
Securing Personal Health Records in Cloud

Computing: Patient-Centric and Fine-Grained
Data Access Control in Multi-owner Settings

Ming Li1, Shucheng Yu1, Kui Ren2, and Wenjing Lou1

1 Department of ECE, Worcester Polytechnic Institute, USA
{mingli,yscheng,wjlou}@ece.wpi.edu

2 Department of ECE, Illinois Institute of Technology, USA
kren@ece.iit.edu

Abstract. Online personal health record (PHR) enables patients to
manage their own medical records in a centralized way, which greatly
facilitates the storage, access and sharing of personal health data. With
the emergence of cloud computing, it is attractive for the PHR service
providers to shift their PHR applications and storage into the cloud,
in order to enjoy the elastic resources and reduce the operational cost.
However, by storing PHRs in the cloud, the patients lose physical con-
trol to their personal health data, which makes it necessary for each
patient to encrypt her PHR data before uploading to the cloud servers.
Under encryption, it is challenging to achieve fine-grained access control
to PHR data in a scalable and efficient way. For each patient, the PHR
data should be encrypted so that it is scalable with the number of users
having access. Also, since there are multiple owners (patients) in a PHR
system and every owner would encrypt her PHR files using a different
set of cryptographic keys, it is important to reduce the key distribution
complexity in such multi-owner settings. Existing cryptographic enforced
access control schemes are mostly designed for the single-owner scenarios.

In this paper, we propose a novel framework for access control to
PHRs within cloud computing environment. To enable fine-grained and
scalable access control for PHRs, we leverage attribute based encryption
(ABE) techniques to encrypt each patient’s PHR data. To reduce the
key distribution complexity, we divide the system into multiple security
domains, where each domain manages only a subset of the users. In this
way, each patient has full control over her own privacy, and the key
management complexity is reduced dramatically. Our proposed scheme
is also flexible, in that it supports efficient and on-demand revocation of
user access rights, and break-glass access under emergency scenarios.

Keywords: Personal health records, cloud computing, patient-centric
privacy, fine-grained access control, attribute-based encryption.

1 Introduction

In recent years, personal health record (PHR) has emerged as a patient-centric
model of health information exchange. A PHR service allows a patient to create,

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 89–106, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

90 M. Li et al.

manage, and control her personal health data in a centralized place through
the web, from anywhere and at any time (as long as they have a web browser
and Internet connection), which has made the storage, retrieval, and sharing of
the the medical information more efficient. Especially, each patient has the full
control of her medical records and can effectively share her health data with a
wide range of users, including staffs from healthcare providers, and their family
members or friends. In this way, the accuracy and quality of care are improved,
while the healthcare cost is lowered.

At the same time, cloud computing has attracted a lot of attention because
it provides storage-as-a-service and software-as-a-service, by which software ser-
vice providers can enjoy the virtually infinite and elastic storage and computing
resources [1]. As such, the PHR providers are more and more willing to shift
their PHR storage and application services into the cloud instead of building
specialized data centers, in order to lower their operational cost. For example,
two major cloud platform providers, Google and Microsoft are both providing
their PHR services, Google Health1 and Microsoft HealthVault2, respectively.

While it is exciting to have PHR services in the cloud for everyone, there
are many security and privacy risks which could impede its wide adoption. The
main concern is about the privacy of patients’ personal health data and who
could gain access to the PHRs when they are stored in a cloud server. Since
patients lose physical control to their own personal health data, directly plac-
ing those sensitive data under the control of the servers cannot provide strong
privacy assurance at all. First, the PHR data could be leaked if an insider in
the cloud provider’s organization misbehaves, due to the high value of the sen-
sitive personal health information (PHI). As a famous incident, a Department
of Veterans Affairs database containing sensitive PHI of 26.5 million military
veterans, including their social security numbers and health problems was stolen
by an employee who took the data home without authorization [2]. Second, since
cloud computing is an open platform, the servers are subjected to malicious out-
side attacks. For example, Google has reported attacks on its Gmail accounts in
early 2010. Although there exist administrative regulations such as the Health
Insurance Portability and Accountability Act of 1996 (HIPAA) [3], technical pro-
tections that effectively ensure the confidentiality of and proper access to PHRs
are still indispensable.

To deal with the potential risks of privacy exposure, instead of letting the PHR
service providers encrypt patients’ data, PHR services should give patients (PHR
owners) full control over the selective sharing of their own PHR data. To this
end, the PHR data should be encrypted in addition to traditional access control
mechanisms provided by the server [4]. Basically, each patient shall generate her
own decryption keys and distribute them to her authorized users. In particular,
they shall be able to choose in a fine-grained way which users can have access
to which parts of their PHR; for the unauthorized parties who do not have
the corresponding keys, the PHR data should remain confidential. Also, the

1 https://www.google.com/health/
2 http://www.healthvault.com/

Securing Personal Health Records in Cloud Computing 91

patient should always retain the right to not only grant, but also revoke access
privileges when they feel it is necessary [5]. Therefore, in a “patient-centric”
PHR system, there are multiple owners who encrypt according to their own
ways, using different sets of cryptographic keys.

Essentially, realizing fine-grained access control under encryption can be trans-
formed into a key management issue. However, under the multi-owner setting,
this problem becomes more challenging. Due to the large scale of users and
owners in the PHR system, potentially heavy computational and management
burden on the entities in the system can be incurred, which will limit the PHR
data accessibility and system usability. On the one hand, for each owner her
PHR data should be encrypted so that multiple users can access at the same
time. But the authorized users may come from various avenues, including both
persons who have connections with her and who do not. Those users are of poten-
tial large number and their access requests are generally unpredictable. Should
all the users be directly managed by each owner herself, she will easily be over-
whelmed by a linear increase of the key management overhead with the number
of users. On the other hand, since there are multiple owners, each user may have
to obtain keys from every owner whose PHR she wants to read, limiting the ac-
cessibility since not every patient will be always online. Yet, in a straightforward
solution where all the users are managed by some central authority (CA) instead
of each owner, the CA will have the ability to decrypt all the owners’ data, such
that owners have no full control over their data and their privacy will still be at
risk. While various previous works proposed techniques for cryptographically en-
forced access control to outsourced data [4,6,7,8,9], they focused on single-owner
architecture which cannot directly solve the above challenges under multi-owner
scenario in PHR system. Therefore, a new framework for patient-centric access
control suitable for multi-owner PHR systems is necessary.

