
Epistemic Model Checking for Knowledge-Based

Program Implementation: An Application to
Anonymous Broadcast�

Omar I. Al-Bataineh and Ron van der Meyden

School of Computer Science and Engineering,
University of New South Wales

Abstract. Knowledge-based programs provide an abstract level of de-
scription of protocols in which agent actions are related to their states
of knowledge. The paper describes how epistemic model checking tech-
nology may be applied to discover and verify concrete implementations
based on this abstract level of description. The details of the imple-
mentations depend on the specific context of use of the protocol. The
knowledge-based approach enables the implementations to be optimized
relative to these conditions of use. The approach is illustrated using ex-
tensions of the Dining Cryptographers protocol, a security protocol for
anonymous broadcast.

Keywords: Formal methods, anonymity, model checking.

1 Introduction

In distributed systems, we generally would like agent’s actions to depend upon
the information that they have. However, the way that information flows in such
systems can be quite complex. It has been proposed to address this complexity
by the use of formal logics of knowledge [4].

In particular, knowledge based programs have been proposed as a level of
abstraction that directly captures the relationship between an agent’s knowledge
and its actions, by allowing branching statements to contain formulas of the
modal logic of knowledge, expressing what the agent knows about the global state
of the system. This has several advantages. By focusing on what information is
required, rather than how it is encoded, knowledge-based programs can be more
intuitive and more easily verified to be correct. They can also provide a common
description that is independent of assumptions such as the failure modes of
� This material is based on research sponsored by the Air Force Research Laboratory,

under agreement number FA2386-09-1-4156. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding any
copyright notation thereon. The views and conclusions contained herein are those
of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Air Force Research
Laboratory or the U.S. Government.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 429–447, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

430 O.I. Al-Bataineh and R. van der Meyden

communication channels in the system. Finally, knowledge-based programs lead
us to implementations that are optimal in their use of information, in the sense
that agents do not overlook opportunities to use relevant information that is
available in their local states.

A cost of the abstraction that knowledge-based programs provide, is that they
are more like specifications than concrete programs, so cannot be directly exe-
cuted. To obtain an executable program, it is necessary to replace the tests for
knowledge in the knowledge based program by equivalent concrete predicates
of the agent’s local state. Because of the complexity of information flow in dis-
tributed systems, such concrete predicates can be difficult to find. To date, this
task has generally been carried out by pencil and paper reasoning. Perhaps for
this reason, there remain only a handful of worked out examples of the develop-
ment of concrete implementations of knowledge-based programs (e.g., [1,3,7,9]).

The difficulty can be addressed through the use of model checking technol-
ogy for the logic of knowledge. Model checkers are systems that take as input a
formal model of a system, together with a specification, and determine whether
that specification is satisfied by the model [11]. The specification language used
in model checkers is generally a form of temporal logic, but in recent years work
has begun on the development of model checkers based on logics of knowledge
[5,12,19]. We describe a methodology for the use of this latter class of model
checkers to the development of implementations of knowledge based programs.
The methodology is partially automated. It assists users in finding a concrete
predicate that is equivalent to a knowledge condition in a knowledge-based pro-
gram by means of an iterative process, in which automatically computed coun-
terexamples to a user’s guess for the concrete predicate are used by the user to
construct an improved concrete predicate, until one is found that is equivalent
to the knowledge condition.

We illustrate the methodology by means of an example in which we use the
epistemic model checker MCK [5], to develop concrete implementations of a
knowledge-based program for anonymous broadcast, based on multiple rounds
of Chaum’s Dining Cryptographers Protocol [2].

The Dining Cryptographers Protocol enables a message to be broadcast anony-
mously, under the assumption that only one agent is attempting to broadcast a
message. The objective of the extension that we consider is to remove this assump-
tion, so that any number of agents may broadcast their messages anonymously.
One of the main difficulties in this is that, since agents operate independently, it
is possible for simultaneous broadcasts to interfere with each other, causing a fail-
ure in the transmission. Thus, a key issue is to enable the agents to detect conflicts
in the transmission, and to respond appropriately when a conflict is detected.

In our analysis, we express the expected behaviour using a knowledge based
program that conditions the agent’s actions on whether it knows that there is
a conflict. We then use our model checking supported methodology to identify
exactly the concrete conditions under which an agent knows whether there is a
conflict. These conditions turn out to have a surprising level of complexity. In

Epistemic Model Checking for Knowledge-Based Program Implementation 431

particular, we find that these conditions can differ, depending on the assumptions
that we make about the number of agents wishing to broadcast.

Our approach leads to the discovery (assisted by automation) of a number
of subtleties concerning the protocol that, to our knowledge, have not been
previously noticed. In particular, we find that it is possible for agents to detect
conflicts (or lack of conflict) in some quite unexpected situations. Moreover, we
discover situations where, even though the protocol terminates, an agent cannot
be sure that its message has been successfully transmitted (although it may have
a high subjective probability that this is the case). Our results both show that
there are previously unnoticed opportunities to optimize the protocol, and help
to clarify what should be the specification of the protocol (the previous literature
generally describes the protocol without providing a formal specification beyond
the statement that it is intended for anonymous broadcast.)

The structure of the paper is as follows. We give a brief introduction to the
logic of knowledge and epistemic model checking in Section 2. In Section 3 we
discuss knowledge-based programs and describe our methodology for the devel-
opment of their implementations using epistemic model checking. The Dining
Cryptographers problem and its extensions are introduced in Section 4. In Sec-
tion 5, we describe the application of our methodology to this protocol. Finally,
some conclusions are drawn in Section 6.

