Fast in-Place File Carving for Digital Forensics*

Xinyan Zha and Sartaj Sahni

Computer and Information Science and Engineering
University of Florida
Gainesville, FL. 32611
{xzha,sahni}@cise.ufl.edu

Abstract. Scalpel, a popular open source file recovery tool, performs file
carving using the Boyer-Moore string search algorithm to locate head-
ers and footers in a disk image. We show that the time required for file
carving may be reduced significantly by employing multi-pattern search
algorithms such as the multipattern Boyer-Moore and Aho-Corasick al-
gorithms as well as asynchronous disk reads and multithreading as typi-
cally supported on multicore commodity PCs. Using these methods, we
are able to do in-place file carving in essentially the time it takes to read
the disk whose files are being carved. Since, using our methods, the lim-
iting factor for performance is the disk read time, there is no advantage
to using accelerators such as GPUs as has been proposed by others. To
further speed in-place file carving, we would need a mechanism to read
disk faster.

Keywords: Digital forensics, Scalpel, Aho-Corasick, multipattern Boyer-
Moore, multicore computing, asynchronous disk read.

1 Introduction

The normal way to retrieve a file from a disk is to search the disk directory,
obtain the file’s metadata (e.g., location on disk) from the directory, and then
use this information to fetch the file from the disk. Often, even when a file has
been deleted, it is possible to retrieve a file using this method as typically when
a file is deleted, a delete flag is set in the disk directory and the remainder of
the directory metadata associated with the deleted file unaltered. Of course, the
creation of new files or changes to remaining files following a delete may make
it impossible to retrieve the deleted file using the disk directory as the new files’
metadata may overwrite the deleted file’s metadata in the directory and changes
to the remaining files may use the disk blocks previously used by the deleted file.

In file carving, we attempt to recover files from a target disk whose directory
entries have been corrupted. In the extreme case the entire directory is corrupted
and all files on the disk are to be recovered using no metadata. The recovery of
disk files in the absence of directory metadata is done using header and footer

* This research was supported, in part, by the National Science Foundation under
grants 0829916 and CNS-0963812.

X. Lai et al. (Eds.): E-Forensics 2010, LNICST 56, pp. 141-{158,[2011.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2011

142 X. Zha and S. Sahni

information for the file types we wish to recover. Figure [I] gives the header
and footer for a few popular file types. This information was obtained from
the Scalpel configuration file [9]. \x[0-f][0-f] denotes a hexadecimal value while
\[0-3][0-7][0-7] is an octal value. So, for example, “\x4F\123\I\sCCI” decodes to
“OSI CCI”. In file carving, we view a disk as being serial storage (the serialization
being done by sequentializing disk blocks) and extract all disk segments that lie
between a header and its corresponding footer as being candidates for the files to
be recovered. For example, a disk segment that begins with the string “<html”
and ends with the string “</html>" is carved into an htm file.

Since a file may not actually reside in a consecutive sequence of disk blocks, the
recovery process employed in file carving is clearly prone to error. Nonetheless,
file carving recovers disk segments delimited by a header and its corresponding
footer that potentially represent a file. These recovered segments may be ana-
lyzed later using some other process to eliminate false positives. Notice that some
file types may have no associated footer (e.g., tzt files have a header specified in
Figure[[lbut no footer). Additionally, even when a file type has a specified header
and a footer one of these may be absent in the disk because of disk corruption
(for example). So, additional information (such as maximum length of file to be
carved for each file type) is used in the file carving process. See [7] for a review
of file carving methods.

Scalpel [9] is an improved version of the file carver Foremost [I3]. At present,
Scalpel is the most popular open source file carver available. Scalpel carves files
in two phases. In the first phase, Scalpel searches the disk image to determine
the location of headers and footers. This phase results in a database with entries
such as those shown in Figure @l This database contains the metadata (i.e.,
start location of file, file length, file type, etc.) for the files to be carved. Since
the names of the files cannot be recovered (as these are typically stored only in
the disk directory, which is presumed to be unavailable), synthetic names are
assigned to the carved files in the generated metadata database.