In this paper, we propose a novel and practical framework for fine-grained
data access control to PHR data in cloud computing environments, under multi-
owner settings. To ensure that each owner has full control over her PHR data, we
leverage attribute-based encryption (ABE) as the encryption primitive, and each
owner generates her own set of ABE keys. In this way, a patient can selectively
share her PHR among a set of users by encrypting the file according to a set of
attributes, and her encryption and user management complexity is linear to the
number of attributes rather than the number of authorized users in the system.

To avoid from high key management complexity for each owner and user, we
divide the system into multiple security domains (SDs), where each of them is as-
sociated with a subset of all the users. Each owner and the users having personal
connections to her belong to a personal domain, while for each public domain
we rely on multiple auxiliary attribute authorities (AA) to manage its users and
attributes. Each AA distributively governs a disjoint subset of attributes, while
none of them alone is able to control the security of the whole system. In ad-
dition, we discuss methods for enabling efficient and on-demand revocation of
users or attributes, and break-glass access under emergence scenarios.

92 M. Li et al.

2 Related Work

2.1 Traditional Access Control for EHRs

Traditionally, research on access control in electronic health records (EHRs)
often places full trust on the health care providers where the EHR data are
often resided in, and the access policies are implemented and enforced by the
health providers. Various access control models have been proposed and applied,
including role-based (RBAC) and attribute-based access control (ABAC) [10].
In RBAC [11], each user’s access right is determined based on his/her roles and
the role-specific privileges associated with them. The ABAC extends the role
concept in RBAC to attributes, such as properties of the resource, entities, and
the environment. Compared with RBAC, the ABAC is more favorable in the
context of health care due to its potential flexibility in policy descriptions [10].
A line of research aims at improving the expressiveness and flexibility of the
access control policies [12].

However, for personal health records (PHRs) in cloud computing environ-
ments, the PHR service providers may not be in the same trust domains with
the patients’. Thus patient-centric privacy is hard to guarantee when full trust
is placed on the cloud servers, since the patients lose physical control to their
sensitive data. Therefore, the PHR needs to be encrypted in a way that enforces
each patient’s personalized privacy policy, which is the focus of this paper.

2.2 Cryptographically Enforced Access Control for Outsourced
Data

For access control of outsourced data, partially trusted servers are often assumed.
With cryptographic techniques, the goal is trying to enforce that who has (read)
access to which parts of a patient’s PHR documents in a fine-grained way.

Symmetric key cryptography (SKC) based solutions. Vimercati et.al. proposed
a solution for securing outsourced data on semi-trusted servers based on symmet-
ric key derivation methods [13], which can achieve fine-grained access control.
Unfortunately, the complexities of file creation and user grant/revocation oper-
ations are linear to the number of authorized users, which is less scalable. In
[4], files in a PHR are organized by hierarchical categories in order to make key
distribution more efficient. However, user revocation is not supported. In [6], an
owner’s data is encrypted block-by-block, and a binary key tree is constructed
over the block keys to reduce the number of keys given to each user.

The SKC-based solutions have several key limitations. First, the key man-
agement overhead is high when there are a large number of users and owners,
which is the case in a PHR system. The key distribution can be very inconve-
nient when there are multiple owners, since it requires each owner to always be
online. Second, user revocation is inefficient, since upon revocation of one user,
all the remaining users will be affected and the data need to be re-encrypted.
Furthermore, users’ write and read rights are not separable.

Public key cryptography (PKC) based solutions. PKC based solutions were
proposed due to their ability to separate write and read privileges. Benaloh

Securing Personal Health Records in Cloud Computing 93

et. al. [4] proposed a scheme based on hierarchical identity based encryption
(HIBE), where each category label is regarded as an identity. However, it still has
potentially high key management overhead. In order to deal with the multi-user
scenarios in encrypted search, Dong et.al. proposed a solution based on proxy
encryption [14]. Access control can be enforced if every write and read operation
involve a proxy server. However, it does not support fine-grained access control,
and is also not collusion-safe.

Attribute-based encryption (ABE). The SKC and traditional PKC based solu-
tions all suffer from low scalability in a large PHR system, since file encryption
is done in an one-to-one manner, while each PHR may have an unpredictable
large number of users. To avoid such inconveniences, novel one-to-many encryp-
tion methods such as attribute-based encryption can be used [15]. In the seminal
paper on ABE [16], data is encrypted to a group of uses characterized by a
set of attributes, which potentially makes the key management more efficient.
Since then, several works used ABE to realize fine-grained access control for out-
sourced data [17,18,19,20]. However, they have not addressed the multiple data
owner settings, and there lacks a framework for patient-centric access control
in multi-owner PHR systems. Note that, in [21] a single authority for all users
and patients is adopted. However, this suffers from the key escrow problem, and
patients’ privacy still cannot be guaranteed since the authority has keys for all
owners. Recently Ibraimi et.al. [22] applied ciphertext policy ABE (CP-ABE)
[23] to manage the sharing of PHRs. However, they still assume a single public
authority, while the challenging key-management issues remain largely unsolved.

3 Patient-Centric Data Access Control Framework for
PHR in Cloud Computing

3.1 Problem Definition

We consider a PHR system where there exist multiple PHR owners and multiple
PHR users. The owners refer to patients who have full control over their own
PHR data, i.e., they can create, manage and delete it. The users include readers
and writers that may come from various aspects. For example, a friend, a care-
giver or a researcher. There is also a central server belonging to the PHR service
provider that stores all the owners’ PHRs, where there may be a large number
of owners. Users access the PHR documents through the server in order to read
or write to someone’s PHR. The PHR files can be organized by their categories
in a hierarchical way [4].

