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Abstract. Autonomic Networking, realized through control loops, is an enabler 
for advanced self-manageability of network nodes and respectively the network 
as a whole. Self-healing is one of the desired autonomic features of a sys-
tem/network that can be facilitated through autonomic behaviors realized by 
control loop structures. Autonomicity, implemented over existing protocol 
stacks as managed resources, requires an architectural framework that integrates 
the diverse aspects and levels of self-healing capabilities of individual proto-
cols, systems and the network as a whole, such that they all should co-operate 
as required towards achieving reliable network services. This integration should 
include the traditional resilience capabilities intrinsically embedded within 
some protocols e.g. some telecommunication protocols, as well as diverse pro-
active and reactive schemes for incident prevention and resolution, which must 
be realized by autonomic entities implementing a control loops at a higher-level 
outside of protocols. In this paper, we present our considerations on how such 
an architectural framework, integrating the diverse resilience aspects inside an 
autonomic node, can facilitate collaborative self-healing across end systems, 
access networks, edge and core network components. 

Keywords: Autonomic Fault-Management, GANA-orientated architecture for 
Autonomic Fault-Management, Resilience,  Self-Healing. 

1   Introduction 

Autonomic Computing as introduced by IBM [1] is based on MAPE (Moni-
tor→Analyze→Plan→Execute) type of a control loop. Such a control loop is also 
meant to realize self-management features like self-healing, self-protection, self-
optimization and self-configuration. According to [1], self-healing is defined as  
follows: “To detect incidents such as adverse conditions, faults, errors, failures; 
diagnose, and act to prevent or solve disruptions”. That is, on one hand a network 
equipped with self-healing mechanisms should aim at automatically preventing future 
fault activations, and on the other hand it should detect, diagnose and remove faults 
(provided that the detected faults can be automatically removed or have their impact 
reduced to a minimum). This corresponds to a number of concepts and approaches 
that have been investigated recently, such as Autonomic Fault-Management as well  
as reactive and proactive Resilience in autonomic networks. Autonomic Fault-
Management [7][9] is understood as a control loop structure that facilitates the  
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interplay between the processes of Fault-Management as defined by TMN (Telecom-
munications Management Network) [3] namely: Fault-Detection – “detect the  
presence of a fault”, Fault-Isolation – “find the fault (root cause) for the observed 
erroneous state”, and Fault-Removal – “remove or reduce the impact of the root 
cause”.  Moreover, resilience mechanisms have been developed for a variety of 
communication protocols and technologies, such as restoration schemes in 
SONET/SDH and recovery schemes in MPLS [RFC4427]. The introduction of con-
trol-loops that govern self-management and control of the existing protocols (as man-
aged entities, i.e. managed resources of specific control-loops), calls for a framework 
that integrates an overall picture of the self-healing aspects and levels, at which to 
reason about self-management within a node/device architecture, and the network 
architecture as a whole. A first draft of such architecture was presented in our previ-
ous work [4] and is briefly described in section 3. Hitherto, the application of this 
framework to a single administrative domain of limited scope was taken into account. 
In this work, we present our further considerations on how this architectural frame-
work could be used in a multi-domain environment consisting of end systems, access 
networks, edge routers, and core routers. Thereby, on the network provider’s side we 
restrict the discussion to the internet service provider’s (ISP) network, which enables 
the access to the internet backbone for its subscribers.  

The rest of this paper is organized as follows: Section 2 presents the Generic 
Autonomic Network Architecture (GANA) which is the Reference Model for 
Autonomic Networking and Self-Management on which our self-healing framework 
is based. Section 3 presents the architectural framework (based on GANA) which 
reflects the current status of our research on self-healing/resilience mechanisms in 
autonomic networks. Section 4 presents the different aspects and mechanisms 
facilitating the collaboration of end systems, access and core network components 
towards implementing self-healing mechanisms across the different domains. Section 
5 presents a case study and a scenario on how such collaboration can work in practice. 
Finally, section 6 provides some concluding remarks.  

