
Hidden Markov Models for

Automated Protocol Learning

Sean Whalen1,2, Matt Bishop1, and James P. Crutchfield1,2,3

1 Department of Computer Science
University of California, Davis

{whalen,bishop}@cs.ucdavis.edu
2 Department of Physics

University of California, Davis
chaos@cse.ucdavis.edu

3 Santa Fe Institute
1399 Hyde Park Road

Santa Fe, New Mexico 87501

Abstract. Hidden Markov Models (HMMs) have applications in several
areas of computer security. One drawback of HMMs is the selection of
appropriate model parameters, which is often ad hoc or requires domain-
specific knowledge. While algorithms exist to find local optima for some
parameters, the number of states must always be specified and directly
impacts the accuracy and generality of the model. In addition, domain
knowledge is not always available or may be based on assumptions that
prove incorrect or sub-optimal.

We apply the ε-machine—a special type of HMM—to the task of con-
structing network protocol models solely from network traffic. Unlike
previous approaches, ε-machine reconstruction infers the minimal HMM
architecture directly from data and is well suited to applications such
as anomaly detection. We draw distinctions between our approach and
previous research, and discuss the benefits and challenges of ε-machines
for protocol model inference.

Keywords: Statistical Inference, Reverse Engineering, Network Proto-
cols, Markov Models, Computational Mechanics.

1 Introduction

Understanding the structure of a network protocol allows us to “speak” its lan-
guage and converse with other systems on the network that use it. The structure
of commonly used protocols, such as HTTP and FTP, are provided by their spec-
ification. In addition, these protocols use fragments of English as well as other
ASCII text such as domain names. As a result, the presence of HTTP or FTP
traffic can be identified by visual inspection of a network trace, assuming the
channel is not encrypted. One can then use its specification, or one of many free
or commercial tools, to understand the traffic present in the trace.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 415–428, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

416 S. Whalen, M. Bishop, and J.P. Crutchfield

The task becomes more difficult when the protocol in question uses non-
ASCII representations of state to establish connections and exchange data. Still,
there are many approaches to identify the protocol such as using port numbers,
unique payload signatures, or machine learning techniques [1]. Once the protocol
is identified, the traffic can again be understood by using the specification.

In contrast to protocol identification, consider the scenario where we do not
have access to the protocol’s specification—it is either proprietary, undocu-
mented, or otherwise obfuscated. We can treat the protocol as a black box,
where a hidden state machine governs the transmission of packets on the net-
work. To understand the structure of the packets, the task of protocol inference
is to approximate this hidden state machine with only the observed packets as
a guide.

Hidden Markov Models (HMMs) [2] are a common statistical model for sys-
tems with hidden internal states that can be measured only indirectly by obser-
vation. These models have numerous applications in computer science, including
several in computer security. An HMM is specified by a state transition matrix
and a symbol emission matrix. This means that, for an N -state HMM with a
discrete alphabet of size M , there are N(N − 1) + N(M − 1) free parameters
to be specified. These parameters can be trained using the Baum-Welch algo-
rithm [2], but training is often slow and gets stuck in local optima. In addition,
the number of states must still be specified. A model with too many states tends
to over-fit the data, while too few states may not fit the data at all. Worse, when
dealing with an unknown protocol, there is little if any knowledge available for
selecting appropriate model parameters.

To address this problem, we turn to the ε-machines of computational mechan-
ics [3]. An ε-machine is the minimal deterministic HMM of a stochastic process.
A reconstruction algorithm creates an ε-machine from a set of finite strings, and
infers the parameters of the minimal HMM that generates those strings. Here,
we treat a network protocol as a stochastic process and the traffic it generates as
input strings for the reconstruction algorithm. With the ε-machine in hand, we
can perform different tasks such as protocol mimicry, intelligent fuzzing, traffic
generation, and anomaly detection.