Security Model. In this paper, we consider honest but curious cloud server
as those in [13] and [20]. That means the server will try to find out as much
secret information in the stored PHR files as possible, but they will honestly
follow the protocol in general. The server may also collude with a few malicious
users in the system. On the other hand, some users will also try to access the
files beyond their privileges. For example, a pharmacy may want to obtain the
prescriptions of patients for marketing and boosting its profits. To do so, they

94 M. Li et al.

Fig. 1. The proposed multi-owner, multi-authority, and multi-user framework for access
control of PHR in cloud computing

may even collude with other users. In addition, we assume each party in our
system is preloaded with a public/private key pair, and entity authentication
can be done by challenge-response protocols.

Requirements. In “patient-centric privacy”, we envision that each patient
specifies her own privacy policy. The owners want to prevent the server and
unauthorized users from learning the contents of their PHR files. In particular,
we have the following objectives:

– Fine-grained access control should be enforced, meaning different users can
be authorized to read different sets of files. Also, we shall enable multiple
writers to gain write-access to contribute information to PHR with account-
ability.

– User revocation. Whenever it is necessary, a user’s access privileges should
be revoked from future access in an efficient way.

– The data access policies should be flexible, i.e., changes to the predefined
policies shall be allowed, especially under emergency scenarios.

– Efficiency. To support a large and unpredictable number of users, the system
should be highly scalable, in terms of complexity in key management, user
management, and computation and storage.

3.2 The Proposed Framework for Patient-Centric Data Access
Control

Since the cloud server is no longer assumed to be fully trusted, data encryp-
tion should be adopted which should enforce patient-specified privacy policies.

Securing Personal Health Records in Cloud Computing 95

To this end, each owner shall act as an authority that independently generates
and distributes cryptographic keys to authorized users. However, as mentioned
before, the management complexities may increase linearly with the number of
users and owners.

Our proposed framework can solve this problem well. The key idea is two-
fold. First, in order to lower the complexity of encryption and user management
for each owner, we adopt attribute-based encryption (ABE) as the encryption
primitive. Users/data are classified according to their attributes, such as profes-
sional roles/data types. Owners encrypt their PHR data under a certain access
policy (or, a selected set of attributes), and only users that possess proper sets
of attributes (decryption keys) are allowed to gain read access to those data.

Second, we divide the users in the whole PHR system into multiple security
domains (SDs), and for each SD we introduce one or more authorities which gov-
ern attribute-based credentials for users within that SD. There are two categories
of SDs: public domains (PUDs) and personal domains (PSDs). Each owner is in
charge of her PSD consisting of users personally connected to her. A PUD usu-
ally contains a large number of professional users, and multiple public attribute
authorities (PAA) that distributively governs a disjoint subset of attributes to
remove key escrow. An owner encrypts her PHR data so that authorized users
from both her PSD and PUDs may read it. In reality, each PUD can be mapped
to an independent sector in the society, such as the health care, education, gov-
ernment or insurance sector. Users belonging to a PUD only need to obtain
credentials from the corresponding public authorities, without the need to inter-
act with any PHR owner, which greatly reduces the key management overhead
of owners and users.

The framework is illustrated in Fig. 1, which features multiple SDs, multiple
owners (personal AAs), multiple PAAs, and multiple users (writers and readers).
Next, we describe the framework in a conceptual way.

Key distribution. Users first obtain attribute-based keys from their AAs. They
submit their identity information and obtain secret keys that bind them to
claimed attributes. For example, a physician in it would receive “hospital A,
physician, M.D., internal medicine” as her attributes, possibly from different
AAs. This is reflected by (1) in Fig. 1. In addition, the AAs distribute write keys
that permit users in their SD to write to some patients’ PHR ((2)). A user needs
to present the write keys in order to gain write access to the cloud server.

PHR Access. First, the owners upload ABE-encrypted PHR files to the cloud
server ((3)), each of them is associated with some personalized access policy, en-
forced by encryption. Only authorized users can decrypt the PHR files, exclud-
ing the server. For example, a policy may look like P :=“(profession=physician)∧
(specialty=internal medicine)∧(organization=hospital A)”. The readers down-
load PHR files from the server, and they can decrypt the files only if they have
suitable attribute-based keys ((5)). The writers will be granted write access to
someone’s PHR, if they present proper write keys ((4)).

96 M. Li et al.

User revocation. There are two types of user revocation. The first one is
revocation of a user’s attribute, which is done by the AA that the user belongs to,
where the actual computations can be delegated to the cloud server to improve
efficiency ((8)). The second one is update of an owner’s access policy for a specific
PHR document, based on information passed from the owner to the server ((8)).

Break-glass. When an emergency happens, the regular access policies may no
longer be applicable. To handle this situation, break-glass access is needed to
access the victim’s PHR. In our framework, each owner’s PHR’s access right is
also delegated to an emergency department (ED, (6)). To prevent from abuse
of break-glass option, the emergency staff needs to contact the ED to verify her
identity and the emergency situation, and obtain temporary read keys ((7)).
After the emergency is over, the patient can revoke the emergent access via
the ED.

4 Flexible and Fine-Grained Data Access Control
Mechanisms

In this section, we present mechanisms to achieve cryptographically enforced
fine-grained data access control for PHRs in cloud computing, under our patient-
centric access control framework. We adopt attribute-based encryption (ABE)
as the cryptographic tool. ABE [16,23] is a collusion resistant, one-to-many en-
cryption method, where only users possessing proper attributes can decrypt a
ciphertext. ABE potentially allows patients to define their own access policies
conveniently, eliminates the need to know the user list of each PHR file, and is
scalable with the number of users.