2   Generic Autonomic Network Architecture  

The Generic Autonomic Network Architecture (GANA) is based on a set of require-
ments derived in [2]. The core autonomic concept in GANA is that of a Decision 
Element (DE). A Decision Element (DE) implements a control-loop and manages a 
set of Managed Entities (MEs) assigned to be autonomically managed and controlled. 
That is, self-*/autonomic features are realized by Decision Element(s) implementing a 
control loop within the GANA reference model. Since control loops on different lev-
els of functionality are possible, e.g. on node or network level, GANA defines the 
Hierarchical Control Loops (HCLs) framework. The HCLs Framework fixes and 
establishes  four levels of abstraction for which DEs, MEs and associated control-
loops can be designed: Level-1: Protocol-Level, i.e. control loops embedded within 
protocol modules (e.g. within some routing protocol). Level-2: Abstracted Functions-
Level, i.e. DEs managing some abstracted networking functions inside a device e.g. 
routing, forwarding, mobility management, Level-3: Node Level - the node level 
consist of a Node_Main_DE that takes care of the management of aspects related to 
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the state/fitness of the overall node, e.g. Fault-Management and Auto-Configuration. 
Level-4: Network Level-DEs on that level manage different aspects that require to be 
handled at the network-level, e.g. routing or monitoring, of a group of nodes accord-
ing to a network scope. Thereby, control loops (i.e. DEs) on a higher level manage 
DEs on a lower level down to the lowest-level "pure" MEs. Detailed information 
about all the presented concepts, examples, as well as discussions on the application 
of GANA to diverse aspects of Autonomic Networking can be found in [2]. 

3   Unified Architecture for Autonomic Fault-Management, 
Resilience, and Survivability in Self-managing Networks 

Within the EFIPSANS [17] project, we introduced a Unified Architecture for Auto-
nomic Fault-Management, Resilience and Survivability in Self-Managing Networks 
(UAFAReS). UAFAReS is based on the observation that the evolution of traditional 
Fault-Management towards Autonomic Fault-Management enables network devices 
to exercise self-healing and recover from faulty conditions. That is, the nodes of the 
network are then able to automatically self-heal (to some degree) without the need for 
human intervention. Hence, Autonomic Fault-Management has to interplay with con-
cepts and mechanisms related to Fault-Tolerance, Fault-Masking, and Multilayer 
Resilience [6]. This implies harmonization (i.e. ordered time-scaling of reactions) to 
incidents, at different levels of autonomicity and self-management defined by GANA. 
UAFAReS is based on the GANA reference model and specifies a number of compo-
nents which aim at realizing the interplay of the aforementioned aspects. The node 
components of the architectural framework are illustrated in Figure 1. The main 
UAFAReS entities in a device are the Fault-Management Decision Element (FM_DE) 
and the Resilience and Survivability Decision Element (RS_DE). The RS_DE is re-
sponsible for an immediate reaction to the symptoms of an erroneous state, while in 
parallel the FM_DE performs Fault-Isolation and Fault-Removal in order to eliminate 
the corresponding root cause(s). Both DEs are part of the Node_Main_DE, i.e. they 
are introduced on node level inside a GANA conformant device, in order to have 
exclusive access to all node functional entities (i.e. DEs and MEs) such that the over-
all autonomic behaviors of a node with respect to coping with incidents and alarms 
are synchronized to ensure node integrity. The UAFAReS DEs operate based on dis-
tributed control loops. The distributed nature of the UAFAReS control loops is en-
abled by a number of components that facilitate the incident information exchange 
across the network nodes. A set of repositories for storing incident information and an 
Incident Information Dissemination Engine (IDE) enable the synchronization of the 
faults/errors/failures/alarms knowledge known by UAFAReS DEs residing in differ-
ent devices, and allow the DEs to perform Fault-Masking, Fault-Isolation and Fault-
Removal in a node specific manner, based on the same information. 

The FM_DE consists of four modules: 1) a component responsible for Fault-
Isolation (Fault-Diagnosis/Localization/Isolation functions abr. FDLI), 2) Fault-
Removal Functions (FRF), 3) Action Synchronization Functions (ASF) – responsible 
for synchronizing (allowing and/or disallowing) tentative actions issued as by  the 
RS_DE and the FM_DE control loops running in parallel, 4) Fault-Removal Assess-
ment Functions (FRAF) – a component responsible for assessing and verifying the 
success of the fault removal actions issued as output of the FM_DE.  
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Specially instrumented monitoring entities, which have the capability to share  
incident information over the UAFAReS incident repositories, push descriptions of 
symptoms to the UAFAReS fault/error/failure/alarm registries such that the info gets 
conveyed (i.e. stored in the UAFAReS node registries) by the Incident Dissemination 
Engine (IDE) to the UAFAReS instances across the network scope, e.g. subnet/LAN. 
Once an incident description has been reported to the FM_DE over the UAFAReS 
incident repositories, it gets received and processed first by the FDLI functions. That 
is, the FDLI functions collect such events and correlate them in order to find the root 
cause for the observed faulty conditions. Algorithms that can be used for event corre-
lation are presented in [8]. The correlation of incident events is realized by the FDLI 
functions based on a Causality Model that is kept in the Causality Model Repository 
(CMR) inside a node. The identified root cause(s) (faults) are then further submitted 
to the Fault-Removal Functions which implement an “if-then-action” logic that issues 
a reaction required to eliminate the faults, e.g. reconfiguration of an entity by using 
the corresponding command line interface (CLI). Since it is possible that the tentative 
reaction would interfere with other actions that are intended to be performed by either 
the RS_DE control loop (next paragraph), or would interfere with a parallel Auto-
nomic Fault-Management control loop process (i.e. a thread in multi-threading envi-
ronment), the ASF should be invoked in order to allow or disallow the tentative action 
in question. The ASF is based on techniques from the area of optimal control, and 
selects the optimal subset of tentative actions in order to better optimize the network 
performance reflected by the values of selected key performance indicators while 
ensuring integrity. Given that the ASF has allowed a tentative action, the FRF issues 
it on the MEs in question inside the device. Thereby the FRF can make use of infor-
mation regarding the dependencies among protocol entities and services, kept in the 
Dependability Model Repository (DMR). Finally, the success of the executed action is 
assessed by the FRAF functions, which may choose to notify the network operator in 
case when the UAFAReS mechanisms can’t cope with the pending challenges. 

