
A Formal Definition of Online Abuse-Freeness�

Ralf Küsters1, Henning Schnoor2, and Tomasz Truderung1

1 Universität Trier, Germany
{kuesters,truderung}@uni-trier.de

2 Christian-Albrechts-Universität zu Kiel, Germany
schnoor@ti.informatik.uni-kiel.de

Abstract. Abuse-freeness is an important security requirement for con-
tract-signing protocols. In previous work, Kähler, Küsters, and Wilke
proposed a definition for offline abuse-freeness. In this work, we general-
ize this definition to online abuse-freeness and apply it to two prominent
contract-signing protocols. We demonstrate that online abuse-freeness is
strictly stronger than offline abuse-freeness.

Keywords: contract signing, cryptographicprotocols, formalverification.

1 Introduction

In a (two-party) contract-signing protocol (see, e.g., [4,3,9]), two parties, A (Al-
ice) and B (Bob), aim to exchange signatures on a contractual text that they
previously agreed upon. In this paper, we consider optimistic contract-signing
protocols. In such protocols, a trusted third party T (TTP), serving as an im-
partial judge, is not involved in every protocol run, but in case of a problem
only.

A central security property for optimistic contract-signing, introduced in [9], is
abuse-freeness: This property (formulated for the case of the honest signer Alice)
requires that there is no state in a protocol run in which dishonest Bob (the
prover) can convince an outside party, Charlie (the verifier), that the protocol
is in an unbalanced state, i.e., a state in which Bob has both (i) a strategy to
prevent Alice from obtaining a valid contract and (ii) a strategy to obtain a valid
contract himself. In other words, if a contract-signing protocol is not abuse-free,
then Alice can be misused by Bob to get leverage for another contract (with
Charlie). Obviously, abuse-freeness is a highly desirable security property.

In [12], Kähler, Küsters, and Wilke presented the first rigorous and protocol-
independent definition of abuse-free for (two-party) optimistic contract-signing.
However, their definition focusses on an offline setting: Charlie is not actively
involved in the protocol run and may receive a single message from Bob only,
based on which he has to make his decision.

� This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) un-
der Grant KU 1434/5-1.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 484–497, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

A Formal Definition of Online Abuse-Freeness 485

The goal of this work is to generalize the definition from [12] to the setting in
which Charlie may be online, i.e., may be actively involved in the protocol run,
and to apply the definition to prominent contract-signing protocols.

Contribution of this Work. We propose a definition for online abuse-freeness,
generalizing the definition of Kähler et al., who considered offline abuse-freeness.
As theirs, our definition is protocol-independent. More precisely, we define two
variants of online abuse-freeness: Weak abuse-freeness requires that there is no
way for dishonest Bob to convince the verifier that the protocol is currently in
an unbalanced state. As will be explained in Section 3, in the setting of of-
fline abuse-freeness, every contract-signing protocol is weakly abuse-free. Strong
abuse-freeness requires that Bob cannot even prove to Charlie that the protocol
was in an unbalanced state at some point of the run.

We apply our definitions to two prominent contract signing protocols: a pro-
tocol by Asokan, Shoup, and Waidner [3] (ASW protocol), and one by Garay,
Jakobsson, and P. MacKenzie [9] (GJM protocol). The latter was explicitely de-
signed with abuse-freeness in mind. Depending on whether the verifier is allowed
to eavesdrop on the network connection between the signers or on the channel
between the signers and the TTP, and whether the initiator or responder in the
protocol is dishonest, the protocols behave differently: We show that if the ver-
ifier can read the messages between the signers and the TTP, and the initiator
is dishonest, then the ASW protocol is vulnerable to a very strong attack, i.e.
it is not even weakly abuse-free. In this attack, the online aspect of our defini-
tion plays a crucial role, as the verifier “dictates” parts of the messages sent by
the dishonest signer. In all other situations, ASW is weakly, but not strongly
abuse-free. The GJM protocol shows a stronger resistance against abuse: It is
weakly abuse-free in all situations, and strongly abuse free if the verifier cannot
eavesdrop on the network channel between the signers.

Related Work. As mentioned above, Kähler et al. [12] introduced the first
rigorous and protocol-independent definition of offline abuse-freeness.

Kremer et al. [13] analyzed the ASW and GJM protocol w.r.t. abuse-freeness
using a finite-state model checking tool. They explicitly needed to specify the
behavior of dishonest principals and which states are the ones that are convincing
to Charlie.

Chadha et al. [5] introduce a stronger notion than abuse-freeness, namely
balance: A protocol is balanced, if unbalanced states (see above) do not occur
at all. Obviously, a balanced protocol is abuse-free as well. However, balance is
very difficult to achieve. In fact, as shown by Chadha et al. [6], if principals are
optimistic, i.e., they are willing to wait for messages of other parties, balance is
impossible to achieve.

Procedures for deciding properties of contract-signing protocols, including bal-
ance, were presented in [11] and [10].

Shmatikov and Mitchell [16] employ the finite-state model checker Murϕ to
automatically analyze contract-signing protocols. They approximate the notion
of abuse-freeness by a notion similar to balance.