The central issue here is how to achieve strong privacy guarantee for the own-
ers. Consider a straightforward application of the CP-ABE scheme [23], where
each AA in a PUD corresponds to an organization such as a health care provider,
who defines all the attributes of its staffs and runs an independent ABE system.
It is simple for an owner to realize complex access policies. If she wants to allow
physicians from multiple hospitals to view one of her PHR file (e.g., Fig. 2 (a),
P), she can include multiple sets of ciphertext components, each set encrypted
using one of the hospital’s ABE public keys. However, if any of the authorities
(hospitals) misbehave, it can decrypt all the data of owners who allow access to
users in that hospital. This is clearly against the patient-centric privacy concept.
In addition, this method is not efficient since the policies for the three hospitals
are duplicated, which makes the ciphertext long. Ideally the same literals should
be collapsed into one (Fig. 2 (a), P ′).

To solve the above problems, we adopt the multi-authority ABE (MA-ABE)
proposed by Chase et.al. [24], where each authority governs a disjoint set of
attributes distributively. An independent MA-ABE system is ran for each PUD,
where there are multiple AAs in each of them; while each PSD (owner) runs the
KP-ABE proposed by Goyal et.al [16] (GPSW). In each PUD, there is no longer
a central authority (CA) and any coalition of up to corrupted N −2 AAs cannot
break the security of the system thanks to MA-ABE.

Securing Personal Health Records in Cloud Computing 97

P :=
(
physician∧internal medicine∧hospital A

)

∨(
physician∧internal medicine∧hospital B

)

∨(
physician∧internal medicine∧hospital C

)
...

P ′:=
(
physician∧internal medicine∧

(hospital A∨hospital B∨hospital C)
)

(a) (b)

Fig. 2. (a): A patient-defined access policy under the naive way of authority arrange-
ment. (b): An example policy realizable using MA-ABE under our framework.

Table 1. Frequently used notations

A The universe of data attributes
A The universe of role attributes
Au User u’s data attribute set
A

C
k A set of role attributes (from the kth AA) associated with a ciphertext

A
u
k A set of role attributes that user u obtained from the kth AA

P Access policy for a PHR file
P An access policy assigned to a user
MK, PK Master key of an AA and its public key for ABE
SK A user’s secret key
rki→i′ Re-encryption key for the server to update attribute i to its current version i′

However, in MA-ABE the access policies are enforced in users’ secret keys,
and the policies are fixed once the keys are distributed which is not convenient
for owners to specify their own policies. By our design, we show that by agreeing
upon the formats of the key-policies and specifying which attributes are required
in the ciphertext, the supported policy expressions enjoy some degree of flexibil-
ity from the encryptor’s point of view, such as the one in Fig. 2 (b). In addition,
it is a well-known challenging problem to revoke users/attributes efficiently and
on-demand in ABE. We adapt the most recent techniques in ABE revocation
[19,20], so that an owner/AA can revoke a user or a set of attributes on-demand
by updating the ciphertexts and (possibly) user’s secret keys, and part of these
operations can be delegated to the server which enhances efficiency.

4.1 Definitions, Notations and Preliminary

There are two types of attributes in the PHR system, namely data attribute and
role attribute. The former refers to the intrinsic properties of the PHR data, such
as the category of a PHR file. The latter represents the roles of the entities in
the system, such as the professional role of a user in an organization. The main
notations are summarized in Table. 1.

98 M. Li et al.

Key-policy Attribute-Based Encryption (KP-ABE) Schemes. The KP-
ABE associates a set of attributes with the ciphertext, and the access policies
are enforced in the keys distributed to each user.

First, we briefly review the multi-authority ABE (MA-ABE) [24] which will
used in this paper. Assume there are N AAs in total. The MA-ABE consists of
the following four algorithms:

Setup This algorithm is cooperatively executed by all of the N AAs. It takes
as input a security parameter λ, an attribute universe {Ak}k∈{1,...,N} where
Ak = {1, 2, ..., nk} and outputs public keys and a master key for each AA. It
defines common bilinear groups G1, G2 with prime order q and generators g1, g2

respectively, and a bilinear map e : G1 × G2 → GT . The PK and AAk’s master
key MKk are as follows:

MKMA−ABE
k = 〈mskk, {tk,i}i∈Ak

〉,
PKMA−ABE = 〈Y = e(g1, g2)

∑
k vk , {yk, {Tk,i = g

tk,i

2 }i∈Ak
}k∈{1,...,N}〉

where mskk is AAk’s master secret key used only in key issuing, yk is only
used by the AAs, and tk,i ∈ Zq and Tk,i ∈ G2 are attribute private/public key
components for attribute i.

Key issuing In this algorithm, the AAs collectively generate a secret key for a
user. For a user with ID3 u, the secret key is in the form

SKMA−ABE
u = 〈Du = gRu

1 , {Dk,i = g
pk(i)/tk,i

1 }k∈{1,...,N},i∈Au
k
〉,

where Ru is a random number for user u, and pk(·) is a dk degree polynomial
generated by the kth AA.

Encryption This algorithm takes as input a message M , public key PK, and
a set of attributes {A

C
1 , ..., AC

N}, and outputs the ciphertext E as follows. The
encryptor first chooses an s ∈R Zq, and then returns

〈E0 = M · Y s, E1 = gs
2, {Ck,i = T s

k,i}i∈AC
k ,k∈{1,...,N}〉.

Decryption This algorithm takes as input a ciphertext E, PK, and a user
secret key SKu. If for each AA k, |AC

k ∩ A
u
k | ≥ dk, the user pairs up Dk,i and

Ck,i and reconstructs e(g1, g2)spk(0). After multiplying all these values together
with e(Du, E1), u recovers the blind factor Y s and thus gets M .

Second, we use the GPSW KP-ABE scheme [16] for each PSD, where all the
attributes and keys come from single personal AA. There are also four algo-
rithms. The setup generates group G1 with generator g1, and e : G1×G1 → GT .
The MK/PK are as follows.

