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Abstract. The simulation and testing of Video-on-Demand (VoD) ser-
vices require the generation of realistic content request patterns to em-
ulate a virtual user base. The efficiency of these services depend on the
popularity distribution of the video library, thus the traffic generators
have to mimic the statistical properties of real life video requests. In
this paper the connection among the content popularity descriptors of
a generic VoD service is investigated. We provide an analytical model
for the relationships among the most important popularity descriptors,
such as the ordered long term popularity of the whole video library, the
popularity evolutions and the initial popularity of the individual con-
tents. Beyond the theoretical interest, our method provides a simple way
of generating realistic request patterns for simulating or testing media
servers.

Keywords: Video popularity, analytical model.

1 Introduction and Related Works

Building true Video-on-Demand (VoD) services with strong quality and avail-
ability grantees becomes feasible with the widespread adoption of broadband
Internet access. The demand for VoD systems is high, as the customers are
gradually turning away from scheduled broadcasts to personalized multimedia
contents. VoD systems have high bandwidth requirements; therefore the effect
of introducing a VoD service on the existing network must be examined through
simulations before deployment, thus there is a strong need for accurate model-
ing of all components of a VoD. Perhaps the most important component of VoD
systems are the clients, because the characteristics of the network traffic of the
VoD largely depends on their content selections.

The long-term popularity distribution is the most important characteristic
of a content library. The relative popularity of a content is defined with the
number of requests for that content divided by the total number of requests
in a (usually long) time interval. Content popularities are usually displayed in
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Fig. 1. Typical ordered long-term popularity distributions (source: [6])

decreasing order of popularity, and on a log-log scale, as in Figure 1. This curve
is called ordered long-term popularity, which can be considered as a probability
distribution, and it is usually modeled with a Zipf-like distribution based on
empirical studies [1]. The standard Zipf distribution is linear on a log-log scale,
but the real-world popularity distributions are not, thus several modifications
were proposed to the Zipf distribution to fit the empirical data; such Zipf-like
distributions include the Zipf-Mandelbrot law [4] and the k-transformation [6].
Recently, the use of the stretched exponential distribution has been suggested
instead of a Zipf-like distribution [3]. We remark, that often, like in this paper,
the absolute popularity is studied, without being divided by the total number
of requests.

The daily popularity or short term popularity of a content library is also an
important descriptor, because replicating frequently accessed items in a location
closer to the clients is often required in order to decrease network bandwidth
requirements. There are several such bandwidth-optimization schemes, ranging
from simple caching to complex content delivery networks [5]. The efficiency of
these solutions depends on the steepness of the popularity curve; if the majority
of the requests are for a small number of contents, then a caching scheme can
be very efficient.

The popularity evolution or lifespan, which is the timely change of the rela-
tive popularity of the individual contents. It is also interesting, because several
caching optimizations depend on the prediction of the popularity changes. The
most common one is when a content, which is expected to become popular in the
near future, is inserted into the caches (precaching). Therefore, it is important
to analyse the properties and reasons of the short-term popularity changes, and
their connection to the long-term popularity distribution. The most commonly
observed popularity evolution curve shows an increase immediately after the in-
troduction, a short apex, and a long decrease [6], but other shapes have also
been observed [7].

Contents can be classified into categories, based on the type of their popular-
ity evolution. A quite common classification is the distinction between “news”



Content Popularity Model 49

and “movie” types. News are typically very popular for a short time after their
introduction, but become obsolete very quickly. On the other hand, movies have
smaller initial popularity, but remain relevant significantly longer.

In this paper we resolve the connections between the long-term popularity
and the other popularity descriptors. These descriptors are the distribution of
the video types, and the properties that depend on the type: the release day dis-
tribution, the popularity evolution, and the distribution of the initial popularity.
As far as we know no such model is available in the literature.

The main contribution of our paper is the following. If one of the above param-
eters is unknown, an approximation of the missing parameter can be constructed.
Our model can handle arbitrary long-term popularity distributions and the other
parameters can be chosen arbitrarily – as long as they do not contradict to each
other. Beyond the theoretical interest, our method provides a simple way of
generating realistic request patterns for simulating or testing media servers.