486 R. Küsters, H. Schnoor, and T. Truderung

A cryptographic definition of the balance property was presented by Cortier,
Küsters, and Warinschi in [7].

Aizatulin, Schnoor, and Wilke [2] introduced a contract signing protocol which
satisfies a probabilistic notion of balance. Wang [17] introduces an abuse-free
contract signing protocol based on the RSA signature scheme.

Structure of the Paper. In Section 2, we introduce our protocol model. The
definition of abuse-freeness is then given in Section 3, and applied to the ASW
and GJM protocols in Sections 4 and 5, respectively. Proofs of our results can
be found in our technical report [14].

2 Protocol Model

In this section, following [15], we present a quite abstract symbolic protocol model.
In this model, processes are represented as functions that from a sequence of input
messages (the messages received so far) produce output messages. This model is
the basis of our definition of abuse-freeness provided in the next section. We note,
however, that the details of the model are not essential for the definition. The main
motivation for using this model is brevity of presentation. We could as well have
used another protocol model, such as the applied pi calculus [1].

2.1 Terms and Messages

Let Σ be some signature for cryptographic primitives (including a possibly infi-
nite set of constants for representing participant names, etc.), X = {x1, x2, . . . }
be a set of variables, and Nonce be an infinite set of nonces, where the sets Σ,
X , and Nonce are pairwise disjoint. For N ⊆ Nonce, the set TN of terms over
Σ ∪ N and X is defined as usual. Ground terms, i.e., terms without variables,
represent messages. We assume some fixed equational theory associated with Σ
and denote by ≡ the congruence relation on terms induced by this theory. The
exact definition of Σ and the equational theory will depend on the cryptographic
primitives used in the protocol under consideration. A simple example of a sig-
nature Σex and its associated equational theory is provided in Figure 1. A term
of the form sig(sk(k), m) represents a message m signed using the (private) key
sk(k). Checking validity of such a signature is modeled by equation (1). The
fact that signatures do not necessarily hide the signed message is expressed by
equation (2). A term of the form {x}r

pk(k) represents the ciphertext obtained
by encrypting x under the public key pk(k) using randomness r. Decryption of
such a term using the corresponding private key sk(k) is modeled by equation
(3). A term of the form 〈x, y〉 models the pairing of terms x and y. The compo-
nents x and y of 〈x, y〉 can be extracted by applying the operators first(·) and
second(·), respectively, as modeled by the equations (4) and (5). A term of the
form hash(m) represents the result of applying a hash function to a message
m. Note that hash(·) is a free symbol, i.e. there is no equation involving this
symbol in the given equational theory. For example, let ≡ex denote the congru-
ence relation induced by the equational theory in Figure 1, then we have that
dec({a}r

pk(k), first(〈sk(k), b〉)) ≡ex a.

A Formal Definition of Online Abuse-Freeness 487

checksig(sig(sk(k), m), pk(k)) = T (1)

extractmsg(sig(sk(k), m)) = m (2)

dec({x}r
pk(k), sk(k)) = x (3)

first(〈x, y〉) = x, (4)

second(〈x, y〉) = y (5)

Fig. 1. The equational theory associated with the signature Σex = {sig(·, ·), 〈·, ·〉, {·}··,
T, checksig(·, ·), extractmsg(·), first(·), second(·), hash(·), pk(·), sk(·)}

2.2 Event Sequences and Views

Let Ch be a set of channels (channel names). An input/output event is of the
form (c : m) and (c̄ : m), respectively, for c ∈ Ch and a message m (note that
c̄ /∈ Ch). A finite or infinite sequence of events is called an event sequence. For a
sequence ρ = (c1 : m1) (c2 : m2), . . . of input events, we denote by chan(ρ) the
sequence c1, c2, . . . of channels in this sequence. For C ⊆ Ch, we denote by ρ|C
the subsequence of ρ containing only the events of the form (c : m) with c ∈ C.

Let τ ∈ TN be a term, which may contain variables x1, x2, Then, with
ρ as above, we denote by τ [ρ] the message τ [m1/x1, m2/x2, . . .], where xi is
replaced by mi. For example, assume that τex = dec(x1, first(x2)) and ρex = (c1 :
{a}r

pk(k)), (c2 : 〈sk(k), b〉). Then τex[ρex] = dec({a}r
pk(k), first(〈sk(k), b〉)) ≡ex a.

Borrowing the notion of static equivalence from [1], we call two event sequences
ρ and ρ′ statically equivalent w.r.t. a set C ⊆ Ch of channels and a set N ⊆ Nonce
of nonces, written ρ ≡C

N ρ′, if (i) chan(ρ|C) = chan(ρ′|C) and (ii) for every τ1, τ2 ∈
TN we have that τ1[ρ|C] ≡ τ2[ρ|C] iff τ1[ρ′|C] ≡ τ2[ρ′|C]. Intuitively, ρ ≡C

N ρ′

means that a party listening on channels C and a priori knowing the nonces in
N cannot distinguish between the inputs received according to ρ and ρ′. We call
the equivalence class of ρ w.r.t. ≡C

N , the (C, N)-view on ρ. For example, if a and
b are different constants, k, k′, r and r′ are nonces, C = {c1, c2}, and N = ∅,
then it is easy to see that ρ1

ex = (c1 : {a}r
pk(k)), (c2 : 〈sk(k′), b〉), (c3 : sk(k)) and

ρ2
ex = (c1 : {b}r′

pk(k)), (c2 : 〈sk(k′), b〉) yield the same (C, N)-view w.r.t. ≡ex.