MKGPSW = 〈{y, ti}i∈{1,...,n}〉,
PKGPSW = 〈Y = e(g1, g1)y, {Ti = gti

1 }i∈{1,...,n}〉

where n = |A|. In key generation, the SKGPSW
u = 〈{Di = g

p(i)/ti

1 }i∈Au . The
encryption is the same except k = 1, while the decryption is similar.
3 This ID is a secret only known to u.

Securing Personal Health Records in Cloud Computing 99

Table 2. Sample attribute based keys for three public users in the health care domain

Attribute authority AMA ABMS AHA

Attribute type Profession License status Medical specialty Organization

A
u1 : user 1 Physician * M.D. * Internal medicine * Hospital A *

A
u2 : user 2 Nurse * Nurse license * Gerontology * Hospital B *

A
u3 : user 3 Pharmacist * Pharm. license * General * Pharmacy C *

Key policy 2-out-of-n1 1-out-of-n2 1-out-of-n3

4.2 Key Distribution

An essential function of key distribution is to enable patients’ control over their
own access policies. The owners distribute keys only to the users in their PSD,
while the AAs in a PUD distribute keys to their PUD. For the former, it is easy
for owner to generate each user’s key directly so that it enforces that user’s access
right based on a set of data attributes; however, for a PUD, the challenge is how
to allow different owners to specify different personalized user access policies
while each user’s secret key enforces a fixed access policy pre-distributed by the
PAAs. In our solution, the access policies in public users’ secret keys conform to
some predefined format agreed between the owners and the PAAs, which enables
an owner to enforce her own policy through choosing which set of attributes to
be included in the ciphertext.

For each PSD, there is the same, pre-defined data attribute universe A, where
each attribute is a category of the PHR files, such as “basic profile”, “medical
history”, “allergies”, and “prescriptions”. When an owner first registers in the
PHR system, an end-user software will run its own copy of GPSW’s setup al-
gorithm to generate a public key PK and a master key MK for herself, with
each component corresponding to one data attribute. After the owner creates
her PHR, she invites several person in her PSD to view it. For each invited user,
she defines an access policy based on the data attributes, and generates a corre-
sponding secret key SK and sends it securely. Those users are usually personally
known to the owner, such as her family member, friends or primary doctors. A
family member’s policy may look like “basic profile” ∨ “medical history”, which
gives access to files belonging to either categories. In order to enable the owner
themselves to decrypt all files in their PHRs, each owner retains only one secret
key component, the data attribute “PHR” which is the root of the category
hierarchy.

For each PUD, MA-ABE is adopted. The PAAs first generate the MKs and
PK using setup. Each AA k defines a disjoint set of role attributes Ak, which are
relatively static properties of the public users. These attributes are classified by
their types, such as profession and license status, medical specialty, and affiliation
where each type has multiple possible values. Basically, each AA monitors a dis-
joint subset of those types. For example, in the healthcare domain, the American
Medical Association (AMA) may issue medical professional licenses like “physi-
cian”, “M.D.”, “nurse”, “entry-level license” etc., the American Board of Medical
Specialties (ABMS) certifies specialties like “internal medicine”, “surgery” etc;

100 M. Li et al.

and the American Hospital Association (AHA) may define user affiliations such
as “hospital A” and “pharmacy D”. In order to represent the “do not care”
option for the owners, we add a wildcard attribute “*” in each type of the at-
tributes. The format of the key-policies is restricted to threshold gates, i.e., dk

out of nk where nk = |Au
k ∩A

C
k | for the kth AA. Thus, there needs an agreement

between the AAs and the owners (encryptors) about what how to implement
owners’ policies. The AA’s part of the agreement is that:

at lease one attribute should be required from each category of attributes, and
the wildcard associated with each category shall always be included4.

After key distribution, the AAs can almost remain offline. A detailed key
distribution example is given in Table. 2.

In summary, a user u in an owner’s PSD has the following keys: SKGPSW
u =

〈{g
qi(0)

ti

1 }i∈Au〉 where qx(·) is the polynomial for node x in u’s access tree. For a
user u in a PUD, SKMA−ABE

u = 〈Du, {Dk,i}k∈{1,...,N},i∈Au
k
〉.

4.3 Enforcement of Access Privileges

Achieving Fine-grained Read Access Control through PHR Encryp-
tion. After an owner creates her PHR files, she will be allowed to specify her
own privacy policy. The personal users and public users are dealt with differ-
ently. For the former, since GPSW is adopted which is based on data attributes,
the policy is actually defined per personal user, i.e., what types of files each user
can access (denoted as Pper). For the latter, the policy is defined per file, i.e.,
what kinds of users can access each file (denoted as Ppub)

For the PSDs, the form of a user’s key-policy is unrestricted, i.e., can be any
tree structure consisting of threshold gates [16]. So for encryption, the owner
simply associates a set of intrinsic data attributes, AF , with the ciphertext of
each PHR file F . AF always includes all the data attributes of F on the branch
from the root to the leaf node in the category tree, in order to give hierarchical
read access to personal users. An example is “PHR, medical history, influenza
history”. In this way, a user with key corresponding to single attribute “medical
history” can view all files under this category.

However, for the public users, the problem is more intricate. Since in MA-
ABE it is the AAs that govern role attributes, and the key-policies are set by
the AAs rather than the owners, we shall also impose some rules on owners
when encrypting each file, to enforce their personalized Ppub. The owner’s part
of the agreement is, she must include at least one attribute value from each
attribute type (column) in the ciphertext. In this way, AND logic across attribute
types is realized by MA-ABE, while OR logic among different values within the
same attribute type is realized by including corresponding multiple attribute
components in the ciphertext.

For more expressivepolicies, the AA’s part of the protocol needs to be enhanced.
For example, if an owner includes {“physician”, “M.D.”, “internal medicine”,
4 Here we are assuming that each medical professional either possess one or none of

the attributes of each type.