The Resilience and Survivability DE contains the Fault-Masking Functions 
(FMF) component and a Risk Assessment Module (RAM). The Fault-Masking Func-
tions realize a reaction immediately after the symptoms of a faulty condition have 
been registered into the UAFAReS alarm/incident repositories. Thereby, the goal of 
the FMF is to implement a fault-tolerant behavior such that some fundamental level 
of service can be sustained in the face of a pending challenging condition. The FMF 
follow a similar logic as the Fault-Removal Functions of the FM_DE, and consult 
the Actions Synchronization Functions of the FM_DE to react first in order to ensure 
that the best possible set of actions is executed.  The FMF, as the instance of first 
reaction, should also consider the aspect of Multilayer Resilience [6] while orches-
trating a fault-tolerant/masking behavior. Multilayer Resilience is a model that deals 
with the capabilities of functional entities at different layers in the protocol stack to 
execute their own embedded resilience behaviors. For instance, in IP networks gen-
erated ICMP messages enable systems (especially end systems) to overcome issues 
occurring in the network, e.g. sudden changes of PMTU (Path Maximum Transmis-
sion Unit) during the lifetime of a connection. Thus, the FMF is expected to allow 
the protocol modules to recover based on their own intrinsic capabilities and should 
intervene only in the case when these mechanisms fail. [6] proposes the usage of 
“hold-off” timers specifying the time that should be given to a protocol to recover on 
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its own. Information on how to handle the resilience properties of a protocol module 
(e.g. protocol module ID and corresponding “hold off” timer) is kept in the Multi-
Layer Resilience Properties Repository. In addition, the operation of the Risk  
Assessment Module (RAM) is based on monitoring information about diverse key 
performance indicators (e.g. CPU temperature) that are used to calculate the prob-
ability for failures in the future. This results in notifications to the FMF which  
consequently have to trigger mechanisms that help proactively avoid significant 
degradation in the QoS in the future. 

 

Fig. 1. The UAFAReS [4] architecture inside an Autonomic Node 

Hitherto, we considered the application of UAFAReS to a single domain of limited 
scope.  In this work, we present our view on how UAFAReS can be used in a specific 
multi-domain environment consisting of end systems, access networks, edge routers, 
and core routers implementing UAFAReS. Thereby, we have identified that what 
differs from domain to domain is the type of knowledge and models that the 
UAFAReS instances are supplied with. Thereby, it is imperative that on one hand, 
effective collaboration, i.e. knowledge/information exchange, is facilitated, and on the 
other hand, the confidentiality and integrity of the information exchanged between the 
domains must be ensured. 

4   Aspects of Collaboration 

In this section, we present on the different aspects of collaboration among end sys-
tems, access network entities, as well as core network components. These  aspects 
should be considered in implementing self-healing based on collaboration of network 
entities across multiple network segments. Furthermore, we make an attempt to iden-
tify situations and issues where the collaboration can be beneficial for enabling fault 
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resolution. Thereby, we assume that the devices across the different networks are 
equipped with UAFAReS components and we specify the collaboration aspects as 
interactions between the UAFAReS instances.  