2.3 Processes

A process is, basically, a function that given a sequence of input events (rep-
resenting the history so far) produces a sequence of output events. We require
that a process behaves the same on inputs on which it has the same view. More
precisely, a process is a tuple π = (I, O, N, f) where

(i) I, O ⊆ Ch are finite sets of input and output channels, respectively,
(ii) N ⊆ Nonce is a set of nonces used by π,
(iii) f is a mapping which assigns a sequence f(U) = (c1 : τ1) · · · (cn : τn) with

ci ∈ O and τi ∈ TN to each (I, N)-view U .

488 R. Küsters, H. Schnoor, and T. Truderung

We note that (iii) guarantees that π performs the same computation on event
sequences that are equivalent according to ≡I

N , and hence, on which π has the
same view.

For an event sequence ρ, we write π(ρ) for the output produced by π on
input ρ. This output is (c1 : τ1[ρ′]) · · · (cn : τn[ρ′]), where ρ′ = ρ|I and (c1 :
τ1) · · · (cn : τn) = f(U) for the equivalence class U of ρ w.r.t. ≡I

N . For example,
let I = {c1, c2}, N = ∅, U be the equivalence class of ρ1

ex, and assume that
f(U) = (c4 : 〈x1, first(x2)〉). Then, π(ρ1

ex) = (c4 : 〈{a}r
pk(k), first(〈sk(k′), b〉)〉),

which modulo ≡ex can be written equivalently as (c4 : 〈{a}r
pk(k), sk(k

′)〉) and

π(ρ2
ex) = (c4 : 〈{b}r′

pk(k), first(〈sk(k′), b〉)〉), which modulo ≡ex can be equivalently

written as (c4 : 〈{b}r′
pk(k), sk(k

′)〉). Note that since ρ1
ex and ρ2

ex yield the same
(I, N)-view w.r.t. ≡ex, π performs the same transformation on ρ1

ex and ρ2
ex. We

refer to I, O and N by Iπ , Oπ, and Nπ, respectively. We note that the sets
Iπ and Oπ do not have to be disjoint, i.e., π can send messages to itself. By
Proc(I, O, N) we denote the set of all processes π with Iπ ⊆ I, Oπ ⊆ O, and
Nπ ⊆ N .

2.4 Systems and Runs

A system S is a finite set of processes with disjoint sets of input channels and
sets of nonces, i.e., Iπ ∩ Iπ′ = ∅ and Nπ ∩Nπ′ = ∅, for distinct π, π′ ∈ S. We will
write π1 ‖ · · · ‖ πn for the system {π1, · · · , πn}.

Given a system S and a finite sequence s0 of output events, a run ρ of S
initiated by s0 is a finite or infinite sequence of input and output events which
evolves from s0 in a natural way: An output event is chosen non-deterministically
(initial from s0). Once an output event has been chosen, it will not be chosen
anymore later on. By definition of systems, there exists at most one process, say
π, in S with an input channel corresponding to the output event. Now, π (if
any) is given the input event corresponding to the chosen output event, along
with all previous input events on channels of π. Then, π produces a sequence
of output events as described above. Now, from these or older output events an
output event is chosen non-deterministically, and the computation continues as
before.

We emphasize that s0 may induce many runs, due to the non-deterministic
delivery of messages. In what follows, we assume fair runs, i.e., every output
event in a run will eventually be chosen. A run is complete if it is either infinite
or else all output events have been chosen at some point. For runs ρ, ρ′, we write
ρ ≤ ρ′, if ρ′ is an extension of ρ, i.e., is obtained by continuing the run ρ.

2.5 Protocols

A protocol is a tuple P = (A, in , out ,nonce, s0, Π), where

(i) A is a finite set of agent names. An agent a ∈ A has access to his/her nonces
nonce(a), input and output channels in(a), out(a) ⊆ Ch, respectively, such
that nonce(a) ∩ nonce(a′) = ∅ and in(a) ∩ in(a′) = ∅, for a �= a′,

A Formal Definition of Online Abuse-Freeness 489

(ii) s0 is a finite sequence of output events, the initial output sequence, for
initializing parties,

(iii) for every a ∈ A, Π(a) ⊆ Proc(in(a), out(a),nonce(a)) is the set of programs
or processes of a. We will write P (a) for Π(a).

If A = {a1, . . . , an} and πi ∈ Π(ai), then the system (π1 ‖ · · · ‖ πn) is an
instance of P . A run of P is a fair run of some instance of P initiated by s0. A
property γ of P is a subset of runs of P .

We note that our model allows to express nondeterminism: To make a nonde-
terministic choice, a program can simply send two (or more) messages to itself,
and change its behaviour depending on which message arrives first.