The rest of the paper is organized as follows. In Section 2 we introduce the
model and the notions appearing in the paper, along with the connection among
the popularity descriptors. In Section 3 we show how the missing parameter can
be approximated. In Section 4 we describe how our model can be used for gener-
ating user events, and compare our method to the ones found in the literature.
Finally, in Section 5 we summarise our results and draw the conclusions.

2 Notations and the Popularity Model

In this section we introduce the main notations and describe the popularity
model. Afterwards, we present the main relations that we use to derive the
results in later sections.

2.1 Description of the Model

The observed period consists of D observation days, indexed with the set
{1, 2, . . . , D}, during which a total of N videos have been released. We assign
four parameters to each video, namely:

type θ ∈ Θ according to a given type distribution G on the set Θ.

The following three parameters depend on the type:

initial popularity Iθ is a positive real number valued random variable, which
determines the number of claims for a video of type θ on the day it is released.
The distribution of Iθ is denoted by Fθ.

popularity evolution function hθ : {1, 2, . . .} → [0,∞) is a deterministic
function, which describes how the popularity changes for one video of type θ
during its lifetime in the observed period. hθ is an intrinsic parameter of the
video, as it can be seen from the following definition. For n ≥ 1 we define

hθ(n) :=
# of claims for a video of type θ on day n after its release

Iθ
(1)
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Consequently, the number of claims for a video of type θ on day n after its
release is Iθhθ(n).

release day dθ from {1, 2, . . . , D} according to a release day distribution
{pθ,d, 1 ≤ d ≤ D} depending on θ. Note that the observation days and the
release days are indexed with the same set.

Remark 1. Instead of observation days we can take observation weeks. In this
case the other parameters can be changed appropriately. For example the initial
popularity counts the requests on the video during its first week in the system.

Based on the above definitions, video k (1 ≤ k ≤ N) can be represented by its
type θk and the starting day dk := dθk

, thus the popularity evolution function
of video k is hk := hθk

, and its initial popularity is Ik := Iθk
.

Definition 1. Let Xk denote the long term popularity of video k (1 ≤ k ≤
N), that is, the number of claims for video k, introduced on day dk, during the
observed period of D days.

It is easy to see that the following equation holds:

Xk = Ik

D−dk+1∑

m=1

hk(m). (2)

Since Xk depends on the random variables (Ik, dk, hk) and (Ik, dk, hk), k =
1, . . . , N is a sequence of independent and identically distributed (i.i.d.) random
variables (they were generated independently) it can be seen that the X1, . . . , XN

long term popularities are also i.i.d. random variables. (hk is also a random vari-
able since hk = hθk

and θk is a random variable.)
For further reference, we define the overall intrinsic popularity of video k

over the whole observed period. First, we introduce the aggregated intrinsic
popularity of video k during its first n days:

Hk(n) :=
n∑

m=1

hk(m). (3)

Observe that Hk(n) is an increasing function of n and Hk(1) = hk(1) = 1. Using
this notation we can write

Xk = IkHk(D − dk + 1)

since the video k is added on day dk so it is in the system for D − dk + 1
days.

2.2 Long Term Popularity Parameters

Now we introduce two parameters that describe the global behavior of the
system:
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long term popularity curve Π : {1, 2, . . .} → [0,∞) is a decreasing deter-
ministic function. For an appropriately long period we count the number of
claims for each video and put these numbers in decreasing order, thus Π(i)
is the number of claims for the ith most popular video in that period.

long term popularity cdf Φ is defined as

Φ(x) := P(Xk ≤ x), x > 0. (4)

for every video. It is the cumulative distribution function (cdf) of the num-
ber of claims arrive for a randomly chosen video during a long period. Since
X1, X2, . . . , XN are independent and identically distributed random vari-
ables by definition, we can omit the index k from Φk(x).

There exists a one-to-one correspondence between the long term parameters in
the following sense. Before presenting the precise statement let us recall that
the empirical distribution function of the sample X1, . . . , XN generated inde-
pendently from the distribution Φ is defined by

ΦN (x) :=
1
N

N∑

k=1

I{Xk ≤ x}.