The second phase of Scalpel uses the metadata database created in the first
phase to carve files from the corrupted disk and write these carved files to a
new disk. Even with maximum file length limits placed on the size of files to be
recovered, a very large amount of disk space may be needed to store the carved
files. For example, Richard et al. [IT] reports a recovery case in which “carving
a wide range of file types for a modest 8GB target yielded over 1.1 million files,
with a total size exceeding the capacity of one of our 250GB drives.”

file type header footer
gif \x47\x49\x46\x38\x37\x61 \x00\x3b
gif \x47\x49\x46\x38\x39\x61 \x00\x3b
ipg \xfF\xd8\xff\xe0\x00\x10 \xfF\xd9
htm <html </html>
txt ——BEGIN\040PGP

zip PK\x03\x04 \x3c\xac

Fig. 1. Example headers and footers in Scalpel’s configuration file

Fast in-Place File Carving for Digital Forensics 143

As observed by Richard et al. [11], because of the very large number of false
positives generated by the file carving process, file carving can be very expensive
both in terms of the time taken and the amount of disk space required to store
the carved files. To overcome these deficiencies of file carving, Richard et al.
[11] propose in-place file carving, which essentially generates only the metadata
database of Figure[2l The metadata database can be examined by an expert and
many of the false positives eliminated. The remaining entries in the metadata
database may be examined further to recover only desired files. Since the runtime
of a file carver is typically dominated by the time for phase 2, on-line file carvers
take much less time than do file carvers. Additionally, the size of even a 1 million
entry metadata database is less than 60MB [I1]. So, in-place carving requires
less disk space as well.

Although in-place file carving is considerably faster than file carving, it still
takes a large amount of time. For example, in-place file carving of an 16GB flash
drive with a set of 48 rules (header and footer combinations) using the first phase
of Scalpel 1.6 takes more than 30 minutes on an AMD Athlon PC equipped with
a 2.6GHZ Core2Duo processor and 2GB RAM. Marziale et al. [10] have proposed
the use of massive threads as supported by a GPU to improve the performance of
an in-place file carver. In this paper, we demonstrate that hardware accelerators
such as GPUs are of little benefit when doing an in-place file carving. Specifically,
by replacing the search algorithm used in Scalpel 1.6 with a multipattern search
algorithm such as the multipattern Boyer Moore [15/8/14] and Aho-Corasick [1]
algorithms and doing disk reads asynchronously, the overall time for in-place file
carving using Scalpel 1.6 becomes very comparable to the time taken to just
read the target disk that is being carved. So, the limiting factor is disk I/O and
not CPU processing. Further reduction in the time spent searching the target
disk for footers and headers, as possibly attainable using a GPU, cannot possibly
reduce overall time to below the time needed to just read the target disk. To get
further improvement in performance, we need improvement in disk I/0.

The remainder of the paper is organized as follows. Section [2 describes the
search process employed by Scalpel 1.6 to identify headers and footers in the
target disk. In Sections Bl and @] respectively, we describe the Boyer-Moore and
Aho-Corasick multipattern matching algorithms. Our dual-core search strategy
is described in Section [l and our asynchronous read strategy is described in
Section Bl In Section [1l we describe strategies for a multicore in-place file carver.
Experimental results demonstrating the effectiveness of our methods are pre-
sented in Section 8

filename start truncated length image
gif/0000001.gif 27465839 NO 2746 /tmp/linux-image
gif/0000006.gif 45496392 NO 4234 /tmp/linux-image
jpg/0000047.jpg 55645747 NO 675 /tmp/linux-image
htm/0000013.htm 23123244 NO 823 /tmp/linux-image
txt/0000021.txt 34235233 NO 56 /tmp/linux-image
zip/0000008.zip 76452352 NO 1423646 /tmp/linux-image

Fig. 2. Examples of in-place file carving output

144 X. Zha and S. Sahni

2 In-Place Carving Using Scalpel 1.6

There are essentially two tasks associated with in-place carving—(a) identify the
location of specified headers and footers in the target disk and (b) pair headers
and corresponding footers while respecting the additional constraints (e.g., max-
imum file length) specified by the user. The time required for (b) is insignificant
compared to that required for (a). So, we focus on (a).

Scalpel 1.6 locates headers and footers by searching the target disk using
a buffer of size 10MB. Figure Bla) gives the high-level control flow of Scalpel
1.6. A 10MB buffer is filled from disk and then searched for headers and footers.
This process is repeated until the entire disk has been searched. When the search
moves from one buffer to the next, care is exercised to ensure that headers/footers
that span a buffer boundary are detected. Searching within a buffer is done
using the algorithm of Figure B(b). In each buffer, we first search for headers.
The search for headers is followed by a search for footers. Only non-null footers
that are within the maximum carving length of an already found header are
searched for.