2 Model Checking Epistemic Logic

Epistemic logics are a class of modal logics that include operators whose mean-
ing concerns the information available to agents in a distributed or multi-agent
system. We describe here briefly a version of such a logic combining operators
for knowledge and linear time, and its semantics in a class of structures known
in the literature as interpreted systems [4]. We then discuss the model checker
MCK [5], which is based on this semantics.

Suppose that we are interested in systems comprised of n agents and a set
Prop of atomic propositions. The syntax of the fragment of the logic of knowledge
and time relevant for this paper is given by the following grammar:

φ ::= � | p | ¬φ | φ ∧ φ | Kiφ | Xφ
where p ∈ Prop is an atomic proposition and i ∈ {1 . . . n} is an agent. (We
freely use standard boolean operators that can be defined using the two given.)
Intuitively, the meaning of Kiφ is that agent i knows that φ is true, and Xφ
means that φ will be true at the next moment of time.

The semantics we use is the interpreted systems model for the logic of knowl-
edge [4]. For each i = 0 . . . n, let Si be a set of states. For i = 0, we interpret Si as
the set of possible states of the environment within which the agents operate; for
i = 1 . . . n we interpret Si as the set of local states of agent i. Intuitively, a local
state captures all the concrete pieces of information on the basis of which an
agent determines what it knows. We define the set of global state based on such
collection of environment and local states, to be the set S = S0 × S1 × . . .× Sn.

432 O.I. Al-Bataineh and R. van der Meyden

We write si for the i-th component (counting from 0) of a global state s. A
run over S is a function r : N → S. An interpreted system for n agents is a
tuple I = (R, π), where R is a set of runs over S, and π : S → P(Prop) is an
interpretation function.

A point of I is a pair (r,m) where r ∈ R and m ∈ N. We say that two points
(r,m), (r′,m′) are indistinguishable to agent i, and write (r,m) ∼i (r′,m′), if
r(m)i = r′(m′)i, i.e., if agent i has the same local state at these two points. We
define the semantics of the logic by means of a relation I, (r,m) |= φ, where I
is an intepreted system, (r,m) is a point of I and φ is a formula. This relation
is defined inductively as follows:

– I, (r,m) |= p if p ∈ π(r(m)),
– I, (r,m) |= ¬φ if not I, (r,m) |= φ
– I, (r,m) |= φ1 ∧ φ2 if I, (r,m) |= φ1 and I, (r,m) |= φ2

– I, (r,m) |= Xφ if I, (r,m+ 1) |= φ
– I, (r,m) |= Kiφ if for all points (r′,m′) of I such that r(m) ∼i r

′(m′) we
have I, (r′,m′) |= φ

We note that the semantics of the knowledge operator depends not just on the
run at which the formula is being evaluated, but also the set of all possible runs.
Changing the set of runs (e.g., by making changes to the protocol), can change
what an agent knows. Since knowledge-based programs change agent behaviours
based on what the agent knows, this makes the semantics of knowledge-based
programs somewhat subtle.

MCK is a model checker based on this semantics for the logic of knowledge.
For a given interpreted system I, and a specification φ in the logic of knowledge
and time, MCK computes whether I, (r, 0) |= φ holds for all runs r of I.

Since interpreted systems are infinite structures, MCK allows an interpreted
system to be given a finite description in the form of a program from which the
interpreted system can be generated. This description is given using:

1. A list of global variables making up states of the environment, and their
types.

2. A listing of the agents in the system, together with the global variables
that they are able to access. For each agent, we may also introduce local
variables. If v is a local variable of agent A, then we may refer to this variable
in specification formulas as A.v. Local variables may be aliased to global
variables.

A subset of the local variables is specified as being observable to the
agent. This means that it will be taken into account in the definition of the
indistinguishability relation for the agent.

3. A statement init cond φ, where φ is a boolean formula. All assignments
satisfying this formula represent an initial state of the system.

4. A program that describes the protocol executed by each agent. The protocol
describes how the agent chooses its actions depending on its history.

Executing the agent protocols starting at an initial state generates a set of runs,
that we take to be the set of runs of the interpreted system generated by input

Epistemic Model Checking for Knowledge-Based Program Implementation 433

script. (The agents operate in lock-step, each agent executing a single action in
each step. Write-conflicts are syntactically prevented.) If V is the set of all local
and global variables in the system, then the component s0 = r(n)0 of the global
state at each point (r, n) of a run r is a well-typed assignment of values to the
variables V . The local states si of agent i in these runs are defined using the
variables declared to be local. MCK allows this to be done in a number of ways,
each giving a different semantics for the knowledge operators. The construction
of local states relevant to the present paper is the perfect recall interpretation.
Writing s0 � Vi for the restriction of the assignment s0 to the variables Vi that
are observable to agent i = 1 . . . n, the local states are defined to be the sequence

r(n)i = (r(0)0 � Vi) (r(1)0 � Vi) . . . (r(n)0 � Vi),

i.e., the local state is the history of all values of the variables observable to the
agent.

This perfect recall intepretation of knowledge is particularly relevant for anal-
yses in which security or the optimal use of information are of concern. In both
cases, we are interested in determining the maximal information that an agent is
able to extract from what it observes. Both issues are significant in the example
that we study in this paper. MCK is the only model checker currently available
that supports symbolic model checking for the perfect recall interpretation of
knowledge. (DEMO [19] uses a less scalable explicit state algorithm.)

3 Implementation of Knowledge-Based Programs

Knowledge-based programs [4] are like standard programs, except that expres-
sions may refer to agent’s knowledge. That is, in a knowledge-based program for
agent i, we may find statements of the forms if φ then P1 else P2 and v := φ,
where φ is a formula of the logic of knowledge that is a boolean combination of
atomic formulas concerning the agent’s local variables and formulas of the form
Kiψ, and P1, P2 are knowledge-based programs for agent i.