Moreover, by definition, Π is the ordered sample of X1, X2, . . . , XN .

Proposition 1. Let the long term popularities X1, X2, . . . , XN be a sequence of
independent random variables with common distribution Φ.

Then

ΦN (x) =
N − Π−1(x)

N
,

where Π−1(x) denotes the generalized inverse, Π−1(x) = sup{i : Π(i) ≥ x}.
If N is large then ΦN is close to Φ, since the empirical distribution function
converges to the original distribution function as the sample size (N) increases.
Thus

Φ(x) ≈ N − Π−1(x)
N

. (5)

In the rest of the paper we will use Φ to describe the long term popularity, since
Eq. (5) gives a simple relation between Φ and Π . Further, using Φ instead of Π
is better for modeling purposes, since Eq. (2) describes the connection between
the Xk long term popularity and the other parameters, and Φ is the distribution
of Xk. This connection among the distribution functions will be discussed in
Sec. 2.3 in detail.

Proof (for Proposition 1). The popularity curve shows that for the ith most
popular video there have been Π(i) claims in the long-run. The inverse of Π
shows that no more than Π−1(x) videos have x or more claims. This means
that less than N − Π−1(x) videos had less than x claims. Since the number of
videos is N , the portion of videos that have less than x claims is N−Π−1(x)

N . If
the popularities of the N videos are equal to the N elements (unordered) sample
X1, X2, . . . , XN of Φ then by the definition of ΦN one yields ΦN (x) = N−Π−1(x)

N .



52 A. Kőrösi, B. Székely, and M. Máté

2.3 Long Term Popularity as a Function of the Parameters

In this subsection we express Φ using the type distribution (G), release day
distribution ({pθ,d, d = 1, 2, . . . , D}), the initial popularity distributions (Fθ)
and the popularity changes (hθ).

Recalling the definition of Φ in equation (4) we have

Φ(x) = P(X ≤ x) =
∫

Θ

P(X ≤ x|θ)G( dθ)

=
∫

Θ

n∑

d=1

P(X ≤ x|θ, d)pθ,dG( dθ).

Using the interpretation (2), the definition of H (3) and that the distribution of
Iθ is denoted by Fθ, the last term in the previous formula equals

Φ(x) =
∫

Θ

n∑

d=1

P(IθHθ(D − d + 1) ≤ x)pθ,dG( dθ)

=
∫

Θ

n∑

d=1

P
(

Iθ ≤ x

Hθ(D − d + 1)

)
pθ,dG( dθ)

=
∫

Θ

n∑

d=1

Fθ

(
x

Hθ(D − d + 1)

)
pθ,dG( dθ).

Thus we have

Φ(x) =
∫

Θ

n∑

d=1

Fθ

(
x

Hθ(D − d + 1)

)
pθ,dG( dθ). (6)

Definition 2. We say that the model is well defined, if the given parameters (Φ,
G, {Fθ}, {hθ} and {pθ,d}) satisfy equation (6).

The functional equation (6) will be used in Section 3, for computing the missing
parameter functions.

3 Connections among the Popularity Descriptors

In this section we assume that the number of types T is finite. We will show how
the missing parameter can be approximated if the other parameters are known.

First, observe that if T is finite then the equation (6) can be written in the
form

Φ(x) =
T∑

θ=1

gθ

D∑

d=1

pθ,dFθ

(
x

Hθ(D − d + 1)

)
, (7)

where gθ denotes the probability that G concentrates to type θ, θ = 1, 2, . . . , T .
We will solve the four implicit problems for the missing Fθ, hθ, pθ,d, gθ cases, each
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of them will be presented in separate subsections. The problems being implicit
means that we always suppose that Φ is known.

3.1 Approximation of the Initial Popularities

In this section we determine the suitable initial popularity distributions (Fθ) in
case the popularity change functions (hθ), the type distribution (gθ), the release
day distribution (pd) and the long term popularity, Π or Φ, are given.

We use equation (7) for obtaining numerical approximations for Fθ, θ ∈ Θ.
We will determine the cdf of the initial distributions of several fixed points by
solving a Linear Programming (LP) problem [2].