3 Online Abuse-Freeness

We define (online) abuse-freeness of a protocol P = (A, in , out ,nonce, s0, Π)
with respect to two distinct agents of P : the prover p ∈ A and the veri-
fier v ∈ A. Both agents are considered to be dishonest, and hence, the sets
of programs of these agents will typically contain all possible processes, i.e.,
P (p) = Proc(in(p), out(p),nonce(p)) and P (v) = Proc(in(v), out(v),nonce(v));
these processes are only limited by their network interfaces, i.e., the set of in-
put/output channels available to them.

Moreover, we define abuse-freeness of P with respect to two properties of P :
γ+ and γ−. The property γ+ is supposed to contain all the runs of P in which p
obtains a valid contract from an honest signer a and γ− is supposed to contain
all runs where the honest signer a is prevented from obtaining a valid contract
from p.

To define abuse-freeness, we first need to formalize the notion of an unbalanced
run. Intuitively, a run of an instance of a protocol P is unbalanced with respect
to the properties γ+ and γ− if p has both a strategy to achieve γ+ (i.e., enforce
a continuation of the run so that the overall run belongs to γ+) and a strategy to
achieve γ−. In other words, in an unbalanced state, the prover can unilaterally
determine the outcome of the protocol: i) obtain a signed contract from the
honest signer a or ii) prevent a from obtaining a signed contract from p.

To model the choice made by the prover to either achieve γ+ or γ−, we
introduce the following notation. We assume that the prover p has a distinct
input channel chchoice which is not an output channel of any agent in the protocol
P . Moreover, we assume that the events (chchoice : 0) and (chchoice : 1) belong to
the initial event sequence s0 of P . Intuitively, if in a run p receives 1 on chchoice,
then p will try to achieve γ+. If p receives 0 on chchoice, then p will try to achieve
γ−. More precisely, a run ρ in which neither (chchoice : 0) nor (chchoice : 1) has
been delivered is called open; intuitively, in such a run the prover has not yet
made a decision. Otherwise the run is called closed. In such a run, p tries to
achieve γ+ or γ− depending on the message received; note that only the first
message received on chchoice will set p’s goal.

In the following definition, given a finite open run ρ, we denote by ρ(chchoice:0)

the run obtained from ρ by delivering 0 on channel chchoice to p, i.e., in ρ(chchoice:0)

490 R. Küsters, H. Schnoor, and T. Truderung

the prover p is now determined to achieve γ−. The run ρ(chchoice:1) is defined
analogously. We say that a run ρ′ is a complete extension of ρ if ρ′ is an extension
of ρ and is complete.

We are now ready to formally define unbalanced runs.

Definition 1. Given an instance S of a protocol P as above with a prover p and
two properties γ+ and γ−, we say that a finite open run ρ of S is unbalanced,
if the following two conditions hold true:

(i) γ− holds in every complete extension of ρ(chchoice:0).
(ii) γ+ holds in every complete extension of ρ(chchoice:1).

Now, intuitively, a protocol is abusive if a prover p can convince the verifier v
that the current run is unbalanced. In other words, p can convince v that in the
current run he, the prover, has a strategy to obtain a valid contract from the
honest signer (and hence, close the deal) and a strategy to prevent the honest
signer from obtaining a valid contract (and hence, cancel the deal). This may
convince v to agree into a deal with p that for p is more profitable than the one
with the honest signer. Thus, in an abusive protocol, p can take advantage of
the honest signer.

Since we consider online abuse-freeness in this paper, we allow v to be actively
involved in the protocol run. In particular, p and v can freely exchange messages
during a run. For example, v could dictate (parts of the) messages p is supposed
to send to the honest signer, and v could request to receive the private keys of p.
The verifier v may even control some of the network traffic. However, this is not
hard-wired in our definition. The power of p and v can be modeled in a flexible
way in terms of the programs p and v may run and the network interface they
have.

We will consider two forms of abuse-freeness, namely strong and weak abuse-
freeness. In the strong form, p merely needs to convince v that the run was
unbalanced at some point. In contrast, for the weak form, p needs to convince
v that the run is unbalanced in the current state of the run. Since in the latter
case, the task of p is harder, the latter form of abuse-freeness is weaker. It is
desirable that a protocol is abuse-free in the strong sense since the fact that a
run was and potentially still is unbalanced might already be sufficient incentive
for v to agree into a deal with p.

In the formal definition of (online) abuse-freeness, we assume that the verifier
v can accept a run by sending the message accept on the designated channel
chaccept, indicating that v is convinced that the run is/was unbalanced. We say
that a finite run is freshly accepted, if the message accept is sent by v in the last
step of this run.

We also use the following notation in the definition of abuse-freeness: Let
P = (A, in , out ,nonce, s0, Π) be a protocol. For a program v ∈ Π(v) of the
verifier, we write P|v for the protocol that coincides with P except that the set
Π(v) of programs of v is restricted to {v}. In particular, in every instance of P|v
the verifier runs the program v.

We are now ready to define (online) abuse-freeness. We start with the strong
form of abuse-freeness.

