions of the obfuscation and per-
fectly one-way hash functions in [5][3] and several composability discussed in [4]
here, and refer the readers to the original literature.

We first present a naive scheme in Construction 1 which can illustrate the
basic idea how to construct a multiple-bit set-membership function to realize a
disguisable symmetric encryption. But the drawback of this scheme is that it
cannot possess the desired security. Then we present the final scheme in Con-
struction 2 which can achieve the requirements of secure disguisable encryption
schemes.

Construction 1: We construct a naive scheme DSKE′ = (G; E; D) as follows:

1. G: on input 1n, uniformly sample two n-bit strings independently from
{0, 1}n, denoted k and FakeKey (note Pr[k = FakeKey] = 2−n). k is the
real symmetric key and FakeKey is the fake key. (r is 1 herein.)

2. E: on input k, FakeKey and an executable file File ∈ {0, 1}t, perform the
following computation:

(a) Choose a fixed existing different executable file in the hard disk with bit
length t (if its length is less than t, pad some dummy instructions to
it to satisfy this requirement), denoted FakeFile, and then compute the
following program P .

P ’s description:
input: x
1. in the case x = k, return File;
2. in the case x = FakeKey, return FakeFile;
3. return ⊥;
4. end.

(b) Generate a program Q for P . (It differs from the obfuscation in [4] in
that it does not use a random permutation on two blocks of Q, i.e. lines
1-3 and lines 4-6.)

Disguisable Symmetric Encryption 249

That is, let y denote File and yi denote the ith bit of y. For each i,
if yi = 1 E computes a program Ui as an obfuscation of PFk (point
function defined in Section 2.2), using the construction in [3] employing
the statistically indistinguishable perfectly one-way hash functions in [5],
otherwise E computes Ui as an obfuscation of PFu where u is a uniformly
random n-bit string. Generate a more program U0 as an obfuscation of
PFk.

Similarly, E adopts the same method to compute t obfuscation according
to each bit of FakeFile. Denote by FakeUi these t obfuscation, 1 ≤ i ≤ t.
Generate a more program FakeU0 as an obfuscation of PFFakeKey.
Q’s description:

input: x
1. in the case U0(x) = 1
2. for i = 1 to t let yi ← Ui(x);
3. return y.
4. in the case FakeU0(x) = 1
5. for i = 1 to t let yi ← FakeUi(x);
6. return y;
7. return ⊥.
8. end

Q is the cipher text.

3. D: on input a cipher text c and a key key, it views c as a program and
executes c(key) to output what c outputs as the corresponding plain text.

It can be seen that P actually computes a multiple-bit set-membership func-
tion, defined in Section 2.2, and Q ← E(k, File, FakeKey) possesses the compu-
tational approximate functionality with P . Thus, except negligible probability,
for any File that an attacker wants to encrypt, we have that D(k, Q) = File,
D(Fakekey, Q) = FakeFile. This shows that Definition 3 of disguisable symmetric
encryption schemes is satisfied by DSKE′.

Now the next step is to verify if this encryption is secure with respect to the
security of the disguisable symmetric encryption schemes. That is, we need to
verify if the security requirements are satisfied. However, as we will point out,
DSKE′ is actually insecure with respect to the security requirements. First, since
Q is not a secure obfuscation of P , we cannot establish the indistinguishability
of encryption. Second, the secrecy of r cannot be satisfied. Instead, r is fixed as
1 herein. Thus if the forensics investigator knows the attacker adopts DSKE′ to
encrypt a malicious program and orders the attacker to hand over the two keys,
the attacker may choose either to provide both k, FakeKey or to provide FakeKey
(the attacker claims he only remembers one of the two keys) to the investigator.
In the former case, the forensics investigator can immediately grasp the malicious
program as well as another fake program. Notice that the execution traces of the
two decryptions are not same, i.e. the decryption using the real key always occurs
in Lines 2 and 3 of Q, while the one using the fake key occurs in Lines 5 and 6.

250 N. Ding, D. Gu, and Z. Liu

Thus the investigator can tell the real malicious program from the other one. In
the latter case, the investigator can still judge if the attacker tells him the real
key by checking the execution trace of Q. To achieve the security requirements,
we should overcome the drawbacks of distinguishability of encryption, exposure
of r and execution trace of Q, as the following shows.