|

for (i=1;i<p;i++)
search for headeri

v !
read buffer for (i=1;i<p;i++)
if (headeri found &&
footeri <> empty &&
A 4 currentpos-headeripos

search buffer <maxcarvesize)
search footeri

(a) Scalpel 1.6 algorithm (b) search algorithm

Fig. 3. Control flow Scalpel 1.6

To search a buffer for an individual header of footer, Scalpel 1.6 uses the
Boyer-Moore pattern matching algorithm [4], which was developed to find all
occurrences of a pattern P in a string S.. This algorithm begins by positioning
the first character of P at the first character of S. This results in a pairing of the
first |P| characters of S with characters of P. The characters in each pair are
compared beginning with those in the rightmost pair. If all pairs of characters
match, we have found an occurrence of P in S and P is shifted right by 1 char-
acter (or by |P| if only non-overlapping matches are to be found). Otherwise,
we stop at the rightmost pair (or first pair since we compare right to left) where
there is a mismatch and use the bad character function for P to determine how

Fast in-Place File Carving for Digital Forensics 145

many characters to shift P right before re-examining pairs of characters from
P and S for a match. More specifically, the bad character function for P gives
the distance from the end of P of the last occurrence of each possible character
that may appear in S. So, for example, if the characters of S are drawn from the
alphabet {a, b, ¢, d}, the bad character function, B, for P = “abcabcd” has B(a)
=4,B(b) =3, B(c)=2, and B(d) = 1. In practice, many of the shifts in the
bad character function of a pattern are close to the length, |P|, of the pattern P
making the Boyer-Moore algorithm a very fast search algorithm. In fact, when
the alphabet size is large, the average run time of the Boyer-Moore algorithm is
O(]S|/|P]). Galil [5] has proposed a variation for which the worst-case run time
is O(|S]). Horspool [6] proposes a simplification to the Boyer-Moore algorithm
whose performance is about the same as that of the Boyer-Moore algorithm.

Even though the Boyer-Moore algorithm is a very fast way to find all oc-
currences of a pattern in a string, using it in our in-place carving application
isn’t optimal because we must use the algorithm once for each pattern (head-
er/footer) to be searched. So, the time to search for all patterns grows linearly
in the number of patterns. Locating headers and footers using the Boyer-Moore
algorithm, as is done in Scalpel 1.6, takes O(mn) time where m is the number of
file types being searched and n is the size of the target disk. Consequently, the
run time for in-place carving grows linearly with both the number of file types
and the size of the target disk. Doubling either the number of file types or the
disk size will double the expected run time; doubling both will quadruple the
run time. However, when a multipattern search algorithm is used, the run time
is O(n) (both expected and worst case). That is, the time is independent of the
number of file types. Whether we are searching for 20 file types or 40, the time
to find the locations of all headers and footers is the same!

3 Multipattern Boyer-Moore Algorithm

Several multipattern extensions to the Boyer-Moore search algorithm have been
proposed [2ITHT48]. All of these multipattern search algorithms extend the basic
bad character function employed by the Boyer-Moore algorithm to a bad char-
acter function for a set of patterns. This is done by combining the bad character
functions for the individual patterns to be searched into a single bad character
function for the entire set of patterns. The combined bad character function B
for a set of p patterns has
B(c) =min{B;(c),1 <i<p}

for each character c in the alphabet. Here B; is the bad character function for the
ith pattern. The Set-wise Boyer-Moore algorithm of [14] performs multipattern
matching using this combined bad function. The multipattern search algorithms
of [2IT5I8] employ additional techniques to speed the search further. The average
run time of the algorithms of [2IT58] is O(|S|/minL), where minL is the length
of the shortest pattern. Baeza and Gonnet [3] extend multipattern matching to
allow for don’t cares and complements in patterns. This extension isn’t required
for our in-place file carving application.

146 X. Zha and S. Sahni

abcaabb
abcaabbcc
acb
acbccabb
ccabb
bcecabe
bbccabca

Fig. 4. An example pattern set

4 Aho-Corasick Algorithm

The Aho-Corasick algorithm [I] for multipattern matching uses a finite automa-
ton to process the target string S. When a character of the target string is
examined, one or more finite automaton moves are made. Aho and Corasick [I]
propose two versions of their automaton—unoptimized and optimized—for multi-
pattern matching. In the unoptimized version, there is a failure pointer for each
state while in the optimized version, which we propose using for in-place file
carving, no state has a failure pointer. In both versions, each state has success
pointers and each success pointer has an associated label, which is a character
from the string alphabet. Also, each state has a list of patterns/rules (from the
pattern database) that are matched when that state is reached by following a
success pointer. This is the list of matched rules.

In the unoptimized version, the search starts with the automaton start state
designated as the current state and the first character in the text string, .S, that
is being searched designated as the current character. At each step, a state tran-
sition is made by examining the current character of S. If the current state has a
success pointer labeled by the current character, a transition to the state pointed
at by this success pointer is made and the next character of S becomes the cur-
rent character. When there is no corresponding success pointer, a transition to
the state pointed at by the failure pointer is made and the current character
is not changed. Whenever a state is reached by following a success pointer, the
rules in the list of matched rules for the reached state are output along with the
position in S of the current character. This output is sufficient to identify all
occurrences, in S, of all database strings. Aho and Corasick [I] have shown that
when their unoptimized automaton is used, the total number of state transitions
is 2n, where n is the length of S.