A Formal Definition of Online Abuse-Freeness 491

Definition 2. Let P = (A, in , out ,nonce, s0, Π) with p, v ∈ A. Let γ+ and γ−

be properties of P . Then, the protocol P is called (γ+, γ−)-abusive w.r.t. the
prover p and the verifier v, if there is a program v ∈ Π(v) of v such that the
following conditions are satisfied:

(i) If an open run ρ of P|v is accepted by v, then there is an unbalanced run
ρ′ with ρ′ ≤ ρ.

(ii) There exists an open, freshly accepted, unbalanced run ρ of P|v.

The protocol P is (strongly) (γ+, γ−)-abuse-free w.r.t. p and v, if P is not
(γ+, γ−)-abusive w.r.t. p and v.

Condition (i) in the above definition says that if v accepts a run, i.e., is convinced
that the run was unbalanced at some point, then this is in fact the case. Note
that according to the definition of unbalanced runs, v may help p to achieve his
goals (γ+ or γ−). One could as well consider a variant where p has to achieve
these goals against v (and in fact, our negative results, presented in Sections 4
and 5, use a prover that works without the help of the verifier). However, this
would make the definition only weaker. We note that it would not make sense
to consider closed runs in Condition (i): The definition of unbalanced runs only
applies to open runs. Moreover, the restriction to open runs does not limit the
power of any agent.

While Condition (i) is the core of the above definition, it would not make
sense without Condition (ii): A verifier who never accepts a run would satisfy
Condition (i) trivially. Moreover, a verifier who only accepts runs which are not
unbalanced anymore would potentially also suffice to meet Condition (i). By
Condition (ii) we require that the strategy of the verifier for accepting a run
is reasonable in the sense that there is at least one run which is accepted and
which is still unbalanced.

Altogether the above definition says that a protocol is abuse-free if there is
no program a verifier could run which i) reliably tells, for any dishonest prover
(which the verifier does not trust), whether a run was unbalanced and ii) accepts
an actual unbalanced run.

We note that the above definition is possibilistic. It does, for example, not
take into account the probability with which unbalanced runs occur or a verifier
accepts an (unbalanced) run. As mentioned in the introduction, a cryptographic,
in particular probabilistic definition of the balance property, which is stronger
than abuse-freeness in that it does not require a dishonest signer to convince an
outside party of the fact that he is in an unbalanced state, was presented in [7].

Given Definition 2, it is now straightforward to define weak abuse-freeness:

Definition 3. Let P, p, v, γ+, and γ− be given as in Definition 2. Then protocol
P is strongly (γ+, γ−)-abusive w.r.t. p and v, if there is a program v such that
the following conditions are satisfied:

(i) If an open run ρ of P|v is freshly accepted, then ρ is unbalanced,
(ii) There exists an open, freshly accepted, unbalanced run ρ of P|v.

492 R. Küsters, H. Schnoor, and T. Truderung

The protocol P is weakly (γ+, γ−)-abuse-free w.r.t. p and v, if P is not strongly
(γ+, γ−)-abusive w.r.t. p and v.

This notion differs from the (strong) abuse-freenes only in Condition (i): Now
we require that the accepted run is unbalanced, not only that it was unbalanced
at some previous point. Clearly, (strong) abuse-freeness implies weak abuse-
freeness.

Note that a notion like weak abuse-freeness does not make sense in the offline
setting considered in [12]: If the verifier receives only a single message from the
prover, this message can only prove that the protocol was in an unbalanced
state at some point during the protocol run; since the prover may withhold that
evidence for as long as he wishes, it does not prove that the current state is
unbalanced.

4 The ASW Protocol

In this section, we study abuse-freeness of the contract-signing protocol proposed
by Asokan, Shoup, and Waidner (ASW protocol) in [3].

In [12], it has been shown (in a synchronous communication model without
optimistic honest parties, see below) that the ASW protocol is offline abusive.
Not surprisingly, the protocol is also abusive in the online setting. More precisely,
we show that the protocol is weakly abusive. Interestingly, we can show that the
protocol is, in some cases, even strongly abusive. For this attack, it is crucial that
the verifier is online, i.e., can interact with the prover. In fact, the verifier will
dictate part of the message the prover sends to the honest signer.

4.1 Description of the Protocol

The ASW protocol assumes the following scenario: Alice and Bob want to
sign a contract and a TTP is present. The following two types of messages,
the standard contract (SC) and the replacement contract (RC), will be rec-
ognized as valid contracts between Alice and Bob with contractual text text:
SC = 〈me1, NA, me2, NB〉 and RC = sig(sk(kt), 〈me1, me2〉) where NA and
NB stand for nonces, me1 = sig(sk(ka), 〈A, B, text, hash(NA)〉), and me2 =
sig(sk(kb), 〈me1, hash(NB)〉), with sk(kt), sk(ka), and sk(kb) denoting the pri-
vate keys of the TTP, Alice, and Bob, respectively. In addition to SC and RC,
the variants of SC and RC which one obtains by exchanging the roles of A and
B are regarded as valid contracts.

There are three interdependent parts to the protocol: an exchange protocol,
an abort protocol, and a resolve protocol. The exchange protocol consists of
four steps, which, in Alice-Bob notation, are displayed in Fig. 2. The first two
messages, me1 and me2, serve as respective promises of Alice and Bob to sign
the contract, and NA and NB serve as contract authenticators : After they have
been revealed, Alice and Bob can compose the standard contract, SC.