We improve the naive scheme by randomizing r over some interval [1, B]
for a public constant B and adopt the secure obfuscation for multiple-bit set-
membership functions in [4] etc. The construction of the desired encryption
scheme is as follows.

Construction 2: The desired encryption scheme DSKE = (G; E; D) is as fol-
lows:

1. G: on input 1n, uniformly sample r + 1 n-bit strings independently from
{0, 1}n, denoted k and FakeKeyi for 1 ≤ i ≤ r. k is the real symmetric key
and FakeKeyi for each i is a fake key.

2. E: on input the secret key k, FakeKey1, · · · , FakeKeyr and an executable file
File ∈ {0, 1}t, perform the following computation:
(a) Choose a fixed existing executable file with bit length t in the hard disk,

denoted File′. Let u0, · · · , ur denote k, FakeKey1, · · · , FakeKeyr. Then uni-
formly and independently choose B−r more strings from {0, 1}n, denoted
ur+1, · · · , uB (the probability that at least two elements in {u0, · · · , uB}
are identical is only neg(n)). Construct two (B + 1)-cell tables K ′ and
F ′ satisfying K ′[i] = ui for 0 ≤ i ≤ B and F ′[0] = File and F ′[i] = File′

for 1 ≤ i ≤ Q.

(b) Generate the following program P , which has the tables K ′, F ′ hard-
wired.

input: x
1. for i = 0 to B do the following
2. if x = K ′[i], return F ′[i];
3. return ⊥;
4. end.

(c) Adopt the method presented in [4] to obfuscate P .
That is, choose a random permutation π from [0, B] to itself and let
K[i] = K ′[π(i)] and F [i] = F ′[π(i)] for all i’s. Then obfuscate the
multiple-bit point functions MBPFK[i],F [i] for all i’s. More concretely,
let yi denote F [i] and yi,j denote the jth bit of yi. For each j, if yi,j = 1
E generates a program Ui,j as an obfuscation of PFK[i] (point function),
using the construction in [3] employing the statistically indistinguishable
perfectly one-way hash functions in [5], otherwise E generates Ui,j as an
obfuscation of PFu where u is a uniformly random n-bit string. Generate
a more program Ui,0 as an obfuscation of PFK[i].

Generate the following program Q, which is an obfuscation of P :

input: x

Disguisable Symmetric Encryption 251

1. for i = 0 to B do the following
2. if Ui,0(x) = 1
3. for j = 1 to t, let yi,j ← Ui,j(x);
4. return yi,j ;
5. return ⊥;
6. end.

Q is the cipher text.

3. D: on input a cipher text c and a key key, it views c as a program and
executes c(key) to output what c outputs as the corresponding plain text.

Since it is not hard to see that DSKE satisfies Definition 3, we now turn to show
that DSKE can achieve the desired security requirements, as the following claims
state.

Claim 2. DSKE satisfies the computational indistinguishability of encryption.

Proof. This claim follows from the result in [4] which ensures that Q is indeed
an obfuscation of P . To prove this claim we need to show that for arbitrary
two files f1 and f2 with equal bit length, letting Q1 and Q2 denote their cipher
texts respectively generated by DSKE, Q1 and Q2 are indistinguishable. For-
mally, we need to show that for any PPT distinguisher A and any polynomial
p, |Pr[A(Q1) = 1]− Pr[A(Q2) = 1]| ≤ 1

p(n) .
Let P1 (resp. P2) denote the intermediate program generated by the encryp-

tion algorithm in encrypting f1 (resp. f2) in step (b). Since Q1 (resp. Q2) is an
obfuscation of P1 (resp. P2), by Definition 1 we have that for the polynomial 3p
there exists a simulator S satisfying |Pr[A(Qi) = 1] − Pr[A(SPi(1|Pi|) = 1]| ≤

1
3p(n) for i = 1, 2.