In the optimized version, each state has a success pointer for every character
in the alphabet and so, there is no failure pointer. Aho and Corasick [I] show
how to compute the success pointer for pairs of states and characters for which
there is no success pointer in the unoptimized automaton thereby transforming a
unoptimized automaton into an optimized one. The number of state transitions
made by an optimized automaton when searching for matches in a string of
length n is n.

Fast in-Place File Carving for Digital Forensics 147

Fig. 6. Optimized Aho-Corasick automata for strings of Figure @l

Figure M shows an example set of patterns drawn from the 3-letter alphabet
{a,b,c}. Figures[Bland [l respectively, show the unoptimized and optimized Aho-
Corasick automata for this set of patterns.

148 X. Zha and S. Sahni

!

read buffer

I
| |

search left half buffer search right half buffer

| |
¢

Fig. 7. Control flow for 2-threaded search

5 Multicore Searching

Contemporary commodity PCs have either a dualcore or quadcore processor.
We may exploit the availability of more than one core to speed the search for
headers and footers. This is done by creating as many threads as the number of
cores (experiments indicate that there is no performance gain when we use more
threads than the number of cores). Each thread searches a portion of the string
S. So, if the number of threads is ¢, each thread searches a substring of size |S|/¢
plus the length of the longest pattern minus 1. Figure [[shows the control flow
when two threads are used to do the search.

6 Asynchronous Read

Scalpel 1.6 fills its search buffer using synchronous (or blocking) reads of the
target disk. In a synchronous read, the CPU is unable to do any computing
while the read is in progress. Contemporary PCs, however, permit asynchronous
(or non-blocking) reads of disk. When an asynchronous read is done, the CPU
is able to perform computations that do not involve the data being read from
disk while the disk read is in progress. When asynchronous reads are used, we
need two buffers—active and inactive. In the steady state, our computer is doing
an asynchronous read into the inactive buffer while simultaneously searching the
active buffer. When the search of the active buffer completes, we wait for the
ongoing asynchronous read to complete, swap the roles of the active and inactive
buffers, initiate a new asynchronous read into the current inactive buffer, and
proceed to search the current active buffer. This is stated more formally in
Figure B

Let Tycqq be the time needed to read the target disk and let Tseqren be the
time needed to search for headers and footers (exclusive of the time to read
from disk). When synchronous reads are used as in Figure Bl the total time for
in-place carving is approximately Tyeqd + Tsearch (note that the time required

Fast in-Place File Carving for Digital Forensics 149

Algorithm Asynchronous
begin
read activebuffer
repeat
if there is more input
asynchronous read inactivebuffer
search activebuffer
wait for asynchronous read (if any) to complete
swap the roles of the 2 buffers
until dome
end

Fig. 8. In-place carving using asynchronous reads

for task (b) of in-place carving is relatively small). When asynchronous reads
are used, all but the first buffer is read concurrently with the search of another
buffer. So, the time for each iteration of the repeat-until loop is the larger of
the time to read a buffer and that to search the buffer. When the buffer read
time is consistently larger than the buffer search time or when the buffer search
time is consistently larger than the buffer read time, the total in-place carving
time using asynchronous reads is approximately max{T ead, Tsearch }- Therefore,
using asynchronous reads rather than synchronous reads has the potential to
reduce run time by as much as 50%. The search algorithms of Sections 2] and
Bl other than the Aho-Corasick algorithm, employ heuristics whose effectiveness
depends on both the rule set and the actual contents of the buffer being searched.
As a result, it is entirely possible that when we search one buffer, the read time
exceeds the search time while when another buffer is searched, the read time
exceeds the search time. So, when these search methods are used, it is possible
that the in-place carving time is somewhat more than max{T}cad, Tscarch }-

7 Multicore in-Place Carving

In Section [l we saw how to use multiple cores to speed the search for headers and
footers. Task (a) of in-place carving, however, needs to both read data from disk
and search the data that is read. There are several ways in which we can utilize
the available cores to perform both these tasks. The first is to use synchronous
reads followed by multicore searching as described in Section Bl We refer to this
strategy as SRMS (synchronous read multicore search). Extension to a larger
number of cores is straightforward.

The second possibility is to use one thread to read a buffer using a synchronous
read and the second to do the search (Figure [d). We refer to this strategy as
SRSS (single core read and single core search).