A Formal Definition of Online Abuse-Freeness 493

A → B : me1

B → A : me2

A → B : NA

B → A : NB

Fig. 2. ASW exchange
protocol

The abort protocol is run between Alice and
the TTP and is used by Alice to abort the
contract signing process when she does not re-
ceive Bob’s promise. Alice will obtain (from the
TTP) an abort receipt or, if the protocol in-
stance has already been resolved (see below),
a replacement contract. The first step is A →
T : ma1, where ma1 = sig(sk(ka), 〈aborted, me1〉)
is Alice’s abort request ; the second step is the TTP’s reply, which is either
sig(sk(kt), 〈aborted, ma1〉), the abort receipt, if the protocol has not been resolved,
or the replacement contract, RC.

The resolve protocol can be used by Alice and Bob to resolve the proto-
col, which either results in a replacement contract or, if the protocol has al-
ready been aborted, in an abort receipt. When Bob runs the protocol (be-
cause Alice has not sent her contract authenticator yet), the first step is
B → T : 〈me1, me2〉; the second step is the TTP’s reply, which is either the abort
receipt sig(sk(kt), 〈aborted, ma1〉), if the protocol has already been aborted, or
the replacement contract, RC. The same protocol (with roles of A and B ex-
changed) is also used by Alice.

4.2 Modeling

Our modeling of the ASW protocol uses the equational theory presented in
Section 2 (however, without encryption, which is not used in the protocol).
We consider, besides the regular protocol participants of the protocol—Alice,
Bob, and the trusted third party—two additional parties, the verifier and a key
distribution center. We will consider four cases depending on (a) which signer
(Alice or Bob) is dishonest and plays the role of the prover and (b) which part
of the network is controlled by the verifier.

In each case we assume that the honest signer is optimistic in the sense that
he/she only contacts the TTP if the dishonest signer allows the honest signer to
do so. In other words, the dishonest signer can buy himself as much time as he
needs, before the honest signer contacts the TTP. This assumption, also made in
[6], seems realistic. In any case, it only makes the dishonest party more powerful,
and hence, strengthens our positive results.

Let PA
ASW-Net denote the specification of the ASW protocol, as a protocol in

the sense of our definition (see Section 2.5), with dishonest Alice and honest Bob,
where the verifier can eavesdrop on (but not block) the network traffic between
Alice and Bob. Analogously, PB

ASW-Net denotes the protocol with dishonest Bob
and honest Alice, where again the verifier can eavesdrop on the network traffic
between Alice and Bob. Let PA

ASW-TTP (PB
ASW-TTP) be the protocols with dishonest

Alice (Bob) and honest Bob (Alice), where the verifier can eavesdrop on (but
not block) the communication between the signers and the TTP.

In the modeling of these protocols (see below), we allow an honest signer to
not be engaged in the protocol run. This is of course realistic; also, otherwise
the initial state of the protocol would already be unbalanced before a signer

494 R. Küsters, H. Schnoor, and T. Truderung

has committed to the contract. To model this, we assume that an honest signer
decides nondeterministically (see end of Section 2.5) as to whether he/she will
participate in the protocol run.

More formally, the set of programs of the protocol participants are defined as
follows:

Key Distribution Center. The set of programs for this party consists of
exactly one program, which generates key pairs (using its set of nonces) for
all other parties. Private keys, modeled as terms of the form sk(k), where k is
a nonce, are sent, via dedicated channels, only to the respective parties. Public
keys, modeled as terms of the form pk(k), are distributed to all parties, including
the verifier. Honest parties will first wait to receive their public/private key pair
and the public keys of the other protocol participants. In the specification of
honest parties below this is assumed implicitly.

Dishonest parties (prover and verifier). The sets of programs of dishon-
est parties contain all the possible processes, only constrained by the network
configuration and, possibly, some additional constrains, as described below. We
allow the prover and verifier to communicate directly with each other via a direct
(asynchronous) channel.

Network configuration. In the protocols PA
ASW-TTP and PB

ASW-TTP (in which
the verifier can eavesdrop on messages between the signers and the TTP) we
assume that the messages that Alice and Bob want to send to the TTP are
routed through the verifier. We require the verifier to forward these messages to
the recipient, i.e. we restrict the set of program of the verifier to those programs
which comply with this constraint. However, we assume direct (asynchronous)
channels between Alice and Bob.

Similarly, in PA
ASW-TTP and PB

ASW-TTP messages between Alice and Bob are
routed through the verifier, who, as above, can only eavesdrop on these messages.
Message between the signers and the TTP can be sent via direct (asynchronous)
channels.

TTP. The set of programs of TTP consists of only one program (process),
namely the one that performs exactly the steps defined by the protocol as de-
scribed in Section 4.1.

Honest Alice or Bob. The set of programs of Alice in PA
ASW-TTP and PA

ASW-Net

consists of only one program, namely the one described in Section 4.1. As men-
tioned above, at the beginning Alice first nondeterministically chooses whether
to participate in the contract signing. Also, she contacts the TTP only if she
receives a message from Bob that she is allowed to contact the TTP. The case
of honest Bob is analogous.