Unlike standard programs, knowledge-based programs cannot in general be
directly executed, since, as noted above, the satisfaction of the knowledge sub-
formulas depends on the set of all runs of the program, which depends on the
actions taken, which in turn depends on the satisfaction of these knowledge
subformulas.

This apparent circularity is handled by treating knowledge-based programs
as specifications, and defining when a concrete standard program satisfies this
specification. Suppose that we have a standard program P of the same syntactic
structure as the knowledge-based program P, in which each knowledge-based
expression φ is replaced by a concrete predicate pφ of the local variables of the
agent. In order to handle the perfect recall semantics, we also allow P to add
local history variables v and code fragments of the form v := e, where e is an
expression, that update these history variables, so as to make information about
past states available at the current time. The predicate pφ may depend on the
history variables.

434 O.I. Al-Bataineh and R. van der Meyden

The concrete program P generates a set of runs that we can take to be the
basis of an interpreted system I(P). We now say that P is an implementation
of the knowledge-based program P if for each formula φ in a conditional, we
have that in the interpreted system I(P), the formula pφ ⇔ φ is valid (at times
when the condition is used). That is, the concrete condition is equivalent to the
knowledge condition in the implementation. In general, knowledge-based pro-
grams may have no implementations, a behaviourally unique implementation, or
many implementations. Some conditions are known under which a behaviourally
unique implementation is guaranteed to exist. One of these conditions is that
agents have perfect recall and all knowledge formulas in the program refer to
the present time (rather than to the past or future). This case will apply to
the knowledge-based programs we consider in this paper, so we are guaranteed
behaviourally unique implementations.

We now describe a partially automated process, using epistemic model check-
ing, that can be followed to find implementations of knowledge-based programs
P (provide these terminate in a finitely bounded time: this applies to our ex-
amples) The user begins by introducing a local boolean variable vφ for each
knowledge formula φ = Kiψ in the knowledge-based program, and replacing φ
by vφ. Treating vφ as a history variable, the user may also add to the program
statements of the form vφ := e, relying on their intuitions concerning situations
under which the epistemic formula φ will be true. This produces a standard
program P that is a candidate to be an implementation of the knowledge-based
program P. (It has, at least, the correct syntactic structure.)

To verify the correctness of P as an implementation of P, the user must now
check that the variables vφ are being maintained so as to be equivalent to the
knowledge formulas that they are intended to express. This can be done using
epistemic model checking, where we verify formulas of the form

Xn(pci = l ⇒ (vφ ⇔ Kiψ))

where n is a time at which the test containing φ may be executed, pci is the
program counter of agent i and l is a label for the location of the expression
containing φ. (This conditioning on the program counter can be dispensed with
when the expression is known to always occur at particular times n, as it al-
ways is in our examples. More generally, we would write a formula that checks
equivalence at all times for nonterminating programs, but the resulting model
checking problem is undecidable with respect to the perfect recall semantics.)

In general, the user’s guess concerning the concrete condition that is equivalent
to the knowledge formula may be incorrect, and the model checker will report the
error. In this case, the model checker can be used to generate an error trace, a
partial run leading to a situation that falsifies the formula being checked. The next
step of our process requires the user to analyse this error trace (by inspection and
human reasoning) in order to understand the source of the error in their guess
for the concrete condition representing the knowledge formula. As a result of this
analysis, a correction of the assignment(s) to the variable vφ is made by the user
(this step may require some ingenuity on the part of the user.) The model checker

Epistemic Model Checking for Knowledge-Based Program Implementation 435

is then invoked again to check the new guess. This process is iterated until a guess
is produced for which all the formulas of interest are found to be true, at which
point an implementation of the knowledge-based program has been found.

In many cases, this process can proceed monotonically. Starting from an initial
assignment vφ := e, where e is a condition that the user can easily see to be
sufficient for Kiψ, the error trace leads to the identification of a situation where
i may know ψ, which is not covered by the condition e. (That is, where Kiψ ⇒ e
does not hold.) An analysis of this condition may lead to the discovery of another
sufficient condition e′. In this case, the user can take as the next guess the
assignment vφ := e ∨ e′. Continuing in this way, we obtaining an increasing
sequence of concrete lower approximations to the knowledge formula, eventually
converging to the correct implementation. (We note that such a condition e′ can
always be found, since we may always take it to be a complete description of the
run producing the counter-example. Finding a good generalization that remains
a sufficient condition for the knowledge formula may be more difficult.)

In general, monotonicity is not guaranteed, but it obtains in our example in
this paper. We leave the question of characterizing the situations where mono-
tonicity applies to future work, and turn to a demonstration of the process on a
particular example, introduced in the next section.

4 Chaum’s Dining Cryptographers Protocol

Chaum’s dining cryptographers protocol [2, p. 65] is an example of a protocol
for secure multiparty computation: it enables the value of a function of a group
of agents to be computed while revealing nothing more than that value. Chaum
introduces the protocol with the following story:

Three cryptographers are sitting down to dinner at their favourite restau-
rant. Their waiter informs them that arrangements have been made with
the maitre d’hotel for the bill to be paid anonymously. One of the cryp-
tographers might be paying for the dinner, or it might have been NSA
(U.S National Security Agency). The three cryptographers respect each
other’s right to make an anonymous payment, but they wonder if NSA
is paying. They resolve their uncertainty fairly by carrying out the fol-
lowing protocol:

Each cryptographer flips an unbiased coin behind his menu, between
him and the cryptographer on his right, so that only the two of them can
see the outcome. Each cryptographer then states aloud whether the two
coins he can see–the one he flipped and the one his left-hand neighbor
flipped–fell on the same side or on different sides. If one of the cryp-
tographers is the payer, he states the opposite of what he sees. An odd
number of differences uttered at the table indicates that a cryptographer
is paying; an even number indicates that NSA is paying (assuming that
the dinner was paid for only once). Yet if a cryptographer is paying, nei-
ther of the other two learns anything from the utterances about which
cryptographer it is.