A third possibility is to use 4 buffers and have each thread run the asyn-
chronous read algorithm of Figure[§ as shown in Figures [0 and [[1l In Figure
the threads are synchronized for every pair of buffers searched while in Figure[IT],

150 X. Zha and S. Sahni

read activebuffer

A 4

[]

read inactivebuffer search activebuffer

y

swap active & inactive buffer roles

Fig. 9. Control flow for single core read and single core search (SRSS)

read activebufferl, activebuffer2 |
[

v
| |
if there is more input if there is more input
asynchronous read inactivebufferl asynchronous read inactivebuffer2
search activebufferl search activebuffer2
wait for asynchronous read (if any) to complete wait for asynchronous read (if any) to complete
swap the roles of the 2 buffers swap the roles of the 2 buffers

Fig. 10. Control flow for multicore asynchronous read and search (MARS1)

the synchronization is done only when the entire disk has been searched. So, us-
ing the strategy of Figure [I0] each thread processes the same number of buffers
(except when the number of buffers of data is odd). When the time to fill a buffer
from disk consistently exceeds the time to search that buffer, the strategy of Fig-
ure [[T] also processes the same number of buffers per thread. However, when the
buffer fill time is less than the search time and there is sufficient variability in
the time to search a buffer, it is possible, using the strategy of Figure [Tl for
one thread to process many more buffers than processed by the other thread.
In this case, the strategy of Figure [II] will outperform that of Figure M0 For
our application, the time to fill a buffer exceeds the time to search it excepts
when the number of rules is large (more than 30) and the search is done using
an algorithm such as Boyer Moore (as is the case in Scalpel 1.6), which is not

Fast in-Place File Carving for Digital Forensics 151

read activebufferl, activebuffer2

)

repeat repeat

if there is more input if there is more input

asynchronous read inactivebufferl asynchronous read inactivebuffer2

search activebufferl search activebuffer2

wait for asynchronous read (if any) to complete wait for asynchronous read (if any) to complete
swap the roles of the 2 buffers swap the roles of the 2 buffers

until done until done

}

Fig. 11. Another control flow for multicore asynchronous read and search (MARS2)

designed for multipattern search. Hence, we expect both strategies to have simi-
lar performance. We refer to these strategies as MARS1 (multicore asynchronous
read and search) and MARS2, respectively.

8 Experimental Results

We evaluated the strategies for in-place carving proposed in this paper using
a dual processor,dual core AMD Athlon (2.6GHZ Core2Duo processor, 2GB
RAM). We started with Scalpel 1.6 and shut off its second phase so that it
stopped as soon as the metadata database of carved files was created. All our
experiments used pattern/rule sets derived from the 48-rules in the configuration
file in [I2]. From this rule set we generated rule sets of smaller size by selecting
the desired number of rules randomly from this set of 48 rules. We used the
following search strategies: Boyer Moore as used in Scalpel 1.6 (BM); SBM-S
(set-wise Boyer Moore-simple), which uses the combined bad character function
given in Section Bl and the search algorithm employed in [14]; SBM-C (set-wise
Boyer-Moore-complex) [I5]; WuM [§]; and Aho Corasick (AC). Our experiments
were designed to first measure the impact of each strategy proposed in the paper.
These experiments were done using as our target disk a 16GB flash drive. All
times reported in this paper are the average from repeating the experiment five
times. A final experiment was conducted by coupling several strategies to obtain
a new “best performance” Scalpel in-place carving program. This program is
called FastScalpel. For this final experiment, we used flash drives and hard disks
of varying capacity.

8.1 Run Time of Scalpel 1.6

Our first experiment analyzed the run time of in-place carving. Figure [I2] shows
the overall time to do an in-place carve of our 16GB flash drive as well as time

152 X. Zha and S. Sahni

number of [12 24 36 48
carving rules

total time 967s 1069s 1532s 1788s 1905s
disk read 833s 833s 833s 833s 833s
search 133s 232s 693s 947s 1063s
other 1s 4s 6s 8s 9s

Fig. 12. In-place carving time by Scalpel 1.6 for a 16GB falshdisk

buffer size 100KB 1MB 10MB 20MB
time 2030s 1895s 1905s 1916s

Fig. 13. In-place carving time by Scalpel 1.6 with different buffer size with 48 carving
rules

spent to read the disk and that spent to search the disk for headers and footers.
The time spent on other tasks (this is the difference between the total time and
the sum of the read and search times) also is shown. As can be seen, the search
time increases with the number of rules. However, the increase in search time isn’t
quite linear in the number of rules because the effectiveness of the bad character
function varies from one rule to the next. For small rule sets (approximately 30
or less), the input time (time to read from disk) exceeds the search time while
for larger rule sets, the search time exceeds the input time. The time spent on
activities other than input and search is very small compared to that spent on
search and input for all rule sets. So, to reduce overall time, we need to focus on
reducing the time spent reading data from the disk and the time spent searching
for headers and footers.