Remark 1. One could also study the case where the verifier can eavesdrop on all
channels. However in this case, both the ASW and GJM protocols clearly are
strongly abusive, since the verifier always knows the exact stage of the protocol
run.

A Formal Definition of Online Abuse-Freeness 495

4.3 Security Analysis

We define γ+ as the set of all runs where the prover is able to construct the
standard contract or has received the replacement contract. Analogously, γ−

consists of those runs in which the honest signer is not able to construct the
standard contract and has not received the replacement contract. For the ASW
protocol, we prove the following results (see our technical report [14] for the
proof).

Theorem 1. The protocol PA
ASW-TTP is not weakly (γ+, γ−)-abuse-free (and

hence also not abuse-free). PB
ASW-TTP, PA

ASW-Net, and PB
ASW-Net are weakly

(γ+, γ−)-abuse-free but not abuse-free.

We note that the first result exhibits a particularly devastating attack, which
makes heavy use of the fact that the verifier is an online agent. This result shows
that under certain conditions the ASW protocol is not even weakly abuse-free.
The above results also show that weak abuse-freeness is a much weaker security
property than strong abuse-freeness.

Remark 2. The proofs for PA
ASW-Net and PB

ASW-Net easily carry over to the case
when the verifier not only eavesdrops on the channels between Alice and Bob,
but also controls these channels.

5 The GJM Protocol

In [12], it has been shown that, in a synchronous communication model, the
GJM protocol is offline abuse-free. In this section, we show that whether it is
online abuse-free depends on assumptions about what part of the network the
verifier can eavesdrop on. In particular, we show that in some cases the GJM
protocol is not online abuse-free, which, again, illustrates the fact that online
abuse-freeness is stronger than offline abuse-freeness.

5.1 Informal Description and Model of the Protocol

The structure of the GJM protocol is the same as the one of the ASW protocol.
However, the actual messages exchanged are different. In particular, the exchange
protocol of the GJM protocol the first two messages are so-called private contract
signatures (PCS) [9] and the last two messages are actual signatures (obtained by
converting the private contract signatures into universally verifiable signatures).

For the GJM protocol we consider the signature ΣGJM = {
sig(·, ·, ·), sigcheck(·, ·, ·), pk(·), sk(·), fake(·, ·, ·, ·, ·), pcs(·, ·, ·, ·, ·), pcsver(·, ·, ·, ·, ·),
sconv(·, ·, ·), tpconv(·, ·, ·), sver(·, ·, ·, ·), tpver(·, ·, ·, ·), 〈·, ·〉, first(·), second(·), A,
B, T , text, initiator, responder, ok, pcsok, sok, tpok, aborted}.

The equational theory for GJM contains, in addition to the equations for
pairing and signatures, equations for modeling private contract signatures, as
depicted in Figure 3. A term of the form pcs(u, sk(x), w, pk(y), pk(z)) stands for

496 R. Küsters, H. Schnoor, and T. Truderung

pcsver(w, pk(x),pk(y),pk(z), pcs(u, sk(x), w, pk(y), pk(z))) = pcsok, (6)

pcsver(w, pk(x), pk(y),pk(z), fake(u, sk(y), w, pk(x), pk(z))) = pcsok, (7)

sver(w, pk(x), pk(z), sconv(u, sk(x),pcs(v, sk(x), w, pk(y), pk(z)))) = sok, (8)

tpver(w, pk(x),pk(z), tpconv(u, sk(z), pcs(v, sk(x), w, pk(y), pk(z)))) = tpok. (9)

Fig. 3. Equations for private contract signatures.

a PCS computed by x (with sk(x)) involving the text w, the party y, and the
TTP z, while u models the random coins used to compute the PCS. Everybody
can verify the PCS with the public keys involved (equation (6)), but cannot
determine whether the PCS was computed by x or y (equation (7)): instead of
x computing the “real” PCS, y could have computed a “fake” PCS which would
also pass the verification with pcsver. Using sconv and tpconv, see (8) and (9), a
“real” PCS can be converted by x and the TTP z, respectively, into a universally
verifiable signature (verifiable by everyone who possesses pk(x) and pk(z)).

We study the version of the GJM protocol with the modification pro-
posed in [16] to obtain fairness. In the protocol, the following messages are
exchanged: The initial messages containing the private contract signatures
are me1 = pcs(u, sk(A), contract, pk(B), pk(TTP)) and me2 = pcs(u′, sk(B),
contract, pk(A), pk(TTP)), where sk(A), pk(A), sk(B), pk(B), and pk(TTP) are
the private and public keys of Alice, Bob, and the TTP. The abort request sent
by Alice is of the form ma1 = sig(w, sk(A), 〈contract, A, B, aborted〉), where w
are random coins (for the GJM protocol, we consider randomized signatures).
The resolve request sent by Alice is 〈me1, me2〉, the resolve request from Bob is
〈me2, me1〉. As mentioned earlier, the structure of the protocol is the same as
for the ASW protocol (see Section 4).