Let the set of base points {x1, x2, . . . , xL} be given in increasing order. These
are the points at which the quality of the approximation of Φ will be checked.
The variables of the LP problem are

fθ,i,d = Fθ( xi

Hθ(d)) (1 ≤ θ ≤ T , 1 ≤ i ≤ L, 1 ≤ d ≤ D).

For fixed fθ,i,d the approximation of Φ at points xi is given by the following L
equations:

(∀i) Φ̃(xi) =
T∑

θ=1

gθ

D∑

d=1

pθ,dfθ,i,d

We have to ensure that the variables fθ,i,d determine the distribution functions
for any θ. Therefore, we assume that if xi

Hθ(d1)
≤ xj

Hθ(d2)
then fθ,i,d1 ≤ fθ,j,d2 for

any type θ. Thus, we can define the following LP problem:

min ε

(∀i) : −ε ≤ Φ(xi) − Φ̃(xi) ≤ ε(
∀θ, i, j, d1, d2 such that xi

Hθ(d1)
≤ xj

Hθ(d2)

)
: 0 ≤ fθ,i,d1 ≤ fθ,j,d2 ≤ 1

Solving this problem yields the best approximating initial popularity functions.
To illustrate how the method works we present the following example.

Example 1. (The figures related to this example are shown in Figure 2 and
3) Let T = 2, gθ ∈ {0.6, 0.4}, and h1(i) = (50+i)−3

51−3 , h2(i) = 2−i

1/2 . The evolution
functions are fundamentally different: h1 has power law decay (represents regular
movies), while h2 has exponential decay (represents news like videos). Further,
let Fθ(x) = 1 − (1 − x)−αθ , with αθ ∈ {8, 2}. The release day distribution is
uniform over the observed period for any type that consists of D = 50 weeks
according to Remark 1. There were N = 5000 different movies.

We generate the long-term popularity curve Φ using these parameters and
equation (7). Then we solve the problem of finding Fθ, θ = 1, 2 with the obtained
Φ. Then we compare the approximated initial popularity distributions with the
given ones and we also compare the generated Φ based on the original functions
and Φ generated from h’s and the approximated F ’s.
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Fig. 2. The distribution function Φ and approximated Φ if (Fθ, θ ∈ Θ) is the missing
parameter

The quality of the approximation was investigated for three different base

point sets. For L = 10, 20, 100 the base points are xi = xmin

(
xmax

xmin

) i−1
L−1

, where
xmin = 0.1 and xmax = 2000. The base points are chosen so that the increment
of Φ between two neighboring xi’s is constant. Of course, one may use other base
point set but in our experience this kind of set provides fairy good approximation
not only for Φ but the initial popularity distributions Fθ, θ ∈ Θ as well.

In Figures 2 and 3 the original parameters and the three approximated pa-
rameters are depicted for Φ, F1 and F2. The difference between the original and
the approximated Φ at the base points x1, . . . , xL is at most 10−9. The difference
at the other points depends on the approximation of Fθ’s. We approximated Fθ’s
by using jump functions (and not linear approximates) that causes fairly big er-
rors. However, the difference between the original and the approximated Φ never
exceeds 0.05, 0.02, 0.004 in cases L = 10, 20, 100 respectively.

3.2 Approximation of the Popularity Changes

In this section we will approximate the popularity evolution functions, consid-
ering that the long-term Φ and the initial Fθ popularity distributions are given
for T types. We will use equation (6) and, like in the previous subsection, the
solution, hθ, θ ∈ Θ, will be the solution of an appropriate LP problem. We will
minimize the error ε:

ε = sup
x∈x

∣∣∣∣∣

T∑

θ=1

gθ

D∑

d=1

pdFθ

(
x

Hθ(D − d + 1)

)
− Φ(x)

∣∣∣∣∣ ,

where x = {x1, . . . , xL} is a set of given points. We first describe the idea of the
approximation for T = 1, then we present the general case for T > 1.