8.2 Buffer Size

Scalpel 1.6 spends almost all of its time reading the disk and searching for head-
ers and footers (Figure[I2)). The time to read the disk is independent of the size
of the processing buffer as this time depends on the disk block size used rather
than the number of blocks per buffer. The search time too is relatively insensitive
to the buffer size as changing the buffer size affects only the number of times
the overhead of processing buffer boundaries is incurred. For large buffer sizes
(say 100K and more), this overhead is negligible. Although the time spent on
“other” tasks is relatively small when the buffer size is 10MB (as used in Scalpel
1.6), this time increases as the buffer size is reduced. For example, Scalpel 1.6
refreshes the progress bar following the processing of each buffer load. When
the buffer size is reduced from 10MB to 100KB, this refresh is done 100 times
as often. The variation in time spent on “other” activities results in a varia-
tion in the run time of Scalpel 1.6 with changing buffer size. Figure [I3] shows
the in-place carving time by Scalpel 1.6 with different buffer size with 48 carv-
ing rules. This variation may be virtually eliminated by altering the code for the

Fast in-Place File Carving for Digital Forensics 153

number of [12 24 36 48
carving rules

BM 133s 232s 693s 947s 1063s
SBM-S 99s 108s 124s 132s 158s
SBM-C 107s 117s 142s 155s 178s
‘WuM 206s 205s 201s 219s 212s
AC 63s 62s 64s 65s 64s

Fig. 14. Search time for a 16GB flash drive

number of 6 12 24 36 48
carving rules

SBM-S 1.34 2.15 5.59 7.17 6.73
SBM-C 1.24 1.98 4.88 6.09 5.97
WuM 0.64 1.13 3.45 4.32 5.01
AC 2.11 3.74 10.83 14.57 16.61

Fig. 15. Speedup in search time relative to Boyer-Moore

“other” components to (say) refresh the progress bar after every (say) 10 MB of
data has been processed, thereby eliminating the dependency on buffer size. So,
we can get the same performance using a much smaller buffer size.

8.3 Multipattern Matching

Figure [[4 shows the time required to search our 16GB flash drive for head-
ers and footers using different search methods. This time does not include the
time needed to read from disk to buffer or the time to do other activities (see
Figure [[2)). Figures [[H and give the speedup achieved by the various mul-
tipattern search algorithms relative to the Boyer-Moore search algorithm that
is used in Scalpel 1.6. As can be seen, the run time is fairly independent of the
number of rules when the Aho-Corasick (AC) multipattern search algorithm is
used. Although the theoretical expected run time of the remaining multipattern
search algorithms (SBM-S, SBM-C, and WuM) is independent of the number of
search patterns, the observed run time shows some increase with the increase
in number of patterns. This is because of the variability in the effectiveness of
the heuristics employed by these methods and the fact that our experiment is
limited to a single rule set for each rule set size. Employing a large number of
rule sets for each rule set size and searching over many different disks should
result in an average time that does not increase with rule set size. The Aho-
Corasick multipattern search algorithm is the clear winner for all rule set sizes.
The speedup in search time when this method is used ranges from a low of 2.1
when we have 6 rules to a high of 17 when we have 48 rules.

8.4 Multicore Searching

Figure [gives the time to search our 16GB flash drive (exclusive of the time
to read from the drive to the buffer and exclusive of the time spent on “other”

154 X. Zha and S. Sahni

12

36 48

number of file rules

Fig. 16. Multi-Pattern Search Algorithms Speedup

Algorithms

BM
SBM-S
SBM-C
‘WuM
AC

Fig. 17. Time to search using dualcore strategy with 24 rules

number of 6
carving rules

BM 843s
SBM-S 838s
SBM-C 832s
‘WuM 840s
AC 832s

Fig. 18. In-place carving time using Algorithm Asynchronous

unthreaded

693s
124s
142s
201s
64s

12

855s
837s
843s
841s
834s

2 threads

380s
88s
99s
149s
58s

24 36

968s 966s
839s 888s
837s 829s
840s 843s
828s 833s

speedup

1.82
1.41
1.43

1.10

48

1100s
847s
847s
842s
828s

activities) using 24 rules and the dualcore search strategy of Section Bl The
column labeled “unthreaded” is the same as that labeled “24” in Figure T4l Al-
though the search task is easily partitioned into 2 or more threads with little
extra work required to ensure that matches that cross partition boundaries are
not missed, the observed speedup from using 2 threads on a dualcore processor
is quite a bit less than 2. This is due to the overhead associated with spawning
and synchronizing threads. The impact of this overhead is very noticeable when
the search time for each thread launch is relatively small as in the case of AC