Securing Personal Health Records in Cloud Computing 101

“hospital A”, “nurse”, “*”, “Gerontology nursing”, “hospital B”}, she meant the
following policy: ((“physician”∧“M.D.”∧“internal medicine”)∨(“nurse”∧“any
level”∧“Gerontologynursing”))∧(“hospitalA”∨“hospitalB”). However, since the
“*” is the only and same one for attribute type “license status”, a physician with-
out a “M.D.” attribute but with a “*” can also decrypt the message. To solve this
problem, we observe that the set of “license status” of different professions are dis-
joint in reality. Therefore we can further classify the wildcard attributes in “license
status” by its associated profession. For example, there would be a different “*” for
physicians and nurses. In this way, the policy in Fig. 2 can be realized.

We note that the expressibility of the above approach is somewhat limited by
MA-ABE, which only supports policies in the “AND” form. For example, if an
owner chooses hospital A and hospital B as organization attributes, the policies
over the rest of the attribute types have to be the same for the two hospitals.
However, our scheme does allow different policies for different organizations, in
which the owner needs to attach multiple sets of ciphertext components, each
corresponding to one organization. This may result in longer ciphertext lengths.
Nevertheless, we argue that in reality most patients will not differentiate access
policies across the same type of organizations.

If Ppub involves multiple PUDs, then Ppub = ∪pubj{Ppubj}, and multiple sets
of ciphertext components needs to be included. Since in reality, the number of
PUDs is usually small, our encryption method is much more efficient than the
straightforward way in which the length of ciphertexts grows linearly with the
number of organizations. Note that, for efficiency, each file is encrypted with a
randomly generated symmetric key (FSK), which is then encrypted by ABE.

In summary, the ciphertext for FSK of file F is:
EF (FSK) = 〈Eper(FSK), Epub(FSK)〉, where

Eper(FSK) = 〈AF , Eper
0 = MY s

per, E
per
1 = gs

1,per, {Cper
i = T s

per,i}i∈AF 〉
Epub(FSK) = 〈AF = ∪pubj{A

pubj

F }, {Epubj

0 = MY s
pubj

}, {Epubj

1 = gs
2,pubj

},
{Cpubj ,k,i = T s

pubj ,k,i}k∈{1,...,Nj},i∈AFk
〉

where pubj is the jth PUD, j ∈ {1, ..., m} and m is the number of PUDs.

Grant Write Access. If there is no restrictions on write access, anyone may
write to someone’s PHR using only public keys, which is undesirable. By granting
write access, we mean a writer should obtain proper authorization from the
organization she is in (and/or from the targeting owner), which shall be able to
be verified by the server who grants/rejects write access.

A naive way is to let each writer obtain a signature from her organization every
time she intends to write. Yet this requires the organizations be always online.
The observation is that, it is desirable and practical to authorize according to
time periods whose granularity can be adjusted. For example, a doctor should
be permitted to write only during her office hours; on the other hand, the doctor
must not be able to write to patients that are not treated by her. Therefore, we
combine signatures with the hash chain technique to achieve our goals.

102 M. Li et al.

Suppose the time granularity is set to Δt, and the time is divided into periods
of Δt. For each working cycle (e.g. a day), an organization generates a hash
chain H = {h0, h1, ..., hn}, where H(hi−1) = hi, 1 ≤ i ≤ n. At time 0, the
organization broadcasts a signature of the chain end hn (σorg(hn)) to all users
in its domain. After that it multicasts hn−i to the set of authorized writers
at each time period i. Note that, the above method enables timely revocation
of write access, i.e., the authority simply stops issuing hashes for a writer at
the time of revocation. In addition, an owner needs to distribute a time-related
signature: σowner(ts, tt) to the entities that requests write access (which can be
delegated to the organization), where ts is the start time of the granted time
window, and tt is the end of the time window. For example, to enable a billing
clerk to add billing information to Alice’s PHR, Alice can specify “8am to 5pm”
as the granted time window at the beginning of a clinical visit. Note that, for
writers in the PSD of the owner, they only need to obtain signatures from the
owner herself.

Generally, during time period j, an authorized writer w submits the following
to the server after being authenticated to it:

Ĕpkserver (ts||tt||σowner(ts||tt)||hn||σorg(hn)||hn−j ||r)

where Ĕpkserver is the public key encryption using the server’s public key, and
r is a nonce to prevent replay attack. The server verifies if the signatures are
correct using both org’s and owner’s public keys, and whether Hj(hn−j) = hn,
where Hj() means hash j times. Only if both holds, the writer is granted write
access and the server accepts the contents uploaded subsequently.

4.4 User Revocation

A user needs to be revoked on-demand when her attributes change or an owner
does not want the user to access parts of her PHR anymore. For the PAAs,
they revoke a user’s role attributes that deprive her all the read access privileges
corresponding to those attributes; an owner revokes data attributes possessed
by a user that prevent her from accessing all the PHR files labeled with those
attributes. In ABE, traditional revocation schemes [17,25] are not timely, which
require non-revoked users to frequently obtain key updates issued by the au-
thorities. Here we apply the revocation method proposed by Yu et.al. [19,20].
The idea is to let an authority actively update the affected attributes for all the
remaining users. To this end, the following updates should be carried out by the
AA: (1) all the public key components for those affected attributes; (2) all the
secret key components corresponding to those attributes of a remaining user.
(3) Also, the server shall update all the ciphertext components corresponding to
those attributes.