As |Pr[A(Q1) = 1]− Pr[A(Q2) = 1]| ≤ |Pr[A(Q1) = 1]− Pr[A(SP1(1|P1|)) =
1]| + |Pr[A(Q2) = 1] − Pr[A(SP2 (1|P2|)) = 1]| + |Pr[A(SP1 (1|P1|)) = 1] −
Pr[A(SP2(1|P2|)) = 1]|, to show |Pr[A(Q1) = 1] − Pr[A(Q2) = 1]| ≤ 1

p(n) , it
suffices to show |Pr[A(SP1(1|P1|)) = 1]− Pr[A(SP2(1|P2|)) = 1]| = neg(n).

Let bad1 (resp. bad2) denote the event that in the computation of A(SP1(1|P1|))
(resp. A(SP2(1|P2|))), S queries the oracle with an arbitrary one of the B + 1
keys stored in table K.

It can be seen that on the occurrence of ¬badi, the oracle Pi always re-
sponds ⊥ to S in the respective computation for i = 1, 2. This results in that
Pr[A(SP1) = 1|¬bad1] = Pr[A(SP2) = 1|¬bad2]. Further, since the r + 1 keys
in each computation are chosen uniformly, the probability that at least one
of S’s queries to its oracle equals one of the keys is O(poly(n)

2n), which is a
negligible quantity, since S at most proposes polynomial queries. This means
Pr[badi] = neg(n) for i = 1, 2.

Since Pr[¬badi] = 1 − neg(n), Pr[A(SPi) = 1|¬badi] = Pr[A(SPi)=1,¬badi]

Pr[¬badi]
=

Pr[A(SPi) = 1]+neg(n) or Pr[A(SPi) = 1]−neg(n). Thus we have |Pr[A(SP1) =
1]− Pr[A(SP2) = 1]| = neg(n). So this claim follows as previously stated. �

252 N. Ding, D. Gu, and Z. Liu

Now we need to show that any adversary on input a cipher text can hardly
obtain some information of r (beyond the public bound B).

Claim 3. For any PPT adversary A, A on input a cipher text Q can correctly
guess r with probability no more than 1

B + neg(n).

Proof. Since A’s goal is to guess r (which was determined at the moment of
generating Q), we can w.l.o.g. assume A’s output is in [1, B] ∪ {⊥}, where ⊥
denotes the case that A outputs a value which is outside [1, B] and thus viewed
meaningless.

Then, we construct B PPT algorithms A1, · · · , AB with the following de-
scriptions: Ai on input Q executes A(Q) and finally outputs 1 if A outputs i
and outputs 0 otherwise, 1 ≤ i ≤ B. It can be seen each Ai can be viewed
as a distinguisher and thus for any polynomial p there is a simulator Si for
Ai satisfying that |Pr[Ai(Q) = 1] − Pr[Ai(SP

i (1|P |)) = 1]| ≤ 1
p(n) . Namely,

|Pr[A(Q) = i] − Pr[A(SP
i (1|P |)) = i]| ≤ 1

p(n) for each i. Thus for random r,
|Pr[A(Q) = r]− Pr[A(SP

r (1|P |)) = r]| ≤ 1
p(n) .

Let goodi denote the event that Si does not query its oracle with any one
of the r + 1 keys for each i. On the occurrence of goodi, the oracle P always
responds ⊥ to Si and thus the computation of A(SP

i) is independent of the r+1
keys hidden in P . For the same reasons stated in the previous proof, Pr[A(SP

i) =
r|goodi] = 1

B and Pr[goodi] = 1− neg(n). Thus it can be concluded Pr[A(SP
i) =

r] ≤ 1
B + neg(n) for all i’s. Thus for random r, Pr[A(SP

r) = r] ≤ 1
B + neg(n).

Hence combining this with the result in the previous paragraph, we have for any
p Pr[A(Q) = r] ≤ 1

B + neg(n) + 1
p(n) . Thus Pr[A(Q) = r] ≤ 1

B + neg(n). �

When the attacker is catched by the forensics investigator, and ordered to hand
over the real key and all fake keys, he is supposed to provide r′ fake keys and tries
to convince the investigator that what he encrypted is an ordinary executable
file. After obtaining these r′ keys, the forensics investigator can verify if these
keys are valid. Since Q outputs ⊥ on input any other strings, we can assume
that the attacker always hands over the valid fake keys, or else the investigator
will no end the inquest until the r′ keys the attacker provides are valid. Then
we turn to show that the cipher texts of two plain texts with equal bit length
are still indistinguishable.