436 O.I. Al-Bataineh and R. van der Meyden

This version of the dining cryptographers protocol has frequently been the
focus of studies of verification of security protocols, but it is just one of many
variants discussed in Chaum’s paper. One of Chaum’s considerations is the use of
the protocol for more general anonymous broadcast applications, and he writes:

The cryptographers become intrigued with the ability to make messages
public untraceably. They devise a way to do this at the table for a state-
ment of arbitrary length: the basic protocol is repeated over and over;
when one cryptographer wishes to make a message public, he merely
begins inverting his statements in those rounds corresponding to 1’s in a
binary coded version of his message. If he notices that his message would
collide with some other message, he may for example wait for a num-
ber of rounds chosen at random from some suitable distribution before
trying to transmit again.

He notes that “undetected collision results only from an odd number of syn-
chronized identical message segments”. As a particular realization of this idea,
he discusses grouping communication into blocks and the use of the following
2-phase broadcast protocol using slot-reservation:

In a network with many messages per block, a first block may be used
by various anonymous senders to request a “slot reservation” in a second
block. A simple scheme would be for each anonymous sender to invert
one randomly selected bit in the first block for each slot they wish to
reserve in the second block. After the result of the first block becomes
known, the participant who caused the ith bit in the first block sends in
the ith slot of the second block.

This idea has been implemented as part of the Herbivore system[6]. (Herbivore
also adds mechanisms for dividing the group of participants into cliques of suf-
ficient size to provide reasonable anonymity guarantees, as well as protocols for
joining and leaving the group of participants - we will not discuss these extension
here.) The Herbivore authors note that

If an even number of nodes attempt to reserve a given slot, the collision
will be evident in the reservation phase, and they will simply wait un-
til the next round to transmit. If an odd number of nodes collide, the
collission will occur during the transmission phase.

The remarks above do not constitute a concrete definition of the protocol, and
leave a number of questions concerning the implementation open. For example,
what exact test is applied to determine whether there is a collision? Which agents
are able to detect a collision? Are there situations where some agent expects to
receive a message, but a collision occurs that it does not detect (although some
other agent may do so?)

Note that each round of the DC protocol has been proved correct, but what
about the way in which the rounds are combined? It is not immediately clear
that there are not subtle flows of information!

Epistemic Model Checking for Knowledge-Based Program Implementation 437

Prior knowledge of the participants may also affect the flow of information.
For example, suppose that the protocol is being used for the participants in a
referendum to anonymously announce their votes. In this case it is known that
all particpants will attempt to reseve a slot - does this information change the
flow of information in any way? If so, does it affect the security of the protocol?
One of the benefits of verification by epistemic model checking is that it permits
such questions about variants of a protocol, and its application in a particular
setting to be investigated efficiently without requiring reconstruction of possibly
complex proofs.

5 The 2-Phase Broadcast Protocol as a Knowledge-Based
Program

It is interesting to note that the descriptions of the 2-phase protocol above
are, in their level of abstraction, more like knowledge-based programs than like
concrete implementations. In this section, we explicitly study the protocol from
this perspective, and apply our partially automated methodology to derive the
concrete implementations. We consider a setting with 3 agents who use 3 slots
for their broadcast. Each slot permits the transmission of a single-bit message.

5.1 The Knowledge-Based Program

Figure 1 represents the 2-phase protocol as a knowledge-based program. The
parameters of the protocol in the first line alias certain local variables to global
variables in the environment. Variable i is a number in the range 1..3 used to
index the present instance of the protocol, and variables keyleft and keyright
represent keybits (referred to as “coins”, above), which are shared between by
agents in the appropriate pattern. Note that since a fresh set of keybits needs to
be used for each instance of the basic Dining Cryptographers protocol (which we
run 6 times here), we assume that an external process generates fresh values for
these keybit variables at each step; we omit the details. The final variable said
in the parameters represent the array of public announcements by the agents
at each step. All arrays are assumed to be indexed starting from 1. The local
variable slot-request records the slot number (in the range 1..3) that this agent
will attempt to reserve. If slot-request=0, then the agent will not attempt to
reserve any slot. The variable message records the single bit message that the
agent wishes to anonymously broadcast (if any). Variables for which an initial
value is not explicitly specified can take any initial value. We write ‘⊕’ for the
exclusive or operation.

The term conflict(s) in the knowledge-based program represents that there
is a conflict on slot s. This is a global condition that is defined as

conflict(s) =
∨

i�=j

(i.slot-request= s = j.slot-request) .

i.e., there exist two distinct agents i and j both requesting slot s.

438 O.I. Al-Bataineh and R. van der Meyden

protocol dc agent(i:[1,3], keyleft,keyright,said[3]:Bool) {
local variables:

slot-request:[0,3],
message:Bool,
rcvd0[3], rcvd1[3], dlvrd: Bool (initially false);

//reservation phase
for (s = 1; s ≤ 3; s++)
{
said[i] := (keyleft⊕ keyright⊕ (slot-request=s));

}
//transmission phase
for (s = 1; s ≤ 3; s++)
{
if (slot-request = s ∧ ¬Ki(conflict(s))

then said[i] := (keyleft⊕ keyright⊕ message)
else said[i] := (keyleft⊕ keyright⊕ false);

rcvd0[s] := Ki(sender(i, 0, s));
rcvd1[s] := Ki(sender(i, 1, s))

};
dlvrd:=

∧
x∈Bool,t=1..3((message = x ∧ slot-request = t) ⇒

Ki(
∧

j �=i Kjsender(j, x, t)))

}

Fig. 1. The knowledge-based program CDC

The term sender(i, x, s) represents that an agent other than i is sending
message x in slot s; this is defined as

sender(i, x, s) =
∨

j �=i

(j.message = x ∧ j.slot-request = s) .