In order to reduce the potential computational burden for the AAs/servers,
based on [19,20] we adopt proxy re-encryption to delegate operations (2) and (3)
to the cloud server, and use lazy-revocation to reduce the overhead. In particular,
for GPSW used by each owner, each data attribute i is associated with a version

Securing Personal Health Records in Cloud Computing 103

number veri. Upon each revocation event, if i is an affected attribute, the owner
submits a re-key rki,i′ = t′i/ti to the server, who then updates the affected
ciphertexts and increases their version numbers. The remaining users’ secret key
components are updated similarly; note that a dummy attribute needs to be
additionally defined by the owner which is always ANDed with each user’s key-
policy to prevent secret key leakage. By lazy-revocation, we mean the affected
ciphertexts and user secret keys may only be updated when a user logs into
the system next time. And by the form of the re-key, all the updates can be
aggregated from the last login to the most current one. The process is done
similarly for MA-ABE. Due to space limitations, we do not present the details
in this paper.

In addition, for each specific PHR file, an owner can temporarily revoke one
type of user from accessing it after it is uploaded to the server, which can be
regarded as changing her access policy for that file. For example, a patient may
not want doctors to view her PHR after she finishes a visit to a hospital, she can
simply delete the ciphertext components corresponding to attribute “doctor”
in her PHR files. In order to restore the access right of doctors, she will need
to reconstruct those components. This can be achieved by keeping the random
number s used for each encrypted file on her own computer.

4.5 Handling Break-Glass

For certain parts of the PHR data, medical staffs need to have temporary access
when an emergency happens to a patient, who may become unconscious and is
unable to change her access policies. Since the data is encrypted, the medical
staffs need some trapdoor information to decrypt those data. Under our frame-
work, this can be naturally achieved by letting each patient delegate her trapdoor
to the emergency department (ED). The ED needs to authenticate the medical
staff who requests for a trapdoor. Specifically, a patient’s trapdoor for her PHR
is in the following form: TPD = gd

1 , where d is randomly chosen from Zq. For
each of her PHR file that she wants to be accessed under emergency, she appends
an additional ciphertext component: Ẽ = M · e(gs

1, TPD) = M · e(g1, g1)ds. The
patient then sends TPD to the ED who keeps it in a database of patient direc-
tory. Upon emergency, the medical staff requests and obtains the corresponding
patient’s TPD from ED (the ED encrypts TPD using the staff’s public key),
and then decrypts the PHR file by computing Ẽ/e(gs

1, TPD) = M . After the
patient recovers from the emergency, she can restore the normal access by com-
puting a re-key: d′/d, and then submit it to the ED and the server to update
TPD and Ẽ to their newest versions.

5 Scheme Analysis

5.1 Security Analysis

In this section, we analyze the security of proposed access control mechanisms.
First, the GPSW and MA-ABE schemes are proven to be secure in [16] and

104 M. Li et al.

Table 3. Scheme analysis and comparison

Our proposed scheme [22]

Privacy guarantee Resistant to AA collusion Only resistant to user collusion

Key distribution O(|PSD|) O(1) O(|PUDi|) O(|PSD|) O(1) O(
∑m

i=1 |PUDi|)
(Owner) (user) (PAA) (Owner) (user) (Public auth.)

Revocation Efficient and on-demand N/A

Public key size |A|k + Ni [24] |A| + 1
⋃ |A|k |A|

(PUDk) (Owner) (The PUD) (Owner)

Secret key size |Au| + 1 |Au| + 1 |Au| |Au|
(Public user) (personal user) (public user) (personal user)

Ciphertext length |AC | + |AC | + 2 × m ≥ |AC | + |AC | + 3

Decryption complexity O(1) (w/ delegation) O(Au ∩AC) or O(Au ∩ A
C)

Policy expressibility CNF, enhanced with wildcards Any monotonic boolean formula

[24], respectively. Especially, the encrypted data is confidential to non-authorized
users. Also, they are both resistant to user collusion, and MA-ABE is further
resistant to collusion among up to N − 2 AAs in one PUD. This implies that
strong privacy guarantee is achieved through file encryption. Second, for the
write access enforcement, the one-way property of the hash chain ensures that a
writer can only obtain write keys for the time period that she is authorized for.
Also, writer can hardly forge a signature of the hash chain end according to the
unforgeability of the underlying signature scheme. Third, the revocation scheme
is secure, which is proven in [20] under standard security assumptions. Finally,
for the break-glass access, an adversary is not feasible to obtain TPD given Ẽ
and gs

1, due to the security properties of bilinear pairing.

5.2 Performance Analysis

The performance analysis is summarized in Table. 3. We compare our solution
with that of [22] which uses CP-ABE, and a single public authority is used. m is
the number of PUDs, while Ni is the number of PAAs in the ith PUD. Note that,
the key management complexity is in terms of the number of interactions during
key distribution. For ciphertext length comparison, for our scheme the access
policy for each PUD is restricted to conjunctive form: Ppub := P1 ∧ ... ∧ Pm,
where each Pi is a boolean clause consisting of “∧” and “∨”. The number of
ciphertext components related to the PUDs is

|AC | =
m∑

j=1

(Ni∑

k=1

|AC
k,i|

)
,

which is linear to the number of PUDs and the number of PAAs. In practice,
there are usually a few PUDs (e.g., <5) and a few PAAs and types of attributes
in each of them (e.g., 5). Therefore the additional storage overhead for the server
created by each ciphertext (encryption of the file encryption key) is usually in
the order of tens of group elements, which typically equals to a few hundred
bytes if 160-bit ECC is adopted. This is acceptable compared with the length

Securing Personal Health Records in Cloud Computing 105

of a PHR document (usually in the order of KB). Apart from those, for each
owner, to change access policies and enable emergency access, 2 additional group
elements (s and d) shall be locally stored for each encrypted PHR file, which
is quite small. The result for [22]’s scheme is derived based on the same access
policy to that in our scheme; it is a lower bound due to the lack of wildcard.

Finally, the computational overhead in our scheme is low, since the decryption
operation can be mostly delegated to the server. A user can submit all the Dk,is
to the server and only computes one bilinear pairing: e(Du, E1). This is secure
because the server does not know Du.