4.1   Means for Auto-collaboration 

In general, the base for UAFAReS collaboration over the domains in question is pro-
vided by the exchange of different types of information, either during the de-
vice/terminal subscription phase for the end systems, or during the phase in which 
they are utilizing the ISP’s network. The information used by a UAFAReS instance 
can be classified as follows: 1) Runtime information about detected incidents - stored 
in the incident repositories of a UAFAReS implementing device, 2) Causality Model 
that describes information about potential chains of events (fault→error … →failure) 
– stored in the Causality Model repository of a node, 3) Information about the resil-
ience properties of involved network components – stored in the Multi-Layer Resil-
ience Properties Repository,  4) Policy configurations for the FRF, FMF and the 
FRAF modules of the FM_DE and the RS_DE.  Figure 2 gives an overview of the 
information flows required to facilitate collaborative self-healing.  In the following 
subsections, we discuss the importance of the different types of information outlined 
in Figure 2, thereby distinguishing between the subscription phase of a device to the 
ISP network and the operating phase when the network is utilized by the end system 
for services and applications. 

 

Fig. 2. Aspects of collaboration 

4.2   Auto-configuration During the Subscription Phase for a Terminal: Enabling 
UAFAReS Based Self-healing 

The end systems are expected to share with the operator’s network, information about 
their settings and configurations, e.g. OS (Operating System) type and characteristics,  
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type and version of the employed protocol stack including enabled protocol features 
such as PMTU discovery, applications and services hosted on the end system, etc. 
This information is denoted as device capabilities and is provided during the subscrip-
tion phase of the device into the operator’s network. The device capabilities can be 
seen as accumulated capabilities of the plethora of software and hardware components 
of an end system. As described in Figure 3, the capabilities are required by the ISP 
network in order to select the appropriate UAFAReS related configurations which are 
sent back to the end system. This information may include (as illustrated in Figure 2) 
a Causality Model related to potential problems that can occur in the network such 
that the end system can better understand certain anomalies, Fault-Removal/Masking 
policies which enhance the set of such policies  already in place on the end-system, 
information about Multilayer Resilience aspects related to the core network, which 
allow the UAFAReS instance on the end system to take into account the intrinsic 
resilience mechanisms of the lower communication layers of the network.  An inter-
esting research issue is that of the information model that facilitates the processes in 
Figure 3. The current trends in telecommunications are striving to reduce the usage of 
proprietary models and promote the usage of a single standardized model such as or 
CIM [14].  For the purpose of self-description by end systems, one has to be aware 
that due to different standards and technological domains, the exchanged information 
will suffer major drawbacks because of the lack of a standardized terminology. 
Hence, the usage of semantic based model concepts such as ontologies is imperative 
for the process of self-description and auto-configuration for UAFAReS. That is, the 
end system must submit (to the network) its capabilities in an ontological format such 
that the obstacle of different terminologies across software/hardware vendors, stan-
dardization bodies, etc. can be avoided. 

Access Network Network

5. Deliver UAFAReS related configurations to end system

3. Compile/select UAFAReS related configurations for end system

End System

1. Subscribe and get authenticated

2. Submit device capabilities

3. Forward device capabilities

4. Respond with UAFAReS related configurations

 

Fig. 3. UAFAReS auto-configuration of an end system 

Another aspect that must be addressed when specifying the Causality Model  
as well as Fault-Removal/Masking policies to be supplied to an end system, is that  
of confidentiality of the exported information. If not designed properly, the aforemen-
tioned models and policies may contain information that directly or indirectly reveals  
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some sensitive information about the operator’s network. Such information can  
be easily exploited by hackers. Therefore, it may be useful to use only some crypto-
graphically generated strings  (i.e. avoid using full descriptions of the events) in the 
version of the Causality Model which is given to an end system, or to delegate as 
many as possible reactions (Fault-Masking/Removal) of the control loops to the edge 
or access network components. 

+UrgencyLevel : int
Survivability Requirement (SR)

+AlarmID : string
+AlarmDescription : string
+Keywords : string
+PerceivedSeverity : int
+correlatedNotifications : string

Alarm based SR

+ThresholdDescription : string
+ThresholdLevel : int

Threshold Information

+EntityID : string
+EntityDescription : string
+EntityLocation : string

Entity Information

+incidentType : string
+incidentID : string
+Keywords : string

Incident based SR

+ServiceID : string
+ServiceDescription : string

Service Information

+threshold1

1

+location

1

1

+Provider Entity

1

1

+Provided Service1

1

+Detecting Entity

1

1

 