Thus, the variable rcvd0[s] is assigned to be true if in round s, the agent learns
that someone else is trying to send the bit 0, and similarly for rcvd1[s]. This
addresses an issue that is not explicitly mentioned in the discussion of the two-
phase protocol above, viz., how does an agent know whether it has received a
transmission from another? Note that this is pertinent because the knowledge-
based program allows that, although an agent has declared that it wishes to
reserve a slot, it may still back off from the transmission if it discovers that
there is a conflict. But will the receiver always know that it has done so?

We note that this representation of the 2-phase protocol as a knowledge-
based program is speculative: an agent transmits in a slot so long as it does not
know that there is a conflict. This allows that a collision will occur during the
transmission phase. One of the benefits of the knowledge-based approach is that
it makes explicit the difference between this and another interpretation of the
protocol where, in place of the condition ¬Ki(conflict(s)), we use the condition
Ki(¬conflict(s)). In this conservative version, an agent would broadcast only
if it is certain that there is not a conflict on its desired slot. Both versions may be

Epistemic Model Checking for Knowledge-Based Program Implementation 439

appropriate depending on the circumstances, but we focus our discussion here
on the speculative version.

Since an agent may attempt to reserve a slot, and then back off, or may
send in a reserved slot without success, the protocol does not guarantee that
the message will be delivered. In this case, the agent is required to retry the
transmission in the next run of the protocol. So that it can determine whether a
retry is necessary, the final assignment to the variable dlvrd captures whether
the agent knows that its (anonymous) transmission has been successful. This
is the case if all other agents know that some agent sent the bit i.message in
slot j.slot-request. (Subtleties about the semantics of the logic of knowledge
prevent simplification of this formula by substitution of these expressions for x
and t.)

In order to set up the appropriate configuration of the 3 agents and to alias
their parameters to variables in the environment, we use the following declaration
block:

agent C2 : dc_agent(1,k31,k12,said)

agent C3 : dc_agent(2,k12,k23,said)

agent C3 : dc_agent(3,k23,k31,said)

where the kij are boolean variables that represent the keybit shared between
agent i and agent j.

In Figure 2, we give the generic structure of a possible implementation of the
knowledge-based program, as we seek using our partially-automated process.
The lines marked with (+) indicate places of difference with CDC.

Here we have introduced some history variables rr[s] that record the round
results said[0]⊕ said[1]⊕said[2] obtained from each round s of the basic
Dining Cryptographers protocol. Note that, because of the pattern of sharing of
the keybits between the agents, this expression contains each keybit value twice,
so that the keybits cancel out, leaving just the exclusive-or of the actual content
being transmitted by each of the agents (in each assignment to said[i], this
is the final term in the exclusive-or). In particular, under the assumption that
just one agent has a genuine message x to transmit in round j, and the others
transmit false, we obtain that rr[j]=x.

The variable kc[s] is used to represent the epistemic condition concern-
ing conflict in the knowledge-based program (either ¬Ki(conflict(s)) or
Ki(¬conflict(s)), depending on whether we are dealing with the speculative
or the conservative version). Thus, in verifying that we have an implementation,
the key condition to be checked is whether kc[s] ⇔ ¬Ki(conflict(s)) (respec-
tively, kc[s] ⇔ Ki(¬conflict(s))) is valid at the times the if statement is
executed. The main difficulty in finding an implementation is to find the appro-
priate concrete assignment for this variable that will make this condition valid.
Similarly we seek assignments to the variables rcvd0[s], recvd1[s] that give
these the intended meaning.

440 O.I. Al-Bataineh and R. van der Meyden

protocol dc agent(i:[0,2], keyleft,keyright,said[3]:Bool) {
local variables:

slot-request:[0,3],
message:Bool,
rcvd0[3], rcvd1[3]:Bool (initially false),
rr[6]:Bool, (+)
kc[3]:Bool (initially false); (+)

//reservation phase
for (s = 1; s ≤ 3; s++)
{
said[i] := (keyleft⊕ keyright⊕ (slot-request== s));
rr[s] :=said[0]⊕ said[1]⊕ said[2]; (+)

}
//transmission phase
for (s = 1; s ≤ 3; s++)
{
kc[s] :=???; (+)
if (slot-request== s ∧ kc[s])

then said[i] := (keyleft⊕ keyright⊕ message)
else said[i] := (keyleft⊕ keyright⊕ false);

rr[s+3] := said[0]⊕ said[1]⊕ said[2]; (+)
rcvd0[s] := ???; (+)
rcvd1[s] := ???; (+)

}
dlvrd:= ??? (+)
}

Fig. 2. A generic implementation of CDC

5.2 Verification Conditions

In order to apply our methodology, it is necessary for the user to substitute
a guess for parts of the implementation marked ‘???’, and then to use model
checking to check the correctness of the guess. We now discuss the formulas
that are used to verify the implementation. In general, the conditions need to be
verified only at specific times n, straightforwardly determined from the structure
of the program. We generally omit discussion of this.

The first formula of interest concerns the correctness of the guess for the
knowledge condition ¬Ki(conflict(s)) (in case of the speculative implementa-
tion, or Ki(¬conflict(s)) (in the case of the conservative implementation). In
the implementation, this condition is represented by the variable kc[s].