Assume T = 1. Using the notation pd = pθ,d, we have

D∑

d=1

pdF

(
x

H(D − d + 1)

)
= Φ(x).
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Fig. 3. Approximation of the initial popularity distributions Fθ, θ ∈ Θ. Two types
with different initial popularity distributions. The details are given in Example 1. The
accuracy of the approximations increase as more base points are added to the LP
problem.

The sum can be interpreted as a mean of the discrete distribution Q, which
is concentrated on the points 1

H(D−d+1) , d = 1, . . . , D, and point 1
H(D−d+1) has

probability pd. Thus, for a random variable X , with distribution Q, we can write:

D∑

d=1

pdF

(
x

H(D − d + 1)

)
= EQF (Xx) , (8)

where EQ denotes the expectation with respect to Q. We will approximate Q by
a recursive sequence of distributions, such that the

sup
x∈x

|FQ(x) − FQ̂(x)|. (9)

distance between the distributions of Q and its Q̂ approximations is small. The
first element of the sequence is denoted by Q̂1, which is a jump function with
jumps at the arbitrarily chosen r1 = (r1, r2, . . . , rK) points. We want to assign
weights s1 = (s1, s2, . . . , sK) as (Q̂1({ri}) = si) to make sure that the distance

sup
x∈x

∣∣∣∣∣∣
Φ(x) −

K∑

j=1

sjF (rjx)

∣∣∣∣∣∣
(10)

is minimal. This will be accomplished via the following LP problem:

min ε

(∀i) − ε ≤ ∑K
j=1 sjF (rjxi) − Φ(xi) ≤ ε
∑

j sj = 1

0 ≤ s1, . . . , 0 ≤ sK



56 A. Kőrösi, B. Székely, and M. Máté

This solution for s1∗ for given r1 minimizes (10). Now, we do the following
heuristically reasonable refinement step: to get better approximation in the sense
of (9) we add new jump points to r1. First, take an intermediate distribution B
concentrated on 1 = z1 > z2 > · · · > zD and each zn carries pn weight. Then, we
solve the LP problem that minimizes supx∈x |FB(x)−FQ̂1(x)|. The solution 1 =
z1 > z∗2 > · · · > z∗D corresponds to the best H∗ such that if H∗(n) = 1/z∗n, then
∑D

d=1 pdF
(

x
H∗(D−d+1)

)
is the closest function of this form to

∑K
j=1 s1

jF (rjxi)

on the set {x1, . . . , xL}. Second, we add the set z∗ = {z∗1 , z∗2 , . . . , z∗D−1} to r1 and
start the approximating procedure described above with r2 = r1 ∪ z∗. Similarly,
we can construct Q̂2. We continue this refining procedure until we obtain a
satisfactory collection of hθ such that Φ and the approximated Φ is close enough.

Next, suppose that T > 1. For a given rθ = (rθ,1, . . . , rθ,K), θ = 1, . . . , T
and given type distribution gθ, 1 ≤ θ ≤ T we want to find the best sθ =
(sθ,1, . . . , sθ,K), θ = 1, . . . , T in the sense that the failure of the approximation
is minimal, that is,

min ε

−ε ≤ ∑T
θ=1 gθ

∑K
j=1 sθ,jFθ (rθ,jxi) − Φ(xi) ≤ ε, (∀i)
∑

j sθ,j = 1, (∀θ)

0 ≤ sθ,1, . . . , 0 ≤ sθ,K , (∀θ)

As in the case T = 1, for each θ separately we add new points z∗θ to rθ by
constructing the best approximating intermediate distribution Bθ. We iterate
this refinement technique until we obtain a satisfactory collection of hθ.
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Fig. 4. Hθ and approximated Hθ, θ = 1, 2. The details are given in Example 1 and 2.

Since the algorithm presented above employs heuristic considerations it is
worth verifying it through an example.

Example 2. (The figures related to this example are shown in Figure 4.) The the-
oretical parameters are the same as in Example 1, and the solution follows the
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same pattern. We generate the long-term popularity curve Φ using the given pa-
rameters and equation (7), then we solve the problem of finding Hθ, θ = 1, 2 with
the obtained Φ. Then we compare the approximated popularity change functions
with the given ones and we also compare the generated Φ based on the original
functions and Φ generated from the original F ’s and the approximated H ’s. Al-
though the convergence to the theoretical popularity changes is not guaranteed,
because of the heuristic approximation method, the approximated popularity
distribution Φ converges to the theoretical one.