Fig. 4. Information Model for Survivability Requirements 

Additionally, after getting to know the capabilities of the new subscriber, the auto-
nomic mechanisms of the network have to prepare the information flows from the 
network to the subscriber such that the end system can access information about inci-
dents in the ISP network and can correspondingly react according to the aforemen-
tioned Fault-Masking policies. This means that the network mechanisms formulate 
Survivability Requirements (SR) for the applications and services on the newly sub-
scribed end system. A survivability requirement expresses time frame within which 
an entity requires to be notified of incidents, to enable it to employ its own mecha-
nisms to avoid failure or degraded service beyond unacceptable service. These SRs 
define “filters” and specify the incident information that should be conveyed from the 
network to the end system. Furthermore, the end system can explicitly express its SRs 
to the network UAFAReS mechanisms as mentioned in [7]. The SRs are used as fil-
ters by the IDEs across the ISP‘s network in order to enable the automatic notifica-
tions towards the end system upon the detection of matching incident events. Figure 4 
depicts the information model of a Survivability Requirement that we propose. This 
model is based on alarm/incident event descriptions as recommended by ITU-T [15] 
and CIM [14]. Due to space limitations, we omit the detailed description of the differ-
ent attributes which are also self-explanatory to a large extent. 
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4.3   Collaboration and Information Flow during the Operation Phase 

After an end system has subscribed to the ISP over the access network, selected types 
of monitoring information are expected to flow between the end system, the access 
network and the ISP’s network. Figure 5 describes a generic scheme of how an end 
system can mask the local impact of an erroneous state that has been detected in the 
core network (step 1).  The node in the core network, on which the erroneous state 
was detected, reasons about the need to send the incident description to the corre-
sponding end system, e.g. the decision could be based on a previously ex-
pressed/generated Survivability Requirement and/or on the end system being one of 
the end points in a flow in which some traffic anomalies were detected. Moreover, the 
Edge of the ISP network intercepts (step 3) the message (after it has been sent in step 
2), and checks whether the information inside can be sent to the end system based on 
the security policies in place. Obviously, such an incident message can contain infor-
mation which the operator does not want to share in order to keep certain structures 
and configurations of her network a secret. Hence, the edge should be equipped with a 
policy that allows/disallows, or manipulates incident descriptions being sent to end 
systems. Given that the message has been allowed or anonymized, step 4 and 5  
 

Access Network ISP Core Network

5. Deliver detected incident to end system

1. Detect an incident

End System

3. Process incident forwarding request

2. Send detected incident to end system

6. Mask local impact of the erroneous state

Edge

4. Forward (anonymized) incident description

 

Fig. 5. An end system masking the local impact of an erroneous state in the ISP network 

Access Network ISP Core Network

5. Deliver detected incident to end system

1. Detect an incident

End System

3. Process incident forwarding request

2. Send detected incident to end system

6. Perform Fault-Isolation

Edge

4. Forward (anonymized) incident description

7. Perform Fault-Removal

 

Fig. 6. An end system performing Fault-Isolation and Fault-Removal in case the incident, 
detected in the ISP network, indicates a fault (root cause) on the end system 
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deliver it to the end system.  Based on the Fault-Masking policy, which has been 
supplied during the subscription phase of the end system (Figure 3), the end system is 
expected to react and mask/mediate the local impact of the erroneous state indicated 
by the received incident description. 

In addition to the mediation behavior of the end system, which is realized by the 
Resilience and Survivability DE of UAFAReS, we also consider a behavior as the one 
described in Figure 6. In this case the end-system FM_DE gets activated and performs 
Fault-Isolation, and consequently Fault-Removal in case the root cause for the traffic 
anomaly observed in the core network is located on the end-system. The logistic that 
facilitates these processes includes the Causality Model and the Fault-Removal poli-
cies which must have been supplied during the subscription phase of the end-system. 
Furthermore, monitoring information, i.e. metric values or incident description of 
observed anomalies, may flow from the end systems to the ISP core network thereby 
enabling self-healing in the access network, the edge and core network.  The signaling 
that realizes fault tolerant behaviors in the core network is described in Figure 7. In 
addition, the sequence of interactions and actions towards eliminating the root 
cause(s) of a faulty condition in the core network are illustrated in Figure 8. 

Access Network ISP Core Network

1. Detect an incident

End System

2. Send detected incident to ISP network

Edge

3. Froward detected incident description

4. Froward detected incident description

5. Perform Fault-Masking inside the core network

 

Fig. 7. Fault-Masking in the ISP network based on information supplied by an end system 

Access Network ISP Core Network

1. Detect an incident

End System

2. Send detected incident to ISP network

Edge

3. Froward detected incident description

4. Froward detected incident description

5. Perform automatic Fault-Isolation

6. Perform automatic Fault-Removal

 

Fig. 8. Autonomic Fault-Management in the ISP network, including automatic Fault-Isolation 
and Fault-Removal, based on information supplied by an end system 
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Access Network

1. Detect an incident

End System 1

2. Share incident

End System 2

3. Froward detected incident description

4. Perform Fault-Masking and mediate the local impact of the faulty condition

 

Fig. 9. Information sharing between end systems and consequent Fault-Masking of the local 
impact of a faulty condition 

The sharing of incident event descriptions among end systems can enable 
UAFAReS based resilient behaviors on the subscribed end systems as illustrated in 
Figure 9.  This sharing can be realized over the SOHO network or directly over the 
communication medium of the access network. It is also possible that different access 
network components, serving different subscribers collaborate and enable the ex-
change of incident information between the subscribed end systems.  An example of 
such autonomic behavior, facilitated by the UAFAReS incident sharing mechanisms 
among end systems, is given in the next subsection.  