Claim 4. DSKE satisfies the computational indistinguishability of encryption,
even if the adversary obtains 1 ≤ r′ ≤ r valid fake keys.

Proof. Assume an arbitrary A obtains a cipher text Q (Q1 or Q2) and r′ fake
keys. Since on input the r′ fake keys as well as their decryptions and the sub-
program in Q which consists of the obfuscated multi-bit point functions corre-
sponding to those unexposed keys, denoted Q′ (Q′

1 or Q′
2), A can generate a

cipher text which is identically distributed to Q, it suffices to show that for any
outcome of the r′ fake keys as well as their decryptions, A′, which is A with them
hardwired, cannot tell Q′

1 from Q′
2. Notice that Q′ is also an obfuscated multi-bit

Disguisable Symmetric Encryption 253

set-membership function. Then adopting the analogous method in the proof of
Claim 2, we have for any polynomial p, |Pr[A′(Q′

1) = 1]−Pr[A′(Q′
2) = 1]| ≤ 1

p(n) .
Details omitted. ��
Lastly, we need to show that after the adversary obtains 1 ≤ r′ ≤ r valid fake
keys where r′ < B, it can correctly guess r with probability nearly 1

B−r′ , as the
following claim states.

Claim 5. For any PPT adversary A, A on input a cipher text Q can correctly
guess r with probability no more than 1

B−r′ + neg(n) on the occurrence that the
adversary obtains 1 ≤ r′ ≤ r valid fake keys for r′ < B.

Proof. The proof is almost the same as the one of Claim 3. Notice that there are
B− r′ possible values left for r and for any outcome of the r′ fake keys and their
decryptions, A with them hardwired can be also viewed as an adversary, and
Q′ (referred to the previous proof) is an obfuscated multi-bit set-membership
function. The remainder proof is analogous. ��
Thus, we have shown that DSKE satisfies all the required security requirements
of disguisable symmetric encryption.

Since for an encryption scheme all security is lost if the key is lost, to put it
into practice we need to discuss the issue of securely storing and management
of these keys, which will be shown in the next subsection.

3.3 Management of the Keys

Since all the keys are generated at random, these keys cannot be remembered
by human’s mind. Actually, by the requirement of the underlying obfuscation
method presented in [4], the min-entropy of a key should be at least super-
logarithmic and the available construction in [5] requires the min-entropy should
be at least nε. By the algorithm of key generation in our scheme, this requirement
can be satisfied.

If an attacker has the strong ability to remember the random keys with nε

min-entropy, he can view these keys as the rememberable passwords and keeps
all keys in his mind. Thus there is no need for him to store the keys (passwords)
and manage them. But actually, we think that it is still hard for human’s mind
to remember several random strings with such min-entropy. On the other hand,
keys or passwords generated by human’s mind are of course not random enough
and thus cannot ensure the security of the encryption schemes.

The above discussion shows that a secure management of keys should be
introduced for attackers. The first attempt towards this goal is to store each key
into a file and the attacker remembers the names of these files. When he needs to
use the real key, he retrieves it from some file and then executes the encryption
or decryption. When the encryption or decryption operation finishes, he should
wipe all the information in the hard disk which records the read/write operation
of this file. However, this attempt cannot eliminate the risk that the forensics
investigator can scan the hard disk to gather all these files and obtain all keys.

254 N. Ding, D. Gu, and Z. Liu

Another solution is to use the obfuscation for multiple-bit set-membership
functions one more time, as the construction 2 illustrates. That is, the attacker
can arbitrarily choose r human-made passwords which can be easily remem-
bered by himself. Let each password correspond to a key (the real one or a
fake one). Then he constructs a program PWD which on each password outputs
the corresponding key. It can be seen that the program PWD also computes a
multiple-bit set-membership function, similar to the program P in Construction
2. Then obfuscate PWD using the similar way.

However, it should be emphasized that to achieve the theoretical security guar-
antee by this obfuscation the passwords should be random with min-entropy nε.
In general the human-made rememberable ones cannot satisfy this requirement,
or else we could directly replace the keys in Construction 2 by these passwords.
So this solution only has a heuristic security guarantee that no forensics inves-
tigator can reverse-engineering nor understand PWD even if he obtains all its
code.