Fast in-Place File Carving for Digital Forensics 155

number of 6 12 24 36 48
carving rules

BM 961s 987s 1217s 1338s 1393s
SBM-S 942s 944s 953s 958s 944s
SBM-C 948s 937s 928s 935s 979s
‘WuM 978s 977s 975s 987s 1042s
AC 924s 925s 929s 927s 973s

Fig. 19. In-place carving time using SRMS

number of 6 12 24 36 48
carving rules

BM 846 826 937s 932s 1006s
SBM-S 849s 850s 849s 844s 881s
SBM-C 852s 847s 844s 854s 845s
‘WuM 843s 837s 870s 843s 833s
AC 850s 852s 852s 852s 849s

Fig. 20. In-pace carving time using SRSS

number of 6 12 24 36 48
carving rules

BM 909s 912s 943s 938s 1011s
SBM-S 907s 907s 908s 908s 909s
SBM-C 904s 906s 905s 907s 917s
WuM 906s 906s 907s 908s 908s
AC 904s 903s 902s 904s 904s

Fig. 21. In-place carving time using MARS2

and less noticeable when this search time is large as in the case of BM. In the
case of AC, we get virtually no speedup in total search time using a dualcore
search while for BM, the speedup is 1.8.

8.5 Asynchronous Read

Figure [I8 gives the time taken to do an in-place carving of our 16GB disk using
Algorithm Asynchronous (Figure B]). The measured time is generally quite close
to the expected time of max{T;cad, Tscarch }- A notable exception is the time for
BM with 24 rules where the in-place carving time is substantially more than
max{833,693} = 833 (see Figure[[2)). This discrepancy has to do with variation
in the effectiveness of the bad character heuristic used in BM from one buffer
to the next as explained at the end of Section [6l Although using asynchronous
reads, we are able to speedup Scalpel 1.6 by a factor of almost 2 when the
number of rules is 48, this isn’t sufficient to overcome the inherent inefficiency
of using the Boyer-Moore search algorithm in this application over using one of
the stated multipattern search algorithms.

156 X. Zha and S. Sahni

number of 6 12 24 36 48
carving rules

Scalpel 1.6(16GB) 967s 1069s 1532s 1788s 1905s
FastScalpel(16GB) 832s 834s 828s 833s 828s
Speedup(16GB) 1.16 1.28 1.85 2.15 2.31
Scalpel 1.6(32GB) 1581s 1737s 2573s 3263s 3386s
FastScalpel(32GB) 1443s 1460s 1448s 1447s 1438s
Speedup(32GB) 1.10 1.19 1.78 2.26 2.35
Scalpel 1.6(75GB) 3766s 4150s 6348s 7801s 8307s
FastScalpel(75GB) 3376s 3393s 3386s 3375s 3396s
Speedup(75GB) 1.12 1.22 1.87 2.31 2.45

Fig. 22. In-place carving time and speedup using FastScalpel and Scalpel 1.6

2.4 1 —&— 16GB Flashdisk
—=&— 32GB Harddisk
75GB Harddisk

2.2 1

1.8 1
1.6 1

1.4 1

1.2 1 /-

6 12 24 36 48
number of file rules

Fig. 23. Speedup of FastScalpel relative to Scalpel 1.6

8.6 Multicore in-Place Carving

Figures [[9 through 211 respectively, give the time taken by the multicore carv-
ing strategies SRMS, SRSS, and MARS2 of Section [l When the Boyer-Moore
search algorithm is used, a multicore strategy results in some improvement over
Algorithm Asynchronous only when we have a large number of rules (in our
experiments, 24 or more rules) as when the number of rules is small, the search
time is dominated by the read time and the overhead of spawning and synchro-
nizing threads. When a multipattern search algorithm is used, no performance
improvement results from the use of multiple cores. Although we experimented
only with a dualcore, this conclusion applies to a large number of cores, GPUs,
and other accelerators as the bottleneck is the read time from disk and not the
time spent searching for headers and footers.