We next discuss recent work done on protocol inference and the benefits of
our approach. We follow this with background on HMMs and ε-machines, and
demonstrate our reconstruction technique using several simple protocols. Finally,
we discuss future applications and the limitations of our approach. Our discus-
sion assumes familiarity with stochastic processes and information theory at the
level of Cover and Thomas [4].

2 Related Work

Current approaches to protocol inference can be divided into two primary groups:
those that infer partial or complete protocol formats [5, 6, 7, 8, 9, 10], and those
that infer a state machine model [11, 12]. Both groups can be further divided
into those that examine network traces [5, 11, 6, 7], and those that additionally

Hidden Markov Models for Automated Protocol Learning 417

examine how a protocol implementation processes those traces [8,9,10,12]. Each
approach has different strengths and weaknesses, but both must identify the
location and size of protocol headers.

Much of the recent work can be traced back to Protocol Informatics, which
attempted to “determine the location and length of fields within protocol pack-
ets” using sequence alignment algorithms typically found in bioinformatics [5].
This approach was extended by RolePlayer, which used heuristics identify the
locations of IP addresses and domain names in a packet, in order to “successfully
replay one side of a [protocol] session” [6].

This work led to Discoverer, which focused on “reverse engineering the [com-
plete] message format specification” [7]. In this work, Cui et al. found that select-
ing robust parameters for sequence alignment was difficult, and that alignment
has trouble identifying variable length fields in messages of the same format.
In response, they developed a type-based alignment algorithm that infers the
semantics of different fields, and used these semantics to cluster messages of the
same format. Inference of the state machine, which is the focus of our approach,
was left to future work.

Prospex addressed this issue by inferring non-probabilistic state machines
from execution traces of a protocol implementation [12]. Their state machine
“reflects the sequences in which messages may be exchanged”. They converted
their machines into input specifications for the fuzzing tool Peach, and found
several known and unknown flaws in open source software.

In contrast, our ε-machine approach infers the minimal HMM from passively
observed network data without using execution traces. This strikes a middle
ground between Discoverer and Prospex, with several unique contributions.
These include using a probabilistic model that enables anomaly detection via
model comparison techniques, and avoiding ad hoc specification of model pa-
rameters by inferring them from the data.

We continue with a brief overview of HMMs and ε-machines, and refer the
reader to references [2] and [3] for further detail.

3 Background

A discrete stochastic process is a sequence . . . X1, X2, X3 . . . of random variables
Xn indexed by time; realizations . . . x1, x2, x3 . . . are often referred to as time se-
ries data. Here, we use time series and string interchangeably. The set of strings
a process generates forms a stochastic language in which each string occurs with
some probability. We treat a network protocol as a stochastic process, transmit-
ting packets in the protocol’s language with varying probabilities. Several well
known model classes, such as Markov Chains and Hidden Markov Models, are
commonly used to represent finite-memory stochastic processes. We will consider
these in turn, eventually introducing ε-machines as a useful alternative.

418 S. Whalen, M. Bishop, and J.P. Crutchfield

A B

α

1 − α

β

1 − β

A B

1 | 0.5

0 | 0.5

1 | 1.0

Fig. 1. Top: The general form of a two-state Markov Chain. Bottom: An HMM for
the Even Process. A state transition occurs with some probability p and generates a
symbol s, displayed as the edge label s | p. For example, the label 1 | 0.5 indicates
symbol 1 is generated with probability 0.5.

3.1 Markov Models

A Markov Chain is a representation of a stochastic process that assumes the
conditional probability of a future state Xn+1 depends only on the present
state Xn [13]:

Pr(Xn+1 = x|Xn = xn, Xn−1 = xn−1, . . . , X1 = x1)
= Pr(Xn+1 = x|Xn = xn) , (1)

where X1 . . . Xn is a sequence of random variables representing process state
over time. While this dependency can be extended to include a fixed number of
past states, a finite state Markov Chain can only represent a stochastic process
that has a limited dependence on history.