3.3 Approximation of the Release Day Distribution

In this subsection we will show how the pθ,d release day distribution can be
computed from known Φ, Fθ, hθ and G. Similarly to the previous subsections, we
will use equation (6):

Φ(x) =
∑

θ

∑

d

pθ,dgθFθ

(
x

Hθ(D − d + 1)

)
(11)

We solve an LP problem at points x = xi, 1 ≤ i ≤ K and solved for pθ,d with
the bounds 0 ≤ pθ,d ≤ 1 for any θ and

∑
d pθ,d = 1.

3.4 Approximation of the Type Distribution

In this subsection we will investigate how the gθ type distribution can be com-
puted from known Φ, Fθ and hθ. The solution is quite simple. Generate the
functions φθ from the functions Fθ and hθ by using equation (6) as though
there was only one type for each θ above. Using equation (6) again, we have the
following equation:

Φ(x) =
∑

θ

gθ

∑

d

pdFθ

(
x

Hθ(D − d + 1)

)
=

∑

θ

gθΦθ(x) (12)

Now, for finding gθ we have to solve an LP problem in some points {x1, . . . , xL}
similar ways as in the previous sections.

Remark 2. On the accuracy of the approximations. In case of finding Fθ, θ ∈ Θ
and finding hθ, θ ∈ Θ there is no guarantee for convergence. However, for certain
parameter combinations the approximations get very close tho the theoretical
values. The accuracy of the approximation highly depends on the number of
base points x1, x2, . . . , xL. In Figure 3 and 4 it can be seen that the approxi-
mations of F get closer to the theoretical ones while the approximations of H
does not. In case of finding the type distribution and the release day distribution
the approximations typically converge. The explanation is that if the functions
Φθ, θ = 1, . . . , T are not pairwise equal, then typically we can find L = T
points {x1, . . . , XT } such that the vectors [Φθ(x1), . . . , Φθ(xT )]t, θ = 1, . . . , T
are linearly independent. Consequently, the system of equations in (12) has one
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unique solution. The same argument can be repeated for the convergence of the
release day distribution. If one can find L = TD points such that the vectors[
Fθ

(
xi

Hθ(D−d+1)

)
, i = 1, . . . , TD

]t

, θ = 1, . . . , T, d = 1, . . . , D are linearly in-
dependent then the system of equations in (11) has one unique solution. The
condition typically holds if the function Fθ, θ = 1, . . . , T and the functions Hθ,
θ = 1, . . . , T are pairwise different.

Remark 3. If there is exactly one more unknown parameter beyond the type
distribution gθ, a Non Linear Programming (NLP) problem can be written with
linear constrains and fourth degree objective function.

Proof. Let εθ,i be the difference of the approximation of type θ from Φ in xi:

εθ,i = Φ(xi) −
D∑

d=1

pθ,dFθ

(
xi

Hθ(D − d + 1)

)
.

Then the error of the approximation in l2 norm in x1, x2, . . . , xL is
√√√√

L∑

i=1

(
∑

θ∈Θ

gθεθ,i)2.

This error is minimal if its square is minimal, thus the NLP problem for finding
the two unknown parameters is

min
∑L

i=1(
∑

θ∈Θ gθεθ,i)2

εθ,i = Φ(xi) −
∑D

d=1 pθ,dFθ

(
xi

Hθ(D−d+1)

)
(∀θ∀i)

∑
θ gθ = 1

0 ≤ gθ (∀θ) .

4 Client Requests Generation

In this section we demonstrate how our model can be used to generate a series of
client requests for testing or simulating a VoD system. The number of requests
and their timely distribution will all follow the given distributions, because they
are optimized independently.

Assume that the type distribution {gθ}, the release day distribution {pd},
the initial popularities {Fθ} and the popularity changes {hθ} are given. The
generating method is simple, since the construction is designed to solve this
problem easily: to each video k we generate such release day dk, evolution type
hk and initial popularity Ik, that the number of claims on day d for video k is
I{d ≥ dk}Ikhk(d − dk + 1).