4.4   Faulty Conditions Resolvable by UAFAReS Based Auto-collaboration 

In this section, we give some examples of issues which can be resolved in case differ-
ent access/core nodes and end systems implementing UAFAReS collaborate. 

Black Holes: The term Black Hole represents a family of packet delivery problems 
where the physical (and in some cases even logical) connectivity between two sys-
tems is present, but however the packets sent between the two nodes (e.g. hosts) don't 
reach their destination. The erroneous state results from the fact that the systems, even 
having the capabilities to react to the fault activation, do not get notified of packet 
delivery failures and can not even localize the fault. That is, the sender may continue 
sending packets without detecting the packet loss problem and it can not react. The 
forwarding nodes are also not aware of the problem and do not adapt their behavior 
correspondingly. The phenomenon of Black Holes has been extensively studied and 
its relevance for ISP operators is now well known [13] [12]. Potentially, Black Holes 
may occur due to: 1) Loss of connection because of an incorrect PMTU or broken 
tunnels, e.g. MPLS. 2) Software bugs, 3) Delayed routing protocol convergence etc. 
The UAFAReS architecture can remediate some Black Hole issues by detecting and 
isolating them, reconfiguring the corresponding core network components, and in-
forming the end systems in question to adapt their behaviors. 

Duplex mismatches: IEEE 802.3 Ethernet networks are an established communication 
environment for LANs. These networks support an auto-negotiation procedure that 
allows the Ethernet interfaces on the involved nodes to automatically obtain and setup 
the optimal parameters on a link. The aforementioned parameters include the speed of 
the interface cards (10 MBit/s, 100 MBit/s, 1000 MBit/s), the duplex mode, as weIl as 
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flow control information. Whilst this procedure makes the setting up of a network 
easier, it can lead to a mismatch in the settings assumed by both NICs (Network Inter-
face Cards) involved. For instance, the failure of the auto negotiation procedure may 
result in a mismatch of the duplex configuration on two peer interfaces, i.e. the one 
operates in full and the other in half duplex mode. This can seriously cripple the net-
work and lead to performance degradation. Such duplex mismatches can occur in the 
SOHO network attached to the access network, as well as in the core or access net-
work. In [11], the symptoms of such Ethernet Duplex mismatches are investigated. 
The potential symptoms include duplicate ACKs in TCP flows, fluctuations in the 
CWND (congestion window) size of TCP connections, as well as increased collusions 
on the MAC layer and frame losses at nodes' NICs. Some of these anomalies can be 
detected only on the end systems, e.g. CWND size fluctuations. On the other hand, in 
case a duplex mismatch is identified somewhere along a path, the UAFAReS frame-
work would disseminate the information to the involved network components and 
enable/implement diverse resilient behaviors. That is, the nodes attached to the mis-
configured link would restart the corresponding NICs in order to reinitiate duplex 
auto-negotiation. Given that the involved end systems have been notified about the 
issues (Figure 5), the UAFAReS mechanisms could hold outgoing traffic for a period 
of time which should be enough for the forwarding nodes along a path to recover. 
That way, traffic is not unnecessarily (since it will for sure get lost during the fault 
removal phase) pushed into the network, and the user will probably experience just a 
short delay. 

TCP MSS size problems:  [RFC2923] describes a case that results in a smaller (then 
possible based on the actual PMTU) Maximum Segment Size (MSS) advertised and 
used in a TCP connection. This leads to a limited segment size of the TCP connection 
between end systems, and respectively to degradation in QoS of TCP applications 
using the affected TCP session. UAFAReS mechanisms (monitoring sensors) inside 
the network could detect such symptoms, identify the aforementioned root cause for 
the QoS degradation, and inform the UAFAReS instance on the end system in ques-
tion to readjust its MSS size settings. 

(D)DoS detection: We hold that the mechanisms of the UAFAReS architecture can 
also be employed for security related issues realizing a self-protecting/defending 
functionality. Recently, a lot of research has been conducted in the area of intrusion 
detection. The study and classification of traffic anomalies towards the detection of 
malicious software preparing a Distributed Denial of Service (DDoS) attack is an 
ongoing research topic the results of which can be easily integrated with the 
UAFAReS incident sharing mechanisms. In this way, end systems that detect such 
suspicious activities may send this information to the UAFAReS instance at the edge 
of the ISP's network. After having correlated these notifications, and having identified 
the threat of a DDoS attack, the UAFAReS instance on the edge can implement a 
policy in order to counter the intended attack.  