8.7 Scalpel 1.6 vs. FastScalpel

Based on our preliminary experiments, we modified the first phase of Scalpel 1.6
in the following way:

Fast in-Place File Carving for Digital Forensics 157

1. Replace the synchronous buffer reads of Scalpel 1.6 by asynchronous reads.
2. Replace the Boyer-Moore search algorithm used in Scalpel 1.6 by the Aho-
Corasick multipattern search algorithm

We refer to this modified version as FastScalpel. Although FastScalpel uses the
same buffer size (10MB) as used by Scalpel 1.6, we can reduce the buffer size to
tens of KBs without impacting performance provided we modify the code for the
”other” components of Scalpel 1.6 as described in Section The performance
of FastScalpel relative to Scalpel 1.6 was measured using a variety of target disks.
Figure22 gives the measured in-pace carving time as well as the speedup achieved
by FastScalpel relative to Scalpel 1.6. Figure 23] plots the measured speedup. The
16GB disk used in these experiments is a flash disk while the 32GB and 75GB disks
are hard drives. While speedup increases as we increase the size of the rule set, the
speedup is relatively independent of the disk size and type. The speedup ranged
from about 1.1 when the rule set size is 6 to about 2.4 when the rule set size is 48.
For larger rule sets, we expect even greater speedup. Since the total time taken
by FastScalpel is approximately equal to the time to read the disk being carved,
further speedup is possible only by reducing the time to read the disk. This would
require a higher bandwidth between the disk and buffer.

9 Conclusions

We have analyzed the performance of the popular file-carving software Scalpel
1.6 and determined that this software spend almost all of its time reading from
disk and searching for headers and footers. The time spent on the latter activity
may be drastically reduced (by a factor of 17 when we have 48 rules) by re-
placing Scalpel’s current search algorithm (Boyer Moore) by the Aho-Corasick
algorithm. Further, by using asynchronous disk reads, we can fully mask the
search time by the read time and do in-place carving in essentially the time it
takes to read the target disk. FastScalpel is an enhanced version of Scalpel 1.6
that uses asynchronous reads and the Aho-Corasick multipattern search algo-
rithm. FastScalpel achieves a speedup of about 2.4 over Scalpel 1.6 with rule sets
of size 48. Larger rule sets will result in a larger speedup. Further, our analysis
and experiments show that the time to do in-place carving cannot be reduced
through the use of multicores and GPUs as suggested in [11]. This is because the
bottleneck is disk read and not header and footer search. The use of multicores,
GPUs, and other accelerators can reduce only the search time. To improve the
performance of in-place carving beyond that achieved by FastScalpel requires a
reduction in the disk read time.

References

1. Aho, A., Corasick, M.: Efficient string matching: An aid to bibliographic search.
CACM 18(6), 333-340 (1975)

2. Baeza-Yates, R.: Improved string searching. Software-Practice and Experience 19,
257-271 (1989)

158

10.
11.
12.
13.
14.

15.

X. Zha and S. Sahni

Baeza-Yates, R., Gonnet, G.: A new approach to text searching. CACM 35(10),
74-82 (1992)

Boyer, R., Moore, J.: A fast string searching algorithm. CACM 20(10), 262272
(1977)

Galil, Z.: On improving the worst case running time of Boyer-Moore string match-
ing algorithm. In: 5th Colloquia on Automata, Languages and Programming.
EATCS (1978)

Horspool, N.: Practical fast searching in strings. Software-Practice and Experi-
ence 10 (1980)

Pal, A., Memon, N.: The evolution of file carving. IEEE Signal Processing Maga-
zine, 59-72 (2009)

Wu, S., Manber, U.: Agrep—a fast algorithm for multi-pattern searching, Technical
Report, Department of Computer Science, University of Arizona (1994)

Richard III, G., Roussev, V.: Scalpel: A Frugal, High Performance Flle Carver. In:
Digital Forensics Research Workshop (2005)

Marziale, L., Richard III, G., Roussev, V.: Massive Threading: Using GPUs to
increase the performance of digit forensics tools. Science Direct (2007)

Richard III, G., Roussev, V., Marziale, L.: In-Place File Carving. Science Direct
(2007)

http://www.digitalforensicssolutions.com/Scalpel/
http://foremost.sourceforge.net/

Fisk, M., Varghese, G.: Applying Fast String Matching to Intrusion Detection. Los
Alamos National Lab NM (2002)

Commentz-Walter, B.: A String Matching Algorithm Fast on the Average. In:
Maurer, H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 118-132. Springer, Heidelberg
(1979)

http://www.digitalforensicssolutions.com/Scalpel/
http://foremost.sourceforge.net/

	Fast in-Place File Carving for Digital Forensics
	Introduction
	In-Place Carving Using Scalpel 1.6
	Multipattern Boyer-Moore Algorithm
	Aho-Corasick Algorithm
	Multicore Searching
	Asynchronous Read
	Multicore in-Place Carving
	Experimental Results
	Run Time of Scalpel 1.6
	Buffer Size
	Multipattern Matching
	Multicore Searching
	Asynchronous Read
	Multicore in-Place Carving
	Scalpel 1.6 vs. FastScalpel

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