Specification 1: kc[s] correctly represents knowledge of the existence of a
conflict in slot s = 1..3. In case of the speculative interpretation, we use the
formula

Xn(i.kc[s] ⇔ ¬Ki(conflict(s))) (1s)

and in case of the conservative implementation, we use the formula

Epistemic Model Checking for Knowledge-Based Program Implementation 441

Xn(i.kc[s] ⇔ Ki(¬conflict(s))) (1c)

(In both cases, the appropriate values of n are 7, 12 and 17, where we treat the
for loops as macros and the if conditions as taking zero time.)

As remarked above, it has been claimed that the 2-phase protocol is guar-
anteed to detect a conflict either in the slot-reservation phase or else in the
transmission phase. To verify this, we can use the following specification:

Specification 2: A conflict is always detected.

Xn(conflict(s) ⇒ Ki(conflict(s)))

where we may take time n to correspond to the final time in the protocol. We
remark that the converse implication is trivial from the semantics of knowledge.

As will discuss below, Specification 2 is arguably too strong, since agents
may not be able to learn about conflicts on slots they do not reserve. Thus, the
following weaker specification is also of interest.

Specification 3: If there is a slot conflict involving agent i, then agent i detects
it.

Xn((conflict(s) ∧ i.slot-request = s) ⇒ Ki(conflict(s)))

where again we take n to correspond to the end of the protocol.
Next, the protocol has some positive goals, viz., to allow agents to broadcast

some information, and to do so anonymously. Successful reception of a bit by the
time n immediately after the transmission in slot s is intended to be represented
by the variables rcvd0[s] and rcvd1[s]. To ensure that the assignments to
these variables correctly implement their intended meaning in the knowledge-
based program, we use specifications of the following form.

Specification 4: reception variables correctly represent transmissions by others

Xn(i.rcvd0[s] ⇔ Ki(sender(i, 0, s))) (4a)

and
Xn(rcvd1[s] ⇔ Ki(sender(i, 1, s))) (4b)

Similarly, we need to verify correct implementation of the agent’s knowledge
about whether its transmission is successful.

Specification 5: delivery variables correctly represent knowledge about delivery

Xn(i.dlvrd ⇔ ∧
x∈Bool,t=1..3(i.message = x ∧ i.slot-request = t

⇒ Ki(
∧

j �=i Kjsender(j, x, t))))

Finally, the aim of the protocol is to ensure that when information is trans-
mitted, this is done anonymously. An agent may know that one of the other two
agents has a particular message value, but it may not know what that value is for
a specific agent. We may write the fact that agent i knows the value of a boolean
variable x by the notation K̂i(x), defined by K̂i(x) = Ki(x)∨Ki(¬x) . Using this,
we might first attempt to specify anonymity as

∧
j �=i(¬K̂i(j.message), i.e., agent

442 O.I. Al-Bataineh and R. van der Meyden

i knows no other’s message. Unfortunately, the protocol cannot be expected to
satisfy this: suppose that all agents manage to broadcast their message and all
messages have the same value x: then each knows that the other’s value is x. We
therefore write the following weaker specification of anonymity:

Specification 6: The protocol preserves anonymity

Xn(
∨

x=0,1

Ki(
∧

j �=i

(j.message = x)) ∨
∧

j �=i

(¬K̂i(j.message)))

to be evaluated with n set to the final time of the protocol.

5.3 Finding an Implemention of the Knowledge-Based Program

We now illustrate how we find an implementation of the knowledge-based pro-
gram using our methodology. We focus here on the speculative version, and
consider a scenario where the number of agents that are seeking to broadcast−
is initially unknown, and could be any value from the set {0..3}.

Our first task in implementing the knowledge-based program is to find an
appropriate assignment for the variables kc[s], and to verify that this assignment
correctly represents knowledge about slot conflicts and validates Specification 1.
It is plain from the discussion above that if an agent attempts to reserve slot s,
but sees that the round result for that reservation attempt is not true, then this
must be because some other agent also attempted to reserve the slot. Thus, in
this case the agent detects a conflict. A reasonable guess for the assignment to
kc[s] to represent ¬Ki(conflict(s)) is therefore

kc[s] := ¬(slot-request = s ∧ ¬rr[s] = false) .

Indeed, this proves to be the correct choice: if we now model check Specification
1s then we find that this specification is true.1

The next question of interest is then whether Specification 2 holds , as claimed.
The answer obtained by model checking is that it does not, and the counter-
example discovered is the following:

Example 1: (None of the agents discover conflict) Suppose that all agents
(C1, C2, C3) would like to reserve slot 2 and each has message 1. The round
results rr[s] are shown in on the left in Figure 3, where we show for each agent
the contribution other than keybits (which cancel out).

Now from agent C1’s perspective, this run of the protocol is indistinguishable
from another run where only C1 attempts to reserve slot 2, and it still has
message 1, shown on the right in Figure 3. Hence we have a situation where
although there is a conflict agent C1 cannot know that there is a conflict, and
Specification 2 fails, contra to what one might have expected from the quote
1 Strictly, in order to model check this claim, we first need to fill in the other ‘???’

assignments. We remark that because of independencies, the outcome of model check-
ing Specification 1s is the same whatever we choose for the other ‘???’ assignments.
We omit a detailed argument for this here.

Epistemic Model Checking for Knowledge-Based Program Implementation 443

s 1 2 3 4 5 6

Agent C1 0 1 0 0 1 0

Agent C2 0 1 0 0 1 0

Agent C3 0 1 0 0 1 0

rr[s] 0 1 0 0 1 0

s 1 2 3 4 5 6

Agent C1 0 1 0 0 1 0

Agent C2 0 0 0 0 0 0

Agent C3 0 0 0 0 0 0

rr[s] 0 1 0 0 1 0

slot-request = [2, 2, 2], slot-request = [2, 0, 0]
message = [1, 1, 1] message = [1, 1, 1]

Fig. 3. Runs indistinguishable to C1

from [6] above.2 Indeed, we see that the more liberal Specification 3 also fails in
this example.