6 Conclusion

In this paper, we have proposed a novel framework of access control to realize
patient-centric privacy for personal health records in cloud computing. Con-
sidering partially trustworthy cloud servers, we argue that patients shall have
full control of their own privacy through encrypting their PHR files to allow
fine-grained access. The framework addresses the unique challenges brought by
multiple PHR owners and users, in that we greatly reduce the complexity of key
management when the number of owners and users in the system is large. We
utilize multi-authority attribute-based encryption to encrypt the PHR data, so
that patients can allow access not only by personal users, but also various users
from different public domains with different professional roles, qualifications and
affiliations. An important future work will be enhancing the MA-ABE scheme
to support more expressive owner-defined access policies.

Acknowledgements. This work was supported in part by the US National
Science Foundation under grants CNS-0716306, CNS-0831628, CNS-0746977,
and CNS-0831963.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee, G.,
Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above the clouds: A berkeley
view of cloud computing (February 2009)

2. At risk of exposure – in the push for electronic medical records, con-
cern is growing about how well privacy can be safeguarded (2006),
http://articles.latimes.com/2006/jun/26/health/he-privacy26

3. The health insurance portability and accountability act of 1996 (1996),
http://www.cms.hhs.gov/HIPAAGenInfo/01_Overview.asp

4. Benaloh, J., Chase, M., Horvitz, E., Lauter, K.: Patient controlled encryption:
ensuring privacy of electronic medical records. In: CCSW 2009: Proceedings of the
2009 ACM workshop on Cloud computing security, pp. 103–114 (2009)

5. Mandl, K.D., Szolovits, P., Kohane, I.S.: Public standards and patients’ control:
how to keep electronic medical records accessible but private. BMJ 322(7281), 283
(2001)

6. Wang, W., Li, Z., Owens, R., Bhargava, B.: Secure and efficient access to outsourced
data. In: CCSW 2009, pp. 55–66 (2009)

http://articles.latimes.com/2006/jun/26/health/he-privacy26
http://www.cms.hhs.gov/HIPAAGenInfo/01_Overview.asp

106 M. Li et al.

7. Damiani, E., di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Key management for multi-user encrypted databases. In: StorageSS 2005, pp.
74–83 (2005)

8. Atallah, M.J., Frikken, K.B., Blanton, M.: Dynamic and efficient key management
for access hierarchies. In: CCS 2005, pp. 190–202 (2005)

9. Blundo, C., Cimato, S., De Capitani di Vimercati, S., De Santis, A., Foresti, S.,
Paraboschi, S., Samarati, P.: Managing key hierarchies for access control enforce-
ment: Heuristic approaches. In: Computers & Security (2010) (to appear)

10. Scholl, M., Stine, K., Lin, K., Steinberg, D.: Draft security architecture design
process for health information exchanges (HIEs). Report, NIST (2009)

11. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM TISSEC 4(3), 224–274 (2001)

12. Jin, J., Ahn, G.-J., Hu, H., Covington, M.J., Zhang, X.: Patient-centric autho-
rization framework for sharing electronic health records. In: SACMAT 2009, pp.
125–134 (2009)

13. di Vimercati, S.D.C., Foresti, S., Jajodia, S., Paraboschi, S., Samarati, P.: Over-
encryption: management of access control evolution on outsourced data. In: VLDB
2007, pp. 123–134 (2007)

14. Dong, C., Russello, G., Dulay, N.: Shared and searchable encrypted data for un-
trusted servers. In: DBSec 2008, pp. 127–143 (2008)

15. Li, M., Lou, W., Ren, K.: Data security and privacy in wireless body area networks.
IEEE Wireless Communications Magazine (February 2010)

16. Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-
grained access control of encrypted data. In: CCS 2006, pp. 89–98 (2006)

17. Boldyreva, A., Goyal, V., Kumar, V.: Identity-based encryption with efficient re-
vocation. In: CCS 2008, pp. 417–426 (2008)

18. Ibraimi, L., Petkovic, M., Nikova, S., Hartel, P., Jonker, W.: Ciphertext-policy
attribute-based threshold decryption with flexible delegation and revocation of
user attributes (2009), http://purl.org/utwente/65471

19. Yu, S., Wang, C., Ren, K., Lou, W.: Achieving secure, scalable, and fine-grained
data access control in cloud computing. In: IEEE INFOCOM 2010 (2010)

20. Yu, S., Wang, C., Ren, K., Lou, W.: Attribute based data sharing with attribute
revocation. In: ASIACCS 2010 (2010)

21. Liang, X., Lu, R., Lin, X., Shen, X.S.: Patient self-controllable access policy on phi
in ehealthcare systems. In: AHIC 2010 (2010)

22. Ibraimi, L., Asim, M., Petkovic, M.: Secure management of personal health records
by applying attribute-based encryption. Technical Report, University of Twente
(2009)

23. Bethencourt, J., Sahai, A., Waters, B.: Ciphertext-policy attribute-based encryp-
tion. In: IEEE S& P 2007, pp. 321–334 (2007)

24. Chase, M., Chow, S.S.: Improving privacy and security in multi-authority attribute-
based encryption. In: CCS 2009, pp. 121–130 (2009)

25. Liang, X., Lu, R., Lin, X., Shen, X.S.: Ciphertext policy attribute based encryption
with efficient revocation. Technical Report, University of Waterloo (2010)

http://purl.org/utwente/65471

	Securing Personal Health Records in Cloud Computing: Patient-Centric and Fine-Grained Data Access Control in Multi-owner Settings
	Introduction
	Related Work
	Traditional Access Control for EHRs
	Cryptographically Enforced Access Control for Outsourced Data

	Patient-Centric Data Access Control Framework for PHR in Cloud Computing
	Problem Definition
	The Proposed Framework for Patient-Centric Data Access Control

	Flexible and Fine-Grained Data Access Control Mechanisms
	Definitions, Notations and Preliminary
	Key Distribution
	Enforcement of Access Privileges
	User Revocation
	Handling Break-Glass

	Scheme Analysis
	Security Analysis
	Performance Analysis

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