Corrupted services, e.g. DNS: Given that an end system or any functional entity has 
detected a malfunctioning service, the UAFAReS incident sharing mechanisms can be 
employed to disseminate this information and inform other potentially affected end 
systems. For instance, an end system may detect the unavailability of a DNS server  
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and use the UAFAReS mechanisms in order to share this information and enable 
other end systems to switch to another DNS server as long as the primary one is  
offline. 

Maintenance activities: According to [5], maintenance activities are responsible for 
around 20% of the failures observed in an operational IP backbone. The UAFAReS 
architecture can potentially detect the corresponding outage, identify the reason for it 
and apply, for example, some admission control policies in order to guarantee best 
QoS for the already subscribed end systems.  

PMTU issues: Traditionally, IP protocols implement a PMTU (Path Maximum 
Transmission Unit) discovery procedure on end systems. PMTU discovery is per-
formed before the data transmission has started. This enables the end systems to ob-
tain a valid PMTU for a connection towards another end system using the services of 
an operator's network. However, it is possible that the PMTU towards a host de-
creases during the lifetime of a connection. In such cases, the router at which the 
PMTU has decreased will fail to forward a packet and is expected to respond to the 
end system with an ICMP message indicating the packet loss and the reason. The IP 
module on the sender end system is expected in turn to readjust its PMTU settings 
towards the receiver. However, this procedure is very often not possible due to rea-
sons such as firewall ICMP suppression on routers, or simply because the traffic that 
cannot be forwarded is being tunneled (e.g. a VPN tunnel) and the ICMP messages 
are correspondingly not relayed. In such cases the sending host fails to adapt its frag-
menting behavior and the packets towards the receiver fail to reach their destination 
even though there is an intact physical connectivity. Obviously, this constitutes a 
specific type of a Black Hole as previously described. We believe that a framework 
such as UAFAReS can enable the implementation of mechanisms which allow the 
collaborating end systems, access and network components to overcome such issues 
with PMTU changes.  

5   Case Study: Overcoming Potential Problems with PMTU 
Changes in an IPv6 Network, Resulting from IPv4 to IPv6 
Transitioning  

Our scenario is based on the Path MTU problems described in [RFC2923].  [RFC2923] 
describes a specific type of a Black Hole phenomenon that can potentially occur in 
IPv6 networks wrongly configured with firewall configurations adopted from IPv4 
firewall configuration rules that drop ICMP messages. The faulty condition gets acti-
vated by a change in the PMTU towards a host during the lifetime of a connection. 
This problem can become crucial and lead to the extensive loss of traffic in IPv6 net-
works, since in IPv6 packets do not get fragmented on the forwarding nodes due to 
performance considerations. The next paragraphs describe the outlined issues in detail. 

The phenomenon in our case study is caused by the loss of packets at a router 
without any (ICMPv6) error notification being conveyed back to the sender host. We 
look at the specific case when packets are dropped at a forwarding node because of an 
incorrect PMTU (Path Maximum Transmission Unit), i.e. the packets of a flow are 
larger than the maximum size of a packet that can be transmitted. Such a situation can 
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occur in case of a link/node failure followed by the automatic (as done in OSPF) re-
routing of the packets over a link with an MTU which is smaller than the initially 
obtained PMTU for a flow originating from an end system as illustrated in Figure 10 
(the Gigabit Ethernet links have bigger MTU than the Fast Ethernet links). Usually, if 
a router fails to forward a packet with MTU greater than the one set for the egress 
interface for the packet, it is supposed to notify the sender of a flow via an ICMPv6 
Packet Too Big message. Upon receiving such an ICMPv6 message, the sender is 
expected to adjust the PMTU of the corresponding flow in order to continue serving 
the end user’s applications.  However, it seems that administrators often suppress 
ICMP messages in their firewalls (security considerations). Therefore, this problem 
can easily occur whenever security concerns prevail inside an operator’s network or 
simply in the case when an old (IPv4 relevant) firewall configuration has been 
adopted to an IPv6 network. The issue of ICMP message suppression is extremely 
critical in the context of IPv6, since ICMPv6 plays a significant role in IPv6, and 
suppressing ICMPv6 messages in routers could lead to major performance and con-
nectivity issues, amongst others because intermediate nodes in an IPv6 network do 
not perform packet fragmentation due to performance considerations.  