In the discussion above, we have focused on the agent’s knowledge that there
is a conflict. From the point of view of determining the appropriate assign-
ments to the variables rcvd0 and rcvd1, it would be helpful to determine un-
der what circumstances an agent knows that there will be a transmission on a
slot but there is not a conflict on that slot. Thus, it would be helpful to have
a predicate i.conflict-free(s) that is equivalent to Ki(

∨
j j.slot-request =

s∧¬conflict(s)). We now investigate this question, and use it to illustrate the
iterative procedure to obtain local predicates that are equivalent to knowledge
formulas.

Plainly, a round-result of 1 during the reservation phase implies that someone
wishes to send in that slot. However, Example 1 also shows that Ki¬conflict(s)
cannot hold in case agent i obtains round result 1 in a slot it intends to transmit
in, and 0 in all other slots, since it is possible that all agents are attempting to
transmit in the same slot. Hence a reasonable guess is

conflict-free1(s) = rr[s] = 1 ∧ ¬(∧t∈{1,2,3}\{s}rr[t] = 0) .

When we model check

Xn(i.conflict-free1(s) ⇔ Ki(
∨

j

j.slot-request = s ∧ ¬conflict(s))

at time n after the transmission phase, we find that this formula is false. A
counter-example produced by the model checker shows that this happens when
C1 and C3 request slot 3, and C2 requests slot 1. Note that in this case the
reservation round results are (1, 0, 0). Here C1 and C3 detect a conflict in slot 3.
Since there are only three agents, they are able to reason that the conflict must
have been 2-way (else we have the scenario of Example 1). This means that they
are able to deduce that there is not a conflict in slot 1.
2 It is unclear if the authors of [6] intended to imply that all conflicts would be detected.

They also state that messages are sent with an MD5 checksum, so most conflicts
of messages somewhat longer than a single bit would in fact be detected with high
probability through corruption of this checksum. However, even with this device,
collisions of 3 identical messages would still go undetected, as noted by Chaum.

444 O.I. Al-Bataineh and R. van der Meyden

This example motivates a second guess for the predicate conflict-free(s),
viz., (when all variables are local to agent i)

conflict-free2(s) = conflict-free1(s) ∨
(rr[s] = 1 ∧ slot-request ∈ {1, 2, 3} \ {s} ∧ rr[i.slot-request] = 0) .

Model checking this predicate for equivalence to Ki(
∨

j j.slot-request = s ∧
¬conflict(s)), we still find that the equivalence does not hold. The counter-
example produced this time is the situation where agents C1 and C2 do not
request a slot, but agent C3 requests slot s so that the round result of slot s
is 1. Note that here, agents C1 and C2 know that any slot collision must be
2-way, since they cannot be a participant. Since the reservation request on slot
s gave round result 1, there must be exactly one agent requesting slot s. With
some reflection, we note that agent C1 would have been able to draw the same
conclusion about slots 2 and 3 in case the round result pattern were (0, 1, 1).
Thus, we are led to the following improved guess:

conflict-free3(s) = conflict-free2(s) ∨ (rr[s] = 1 ∧ slot-request �= s)

At this point, model checking shows that we have found the predicate we seek.
Returning now to the question of when agents learn the bit that another agent

is transmitting, we guess the assignment

rcvd1[s] := rr[s] = 1 ∧ conflict-free3(s) ∧ slot-request �= s .

That is, the agent sees that there will be a conflict free transmission on slot s,
but it is not itself using that slot. We now model check Specification 4b. Some-
what surprisingly, this specification turns out to be false! The counter example
returned is one in which the agent is C1, all agents reserve slot 1, and the agents
have messages (1, 1, 0). Note that here, the round result obtained for the trans-
mission is 0, so agent C1 detects the collision, which it knows must have been
3-way. It can also reason that the other agents cannot both have had messages
0, since this would have produced round result 0, thus, at least one must have
had message 1! This observation leads to the revised guess

rcvd1[s] := (rr[s] = 1 ∧ conflict-free3(s) ∧ slot-request �= s)∨
(slot-request = 1 ∧ rr[s+ 3] �= message∧ ∧

t∈{1,2,3}\{s} rr[t] = 0) .

We now find that Specification 4b holds, so we have correctly implemented this
part of the knowledge-based program. A similar assignment works for the as-
signment to rcvd0 and Specification 4a.

This process can also be carried out also for the final specification Specification
5, which concerns the circumstances under which a sender knows that their
message (if any) has been received by the others. One obvious situation when
this is the case is when the sender i knows that the slot on which they are sending
is conflict-free. Recall that this occurs only when two or more of the reservation
round results equal 1, and note that this implies that all other agents also know
that the slot on which i is sending is conflict-free. Thus the others will receive

Epistemic Model Checking for Knowledge-Based Program Implementation 445

the message that i is sending (anonymously) on this slot. This suggests the
assignment

dlvrd := slot-request = 0∨
∨

s∈{1,2,3}
slot-request = s∧ conflict-free3(s) .

When we model check this with respect to Specification 5, we find that that the
specification holds, and we have a complete implementation of the knowledge-
based program. Finally, we may also model check Specification 6 and verify that
the protocol preserves anonymity in the appropriate sense. This proves to be the
case.

6 Conclusion

We have demonstrated the application of our partially automated methodol-
ogy for knowledge-based program implementation on a protocol for anony-
mous broadcast. While, like related studies [8,10,18,17,15,16], we verify that
an anonymity property holds, the focus of our effort lies in other aspects of the
protocol.