Transitions between states are random, occurring with probabilities specified
in a row-normalized transition matrix T of size |X |×|X |. Here, |X | is the number
of states. The probability of transitioning from state i to state j is denoted Tij .
As an example, a Markov Chain with two states X = {A, B} has the form:

T =
(

1 − α α
β 1 − β

)
, (2)

where α, β ∈ [0, 1] are parameters. This corresponds graphically to the state
machine diagram shown in Fig. 1.

Due to their limited history dependence, Markov Chains represent only a
subset of stochastic processes. Consider the Even Process which generates binary
strings in which the number of consecutive 1s, bounded by 0s, is always even.
For example, the strings 0110 and 011110 are in its language, but the string 010

Hidden Markov Models for Automated Protocol Learning 419

is not. It turns out that this process is not equivalent to a Markov Chain of
any finite order [14]. In such cases, one must employ a more sophisticated model
class such as Hidden Markov Models (HMMs).

3.2 Hidden Markov Models

An HMM is a Markov Chain in which the states, now denoted S, are not ob-
served directly but indirectly through measurement symbols Xn. Each observed
symbol is generated by a transition between hidden states according to some
distribution.

Since multiple transitions can generate the same observed symbol, the in-
ternal transitions and states of the system typically are not directly revealed
by observation. Nonetheless, given an HMM, several quantities of interest can
be calculated [2], including the probability of observing a particular string, the
most likely hidden-state sequence for a given string, and the state transition
and symbol emission probabilities that maximize the probability of a particular
string.

The Even Process is exactly represented by the two-state HMM given in Fig. 1.
By distinguishing internal states from observed symbols, HMMs can finitely
represent a much wider class of stochastic processes than Markov Chains.

3.3 ε-Machines

In fact, Fig. 1 shows a special HMM representation for the Even Process—one
with a minimal number of states. Moreover, the transitions are deterministic,
meaning that the measurement symbols occur on at most one transition leav-
ing a state. This property guarantees that, although there is not a one-to-one
relationship between internal states and measurement symbols, there is a one-
to-one relationship between sufficiently long measurement words and internal
state paths. Thus, internal state information is present, if very indirectly, in the
observed process.

An HMM with these properties is called an ε-machine. An ε-machine is the
minimal, optimal predictor for a stochastic process and so captures all of the
latter’s causal structure [3]. For these reasons, this is the model class we will
use.

Formally, an ε-machine consists of a set of causal states S, a measurement
alphabet A, and a set of transition matrices {T (s) : s ∈ A}. There are several
reconstruction algorithms that one can use to infer an ε-machine from a time se-
ries. We use the state splitting algorithm of Shalizi et al., whose time complexity
is O(|A|2Lmax+1) + O(N) [15]. Separate from the mathematical theory, differ-
ent reconstruction algorithms make specific assumptions about the underlying
process. The type of process being modeled thus affects the choice of algorithm.

Given an ε-machine, we can calculate certain important properties of a process.
In particular, the determinism of the state transitions enables direct calculation
of information-theoretic quantities, such as the process’s rate of information pro-
duction (source entropy rate) and the amount of historical information it stores

420 S. Whalen, M. Bishop, and J.P. Crutchfield

(statistical complexity) [3,14]. Such properties cannot be calculated from an HMM
representation that is not an ε-machine.

To estimate an HMM from time series, the number of states and transitions
must be guessed a priori. In contrast, ε-machine reconstruction algorithms infer
the minimal deterministic HMM architecture directly from time series data [16,
15]. This is a critical distinction if one wishes to discover the structure embedded
in a process, as opposed to guessing it ahead of time. This is advantageous when
reverse engineering protocols where prior information is unavailable.

4 Protocol Inference

4.1 Approach

We first define a network protocol as a set of message types. Each message type
consists of a sequence of bits, and related bits are often grouped into headers.
A particular message type may contain a set of headers, as well as a data pay-
load. This payload may contain data provided by the user, or may encapsulate
messages of a higher level protocol. Thus, we can think of a protocol message at
several levels of abstraction: as a sequence of bits, bytes, or headers and payloads.