5.2 Security Analysis

We study the cases PA
GJM-TTP, PB

GJM-TTP, PA
GJM-Net and PB

GJM-Net, which are defined
analogously to the case of ASW (see Section 4.2). The properties γ+ and γ− are
also defined analogously to the case of the ASW protocol (see Section 4.3). The
proof of this result can be found in our technical report [14].

Theorem 2. 1. PA
GJM-TTP and PB

GJM-TTP are (γ+, γ−)-abuse-free.
2. PA

GJM-Net and PB
GJM-Net are weakly (γ+, γ−)-abuse-free but not (γ+, γ−)-abuse-

free.

As made precise by this theorem, abuse-freeness of the GJM protocol in the online
setting depends on the assumptions about what part of the network the verifier
can eavesdrop on. In the offline case, the verifier was not allowed to easvesdrop
on any part of the network (and of course, was also not allowed to be actively
involved in the protocol run). Therefore, and just as in the case of the ASW pro-
tocol, our positive results are stronger than those shown for offline abuse-freeness.
Conversely, our negative results exhibit the extra power of online verifiers.

A Formal Definition of Online Abuse-Freeness 497

References

1. Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication.
In: POPL 2001, pp. 104–115. ACM Press, New York (2001)

2. Aizatulin, M., Schnoor, H., Wilke, T.: Computationally Sound Analysis of a Prob-
abilistic Contract Signing Protocol. In: Backes, M., Ning, P. (eds.) ESORICS 2009.
LNCS, vol. 5789, pp. 571–586. Springer, Heidelberg (2009)

3. Asokan, N., Shoup, V., Waidner, M.: Asynchronous protocols for optimistic fair
exchange. In: IEEE Symposium on Research in Security and Privacy, pp. 86–99
(1998)

4. Ben-Or, M., Goldreich, O., Micali, S., Rivest, R.L.: Fair protocol for signing con-
tracts. IEEE Transactions on Information Theory 36(1), 40–46 (1990)

5. Chadha, R., Kanovich, M.I., Scedrov, A.: Inductive methods and contract-signing
protocols. In: CCS 2001, pp. 176–185. ACM Press, New York (2001)

6. Chadha, R., Mitchell, J.C., Scedrov, A., Shmatikov, V.: Contract Signing, Opti-
mism, and Advantage. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS,
vol. 2761, pp. 361–377. Springer, Heidelberg (2003)

7. Cortier, V., Küsters, R., Warinschi, B.: A cryptographic model for branching time
security properties – the case of contract signing protocols. In: Biskup, J., López, J.
(eds.) ESORICS 2007. LNCS, vol. 4734, pp. 422–437. Springer, Heidelberg (2007)

8. Dolev, D., Yao, A.C.: On the Security of Public-Key Protocols. IEEE Transactions
on Information Theory 29(2), 198–208 (1983)

9. Garay, J.A., Jakobsson, M., MacKenzie, P.: Abuse-free optimistic contract signing.
In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 449–466. Springer,
Heidelberg (1999)

10. Kähler, D., Küsters, R.: Constraint Solving for Contract-Signing Protocols. In:
Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 233–247.
Springer, Heidelberg (2005)

11. Kähler, D., Küsters, R., Wilke, T.: Deciding Properties of Contract-Signing Proto-
cols. In: Diekert, V., Durand, B. (eds.) STACS 2005. LNCS, vol. 3404, pp. 158–169.
Springer, Heidelberg (2005)

12. Kähler, D., Küsters, R., Wilke, T.: A Dolev-Yao-based Definition of Abuse-free
Protocols. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP
2006. LNCS, vol. 4052, pp. 95–106. Springer, Heidelberg (2006)

13. Kremer, S., Raskin, J.-F.: Game analysis of abuse-free contract signing. In: CSFW
2002 (2002)

14. Küsters, R., Schnoor, H., Truderung, T.: A Formal Definition of On-
line Abuse-freeness. Technical Report, University of Trier (2010),
http://infsec.uni-trier.de/publications.html

15. Küsters, R., Truderung, T.: An Epistemic Approach to Coercion-Resistance for
Electronic Voting Protocols. In: Security and Privacy 2009, pp. 251–266. IEEE
Computer Society, Los Alamitos (2009)

16. Shmatikov, V., Mitchell, J.C.: Finite-state analysis of two contract signing proto-
cols. Theoretical Computer Science (TCS), special issue on Theoretical Founda-
tions of Security Analysis and Design 283(2), 419–450 (2002)

17. Wang, G.: An Abuse-Free Fair Contract-Signing Protocol Based on the RSA Sig-
nature. IEEE Transactions on Information Forensics and Security 5(1), 158–168
(2010)

http://infsec.uni-trier.de/publications.html

	A Formal Definition of Online Abuse-Freeness
	Introduction
	Protocol Model
	Terms and Messages
	Event Sequences and Views
	Processes
	Systems and Runs
	Protocols

	Online Abuse-Freeness
	The ASW Protocol
	Description of the Protocol
	Modeling
	Security Analysis

	The GJM Protocol
	Informal Description and Model of the Protocol
	Security Analysis

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