One of the main outcomes of the analysis is that the flows of information
in the protocol are considerably more subtle than one might have expected. In
particular, we find that there are circumstances, that go beyond those that have
been identified in the literature, where agents are able to obtain knowledge of
each other’s bits. Significantly, we make this discovery not manually, but using
automated support. We also address in our work a number of questions that
have not been considered in the prior literature, viz., under what circumstances
can a receiver be confident that they are receiving a transmission, and under
what circumstances a sender can know that its transmission has been successful,
and find complete answers to these questions in a particular scenario.

On the other hand, being based on model checking of a concrete model under
very particular assumptions, our approach lacks generality: it does not yield an
immediate answer to how our conclusions are affected by changing the num-
ber of agents, their topology, or the initial assumptions concerning the number
of agents wishing to transmit. However, the methodology provides an efficient
means to experiment with such questions. We are presently investigating further
variants using our methodology, in order to obtain an empirical basis from which
theoretical results may be generalized. Our present models are also starting to
press the limits of the model checking technology (run times of the order of
hours for some queries, for protocols of around 20 steps), so we are also inves-
tigating optimizations to increase the scale and complexity of the problems we
can address. We plan to report on this in future work.

In work conducted independently, Luo et al [13] have also model checked
knowledge in the 2-phase protocol, but they focus on a number of formulas
concerning conflict detection, rather than attempting to implement a knowledge-
based program, as we have done in this paper. They consider larger numbers
of agents, but they do not consider the questions we have studied concerning

446 O.I. Al-Bataineh and R. van der Meyden

reception and termination, nor do they try to find exact conditions under which
knowledge properties of interest hold. They also use observational rather than
perfect recall semantics, and justify this by an informal argument that what
they do is equivalent to perfect recall. We believe their claim of equivalence to
be correct, and it would be an interesting topic for future work to provide a more
formal and systematic justification. (Some initial steps on optimizing models of
the 2-phase protocol were already taken in [14].)

References

1. Baukus, K., van der Meyden, R.: A knowledge based analysis of cache coherence.
In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS, vol. 3308, pp.
99–114. Springer, Heidelberg (2004)

2. Chaum, D.: The dining cryptographers problem: Unconditional sender and recipi-
ent untraceability. Journal of Cryptology, 65–75 (1988)

3. Dwork, C., Moses, Y.: Knowledge and common knowledge in a Byzantine environ-
ment: crash failures. Information and Computation 88(2), 156–186 (1990)

4. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge.
MIT Press, Cambridge (1995)

5. Gammie, P., van der Meyden, R.: MCK: Model checking the logic of knowledge.
In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 479–483. Springer,
Heidelberg (2004)

6. Goel, S., Robson, M., Polte, M., Sirer, E.: Herbivore: A scalable and efficient pro-
tocol for anonymous communication. Technical report, Cornell University, Ithaca,
NY (February 2003)

7. Hadzilacos, V.: A knowledge-theoretic analysis of atomic commitment protocols.
In: PODS 1987: Proc. 6th ACM Symp. on Principles of Database Systems, pp.
129–134. ACM, New York (1987)

8. Halpern, J.Y., O’Neill, K.R.: Anonymity and information hiding in multiagent
systems. In: Proc. 16th IEEE Computer Security Foundations Workshop, pp. 75–
88 (2003)

9. Halpern, J.Y., Zuck, L.D.: A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. Journal of the
ACM 39(3), 449–478 (1992)

10. Hughes, D., Shmatikov, V.: Information hiding, anonymity and privacy: a modular
approach. Journal of Computer Security 12(1), 3–36 (2004)

11. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press,
Cambridge (1999)

12. Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the verifica-
tion of multi-agent systems. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS,
vol. 5643, pp. 682–688. Springer, Heidelberg (2009)

13. Luo, X., Su, K., Gu, M., Wu, L., Yang, J.: Symbolic model checking the knowledge
in Herbivore protocol. In: van der Meyden, R., Smaus, G. (eds.) MoChArt 2010:
6th Int. Workshop on Model Checking and Artificial Intelligence, LNCS. Springer,
Hiedelberg (2010) (to appear), AAAI Working Notes

14. Nhu, L.L.V.: Enhancing an epsitemic logic model checker for application to exten-
sions of the dining cryptographers protocol. Honours thesis, School of Computer
Science and Engineering, University of New South Wales (November 2005)

Epistemic Model Checking for Knowledge-Based Program Implementation 447

15. Ryan, P., Schneider, S.: The modelling and analysis of security protocols: the CSP
approach. Addison-Wesley Professional, Reading (2000)

16. Schneider, S., Sidiropoulos, A.: CSP and anonymity. In: Proc. of the European
Symposium on Research in Computer Security (ESORICS), pp. 198–218. Springer,
Heidelberg (1996)

17. Syverson, P., Stubblebine, S.: Group principals and the formalization of anonymity.
In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999, Part I. LNCS,
vol. 1708, pp. 814–833. Springer, Heidelberg (1999)

18. van der Meyden, R., Su, K.: Symbolic model checking the knowledge of the dining
cryptographers. In: Proc. 17th IEEE Computer Security Foundation Workshop,
pp. 280–291. IEEE Computer Society, Los Alamitos (2004)

19. van Eijck, J.: Dynamic epistemic modelling. Technical report, Centrum voor
Wiskunde en Informatica, Amsterdam (2004), CWI Report SEN-E0424

	Epistemic Model Checking for Knowledge-Based Program Implementation: An Application to Anonymous Broadcast
	Introduction
	Model Checking Epistemic Logic
	Implementation of Knowledge-Based Programs
	Chaum's Dining Cryptographers Protocol
	The 2-Phase Broadcast Protocol as a Knowledge-Based Program
	The Knowledge-Based Program
	Verification Conditions
	Finding an Implemention of the Knowledge-Based Program

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