By changing the level of abstraction, we can adjust the order of the underlying
Markov Chain as well as its alphabet size |A|. In addition, we are interested in
the structure of the protocol and not highly entropic user data such as images
or movies, so we attempt to detect and ignore payloads. This further reduces
the alphabet size, and is essential to the practical use of ε-machines.

Consider a minimal protocol having a single message type, consisting of a
2-byte length header and a payload. The length header specifies the number of
bytes in the payload as an unsigned 16-bit integer. A four byte message sending
the ASCII characters for “no” could then be viewed as a sequence of bits:

00000000 00000010 01101110 01101111

or of bytes:

0 2 110 111

or of headers and payloads:

2 “no”

The binary sequence has |A| = 2, but requires a prohibitive order-16 model to
capture the first header. At the byte level this becomes order-2, but |A| increases
to 4. Finally, if we know where the separation between header and payload is,
we can use an order-1 model with |A| = 2. If more messages are observed, the
alphabet size of the byte representation could increase to 256, so operating at
the header level is desirable. Of course, knowing the location and size of message
headers requires either the protocol specification or heuristics.

Hidden Markov Models for Automated Protocol Learning 421

Protocols such as HTTP and FTP use ASCII tokens, so header boundaries
are easily identified by inspection—typically tabs, spaces, newlines, and car-
riage returns. For more difficult binary protocols, Beddoe aligns bytes across
different messages using bioinformatics algorithms and then uses simple statis-
tics as a boundary detection heuristic [5]. Cui et al. discuss difficulties with
sequence alignment and devise a significantly improved type-based alignment
algorithm [7]. Both methods are compatible with our approach, though we use
minimum entropy clustering [17] to group messages of the same type and then
apply the simple statistics of Beddoe to identify likely header boundaries. This
method is adequate for the protocols discussed here, but complex protocols may
require additional sophistication.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

type code checksum

identifier sequence number

data · · ·

type code chksum

idseqnumdata

0x80 0x00

Σ2

Σ2Σ2

Σ

EOM

1

2 3

5 4

0x8000 | 1.0

Σ2 | 1.0

Σ3 | 1.0

Σ | 1.0

EOM | 1.0

Fig. 2. Top: Specification of an ICMP echo request [18], Middle: HMM representation,
Bottom: ε-Machine representation. The symbol Σ represents a random byte of data,
with Σn denoting n consecutive random bytes.

422 S. Whalen, M. Bishop, and J.P. Crutchfield

Thus, our inference approach can be separated into three primary tasks: 1)
grouping bytes into headers, 2) filtering highly entropic data, and 3) reconstruct-
ing the ε-machine. Tasks 1 and 2 exist primarily to reduce the alphabet size, and
can be changed independently of task 3. For example, type-based alignment
could be exchanged with minimum entropy clustering to transparently improve
the accuracy of the inferred model.

4.2 Results

We introduce protocol ε-machines and their accompanying notation using two
simple binary protocols, followed by two more complex protocols. The first
of these, the Internet Control Messaging Protocol (ICMP) [18] defines several
message types used for network diagnostics. One of these types, the echo re-
quest/reply, finds common use in the ping command line utility bundled with
most operating systems. For this discussion we focus on echo requests, consisting
of a 1-byte type set to 0x80, 1-byte code set to 0x00, 2-byte checksum whose
contents are a function of the message, 2-byte identifier, 2-byte sequence number,
and zero or more bytes of payload.

The message specification, a corresponding 6-state HMM, and the ε-machine
are shown in Figure 2. A state is created in the HMM for each header, with
transitions between states whose headers are adjacent in the specification. Tran-
sition are labeled with the symbols to be generated. The symbol Σn denotes n
consecutive random bytes. The symbol EOM signals the message is complete and
ready for transmission.

The ε-machine inferred from captured echo requests is shown below the HMM.
Transitions are labeled with the symbol s generated by the transition and the
probability p of the transition being taken, denoted s | p . This intentionally sim-
ple example has no branching between states, resulting in transition probabilities
of 1. The type and code headers are constant values, causing their separate HMM
states to be merged in the ε-machine.