The distribution of the requests within the observation period is fairly easy,
as, according to other studies [6,7], its distribution is independent of the other
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popularity descriptors. After the number of requests has been calculated for
a given period, their exact timing can be determined using the given intensity
distribution. If the observation period is one day, then this distribution is usually
called diurnal access pattern, which has usually its maximum in the evening, and
its minimum during the night.Similar recurring request intensity changes can be
observed over weeks as well.

To overcome the problem that the number of claims for a day can be fractional,
because we do not require that hθ is integer valued, we take either 
Ikhk(d −
dk +1)� or 
Ikhk(d− dk +1)�+1 according some probability distribution, while
ensuring that the sum of these integers is exactly 
Xk� = 
IkHk(Dk)�. This can
be done very easily.

The long-term distribution Φ of the simulated system (the empirical distri-
bution) converges to the theoretical Φ because of Proposition 1. Figure 5 shows
that the empirical distribution and the theoretical distribution are close to each
other and the simulated long-term popularity curves also approximate the theo-
retic one. The continuous line is the analytical result, the dashed curves show the
cases, when the number of videos in the system is 50, 500, 5000 in the scenario
described in Example 1. The difference of Φ(x) and the approximated Φ at any
x is not larger than 10−2 (50 videos), 10−3(500 videos), and 10−4 (5000 videos).
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Fig. 5. Simulation results. The differences between the long run parameters (Π , Φ)
of the simulated system and the theoretical parameters decrease as the number of
videos increases. The relative popularity in Figure (a) means that on the x-axes the
numbers x/N are depicted for x = 1, 2, . . . , N (N = 50, 500, 5000), where x denotes
the popularity rank of the video in decreasing order.

Our method is comparable to the method of Medisyn [6]. Medisyn starts
the request generation with a given long-term popularity curve Π , then, for
each video in the library, it generates a random type, which can be “news” or
“movie”. The probability of a video being “news” depends on the popularity of
the video. In their measurements the authors found that the “news” type videos
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tend to be more popular than the “movie” type ones, therefore they included
this bias in their generator. Once the type is known for a video, it generates
a release day according to the given release day distribution (the authors of
Medisyn consider both the intensity and the interval between the releases). Then
it selects a life span function (popularity evolution) for the video with randomly
chosen parameter. This function is from an exponential family (its parameter is
Pareto distributed) for the “news” type videos and from a lognormal family (the
parameter is normally distributed) for the “movie” type ones. Finally, the total
number of requests is distributed along the timeline according to the release day
of the video and its life span function. In this way the initial popularity defined
in our model is also obtained implicitly. Therefore, irrespectively of the randomly
selected life span, Medisyn solves the problem presented in Section 2.3.

5 Conclusions

We provided a stochastic model for finding the relationships among the follow-
ing popularity descriptors: (1) the ordered long-term popularity, (2) video type
distribution, (3) release day distribution, (4) the distribution of the initial pop-
ularity of each individual video and (5) the popularity change over time for each
individual video.

An important feature of our model is the possibility of constructing an approx-
imation of any missing popularity descriptor, unless the conditions contradict to
each other. The missing parameter is the solution of an appropriate LP problem
in all four cases (the ordered long-term popularity does not need to be approxi-
mated), thus we have four similar, but not identical approximation schemes.

The two most important out of the four problems, from practical point of
view, are finding the initial popularity distribution and the popularity evolution
for the content types. As the examples have shown, the approximation works
well for finding the initial popularities, the results were very close to the original
distribution. Finding suitable popularity evolution functions is much harder, our
procedure does not necessarily converge to the original functions. This is natural,
since the popularity evolution has great degree of freedom.

Our model is designed so that one can easily generate realistic request patterns
for simulating or testing media servers. We have shown that the more videos there
are in the VoD system, the parameters in the simulated system get closer to the
theoretical ones.

In the future we want increase the accuracy of our approximations, and try to
find exact solutions for the missing parameters in special cases. We are also inter-
ested in finding a way to modify the model in order to take randomly occurring
jumps in the popularity evolution into account.
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