 

  

Fig. 10. Reference network and scenes for the IPv6 Black Hole case study 

The reference network for our IPv6 PMTU scenario is illustrated in Figure 10. It 
consists of a WLAN access point which is connected to a service provider network of 
five routers with different types of links. On the services’ side, there is an FTP server 
which is used by subscriber users to share files. Such a network can be seen as a part 
of a university campus network. Assuming that R2 is a router with a misconfigured 
firewall that suppresses ICMP messages, one can think of traffic between the FTP 
server and the host on the left over the path: end system ↔ R1 ↔ R2 ↔ R4 ↔ R5 
↔ FTP server. The flows running over this path would also have an established Path 
MTU of the size allowed by Gigabit Ethernet jumbo frames and WLAN at the same 
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time: 2346 bytes (the WLAN MTU). Assuming that at a particular point in time, the 
link R2 ↔ R4 fails as illustrated in Figure 10, then the routing protocol would shift 
the traffic to the link R2 ↔ R3. This link has the Fast-Ethernet MTU of 1500 bytes. 
Indeed, the PMTU will go down from 2346 bytes to 1500 bytes. For that reason, R2 
starts losing packets since no fragmentation is allowed on intermediate nodes in IPv6 
because of performance issues. Because of R2 suppressing ICMP messages, the end 
system on the left won’t get notified to readjust the size of the packets it sends out. 
This would normally lead to a time out of the connection on the transport layer in case 
of connection-oriented protocols. In the case of TCP, the connection could survive 
given that TCP PMTU discovery is implemented and activated on the end system, 
which is often not the case for the standard configuration of many operating systems. 
The application of UAFAReS in that context aims at extending the IPv6 capabilities 
of handling PMTU changes during the lifetime of a flow even in the presence of mis-
configured firewalls, and eliminating the misconfigurations in the network. 
[RFC2923] provides packet flow descriptions that illustrate such a PMTU Black Hole 
as observed on an intermediate router, i.e. a router between one of the end systems 
and the black hole router. Such a router would be R1 in our case, because R2 is con-
sidered as the black hole router. [RFC2923] illustrates a case when large packets fail 
to traverse the network. Given that such symptoms are detected on the R1, the corre-
sponding incident descriptions are submitted to the local UAFAReS repositories and 
in turn disseminated by the IDE to R2 and to the end system in order to facilitate 
resilient behaviors on these devices. After the FM_DE on R2 has been fed with the 
information regarding the detected symptoms, its FDLI functions component will 
perform Fault-Isolation based on the Causality Model stored in the local CMR reposi-
tory and will convey the results of the Fault-Isolation process to the FRF module in 
order to execute a fault removal action on R2. We expect that the Autonomic Fault-
Management control loop will be completed by an action reconfiguring the firewall in 
question such that ICMPv6 messages (according to the IPv6 security model described 
in [RFC4942]) can get through, and that the RS_DE (more specifically the FMF) on 
the end system (on the left) would readjust the PMTU towards the FTP server while 
trying to prolong the lifetime of the connection – this corresponds to the behavior 
specified in Figure 5. In that sense, the actions undertaken by UAFAReS will be of 
benefit for all transport layer communications, including connectionless UDP.  

6   Concluding Remarks 

In this paper, we presented the developments within the EFIPSANS [10] project to-
wards the definition of a standardizable Reference Model for Autonomic Networking 
and Self-Management dubbed GANA Model, and the investigation of the interplay 
between Autonomic Fault-Management, Resilience and Survivability concepts and 
mechanisms towards the implementation of self-healing in autonomic networks. We 
presented our framework for achieving self-healing, called UAFAReS (Unified Ar-
chitecture for Autonomic Fault-Management, Resilience and Survivability), which is 
based on GANA. UAFAReS was initially designed to implement resilience within a 
limited network scope, e.g. subnet, LAN, OSPF routing area. In this paper, we extend 
it, propose and investigate aspects and mechanisms on how collaboration between end 
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systems, access, edge and core network components can be facilitated and exploited 
in such a way that collaborative self-healing across the different domains is realized 
through the UAFAReS framework. Moreover, we presented some types of faulty 
conditions that can be resolved by the collaboration of UAFAReS instances inside the 
ISPs network, the edge, the access network and the subscribed end systems (user 
terminals). Finally, we looked into the details of a particular case study, showing how 
the collaboration of UAFAReS instances across different domains can enable over-
coming potential problems with PMTU changes  in an IPv6 network. Our future re-
search efforts will be mainly concentrated on the implementation of the UAFAReS 
framework and the investigation of an extensive number of issues which can be ad-
dressed by UAFAReS mechanisms in enabling self-healing across different domains. 
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