Many protocols contain a sequence number header represented as a 16-bit
integer. However, the first byte of this header changes very rarely compared to
the second byte that is incremented with each message. In the requests captured
for this example, the identifier header and the first byte of the sequence number
remained constant, resulting in their grouping into a single value by the boundary
detection heuristic (see the A3 transition between state 3 and 4). While this does
not match the specification, it is a reasonable grouping to make based solely on
the statistics of the observed messages. Given enough data, the bytes will be
grouped into the correct fields.

We next examine Modbus, a protocol commonly used in supervisory control
and data acquisition (SCADA) systems for managing industrial and infrastruc-
ture processes such as power generation and waste management. Designed in
the late 70s to operate on simple programmable logic controllers, it has gained
recent notoriety due to its lack of security. These issues have escalated due to
the Modbus/TCP variant [19] connecting these systems to standard TCP/IP
networks.

Hidden Markov Models for Automated Protocol Learning 423

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

trans id prot id

length function unit id

data · · ·

1

2

5

4

3

0x00000000000600 | 1.0

0x01 | .6

0x02 | .2

0x04 | .05

0x05 | .05

0x06 | .1

0x00 | 1.0

Σ4 | 1.0EOM | 1.0

Fig. 3. Top: Specification of a Modbus/TCP request [19], Bottom: ε-Machine repre-
sentation

The specification of Modbus/TCP requests and an inferred ε-machine are
shown in Figure 3. A request consists of a 2-byte transaction id, 2-byte protocol
id set to 0x00, 2-byte length, 1-byte unit id, 1-byte function code, and variable
length payload.

The captured traffic, generated by a protocol simulator, consists of 150 re-
quests where all transaction ids and unit ids are set to 0x00. Traffic generated
by the simulator is actual Modbus traffic, and not a statistical approximation.
Observed function codes include 0x01 for reading coils, 0x02 for reading discrete
inputs, 0x04 for reading input registers, 0x05 for writing single coils, and 0x06
for writing single registers. Each payload contains 4 bytes specifying the range
of coils or registers to read or write. Branching occurs between state 2 and 3,
with each transition probability representing the maximum likelihood estimate
of a different function code.

424 S. Whalen, M. Bishop, and J.P. Crutchfield

FTP

Sample Size Recurrent States Time (Seconds)

300 6 0.18
600 9 0.20
900 10 0.23
1200 10 0.11
1500 11 0.32

HTTP

Sample Size Recurrent States Time (Seconds)

14337 12 0.18
28674 14 0.35
43011 18 0.84
57348 20 1.16
71685 22 1.86

Fig. 4. Scaling of inferred states and inference time as a function of data length, for
FTP (top) and HTTP (bottom). Time is not necessarily monotonically increasing due
to finite sample effects. State counts are given for non-deterministic presentations of
the ε-machine.

Reconstruction also works with more complex protocols such as FTP and
HTTP. Model size prevents including the full ε-machines here, so we present
summaries of their reconstruction in Figure 4. Shown is the scaling of inferred
states and reconstruction time as a function of data length, performed on a
single core of an Intel Core 2 Duo 2.4GHz CPU under OS X 10.6.3. A Python
implementation of the state splitting reconstruction algorithm [15] was used, and
will soon be available in the open source Computational Mechanics in Python
(CMPy) library. Captured traffic was obtained from the UCDavis Honeynet
Project.

An 18-state ε-machine can be inferred from 60,000 symbols in less than a
second using an interpreted language. A random walk on the machine generates
new packets that are accepted by a remote protocol implementation as valid,
indicating the structure of the protocol is correctly captured. Together, these
results show that probabilistic reconstruction of both binary and text-based
protocols is possible when alphabet size is managed. Given this, we next discuss
future applications of probabilistic models to protocol inference.