The third solution is to let the attacker store the keys into a hardware device.
However, we think putting all keys in a device is quite insecure since if the
attacker is catched and ordered to hand over keys, he has to hand over this
device and thus all the keys may expose to the investigator.

Actually, we think that it is the two assumptions that result in that we cannot
provide a solution with a theoretical security guarantee. The two assumptions
are that the human’s mind cannot remember random strings with min-entropy
nε and that the forensics investigator can always gather any file he desires from
the attacker’s machine or related devices. Thus to find a scheme for secure man-
agement of keys with a theoretical guarantee, we maybe need to relax at least
one of the assumptions.

We suggest a solution by adopting such relaxation. Our relaxation is that we
assume that the attacker has the ability to store at least a random string with
such min-entropy in a secure way. For instance, this secure way may be to divide
the string into several segments and store the different segments in his mind,
the secret place in the hard disk and other auxiliary secure devices respectively.
Under this assumption, the attacker can store the real key in this secure way
and store some fake keys in different secret places in the hard disk using one or
many solutions presented above or combining different solutions in storing these
fake keys.

4 Conclusions

We now summarize our result as follows. To apply the disguisable symmetric en-
cryption scheme, an attacker needs to perform the following ordered operations.

First, he runs the key generation algorithm to obtain a real key and several
fake keys according to Construction 2. Second, he adopts a secure way to store
the real key as well as storing some fake keys in his hard disk. Third, erase all
possible information generated in the first and second steps. Fourth, prepare a
benign executable file which is of the same length with the malicious program

Disguisable Symmetric Encryption 255

(resp. the data file) he wants to encrypt. Fifth, the attacker can encrypt the ma-
licious program (resp. the data file) if needed. By Construction 2, the encryption
is secure, i.e. indistinguishable.

If the attacker is catched by the forensics investigator and ordered to hand
over keys to decrypt the cipher text of the malicious program (resp. the data
file), he provides several fake keys to the investigator and claims that one of
them is the real key and others are fake. Since all decryption are valid and
the investigator has no idea of the number of the keys, the investigator cannot
distinguish if the attacker lies to him.

References

1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang,
K.: On the (Im)possibility of obfuscating programs. In: Kilian, J. (ed.) CRYPTO
2001. LNCS, vol. 2139, pp. 1–18. Springer, Heidelberg (2001)

2. Berghel, H.: Hiding Data, Forensics, and Anti-forensics. Commun. ACM 50(4),
15–20 (2007)

3. Canetti, R.: Towards realizing random oracles: Hash functions that hide all partial
information. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 455–469.
Springer, Heidelberg (1997)

4. Canetti, R., Dakdouk, R.R.: Obfuscating point functions with multibit output. In:
Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 489–508. Springer,
Heidelberg (2008)

5. Canetti, R., Micciancio, D., Reingold, O.: Perfectly One-way Probabilistic Hash
Functions. In: The 30th ACM Symposium on Theory of Computing, pp. 131–140.
ACM, New York (1998)

6. Garfinkel, S.: Anti-forensics: Techniques, Detection and Countermeasures. In: The
2nd International Conference on i-Warfare and Security (ICIW), ACI, pp. 8–9 (2007)

7. Cabrera, J.B.D., Lewis, L., Mehara, R.: Detection and Classification of Intrusion and
Faults Using Sequences of System Calls. ACM SIGMOD Record 30, 25–34 (2001)

8. Mohay, G.M., Anderson, A., Collie, B., McKemmish, R.D., de Vel, O.: Computer
and Intrusion Forensics. Artech House, Inc., Norwood (2003)

9. Wee, H.: On Obfuscating Point Functions. In: The 37th ACM Symposium on Theory
of Computing, pp. 523–532. ACM, New York (2005)

	Disguisable Symmetric Encryption Schemes for an Anti-forensics Purpose
	Introduction
	Our Result
	Our Technique
	Outline of This Paper

	Preliminaries
	Basic Notions
	Point Functions, Multi-bit Point and Set-Membership Functions
	Obfuscation
	Symmetric Encryption

	Our Result
	Disguisable Symmetric Encryption
	Construction of the Encryption Schemes
	Management of the Keys

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