5 Future Work

Capturing probabilities enables an ε-machine to model normal behavior and
detect anomalies using model comparison techniques. This is an advantage of
ε-machines over non-probabilistic state machines such as minimized prefix tree
acceptors [20].

Weemploy relative entropy [4] formodel comparisonbetween ε-machines, aswell
as measuring the model’s fit. Relative entropy, also known as the Kullback-Liebler

Hidden Markov Models for Automated Protocol Learning 425

0 20

Lexicographic Index

B
lo

ck
P

ro
b
a
b
il
it
y

Inferred

Generated

Fig. 5. Overlayed distributions of block length 4 symbols using an ε-machine inferred
from Modbus traffic (dark gray) to generate new traffic (light gray). Relative entropy
between the distributions is 0.09 bits, indicating the distributions are close.

divergence, measures the distance between two probability distributions P and Q
and is defined as:

DKL(P ||Q) =
∑

i

P (i) log
P (i)
Q(i)

, (3)

and DKL(P ||Q) = 0 when P and Q are equal. Thus, a large relative entropy
between machines may indicate anomalous behavior. More work is needed to
determine appropriate thresholds for flagging behavior as anomalous with an
acceptable false positive rate.

A random walk on an ε-machine generates new traffic, useful for both protocol
mimicry and traffic simulation. We measure the fit of the model by taking the
relative entropy between the new and original traffic distributions as shown in
Figure 5. An ε-machine inferred from 500 captured Modbus requests was used to
generate new traffic with a distribution almost identical to the original, having
0.09 bits of relative entropy.

Random walks on the machine can also be used for intelligent fuzzing. Fuzzing
tests the robustness of a program by feeding it invalid input values, often in the
form of random inputs or mutated valid inputs. If the program does not correctly
handle invalid input, it may crash or leave the system vulnerable to attack.

426 S. Whalen, M. Bishop, and J.P. Crutchfield

While generally considered effective for finding bugs, a substantial drawback
to this approach is code coverage. For example, if the code’s execution path
depends on the value of a 32-bit integer, a random input has a 1 in 232 chance of
evaluating that code path [21]. Working with mutated valid inputs enables more
targeted testing, but requires some knowledge of the specification. The inferred
ε-machine enables such targeted fuzzing when no specification is available.

Consider a previously known flaw in Golden FTP Server 2.70 for Windows [22].
A CWD command sent from the client with certain large arguments crashes the
server and enables remote code execution. Using an ε-machine inferred from FTP
traffic and tuned to produce longer runs of random data, this flaw was reproduced
by a random walk on the machine. The subgraph of the ε-machine relating to the
crash is given in Figure 6. We plan to investigate if probabilistic models confer
additional benefits to intelligent fuzzing.

1

2

3

4

USER: test 0x0d0a | 1.0

PASS: test 0x0d0a | 1.0
CWD | 1.0

0x2f | .99

0x0d0a EOM | .01

Fig. 6. Subgraph of the ε-machine used for fuzzing Golden FTP Server 2.70, crashing
the server when a CWD command is followed by more than 150 bytes. Symbol prob-
abilities in the inferred ε-machine were tuned to produce longer sequences of random
data for guided fuzzing.

6 Conclusion

We presented a novel HMM-based approach for inferring the state machine of
network protocols using only their traffic. While generally applicable to any
non-encrypted protocol stream, our emphasis is on protocols without a publicly
available specification.

Our approach uses ε-machine reconstruction [3] to infer the minimal deter-
ministic HMM of a protocol. The parameters of the HMM are inferred directly
from the data, which avoids the typical pitfalls involved in parameter selection.
We demonstrated our approach using ICMP, Modbus, FTP, and HTTP, and use
the inferred ε-machines for protocol mimicry, fuzzing, and traffic generation. We

Hidden Markov Models for Automated Protocol Learning 427

plan to use the probabilistic nature of our models for anomaly detection, and
have early success doing so in high performance computing environments.

Due to the limitations of traffic-based approaches, as well as sensitivity to
alphabet size, more work remains to adapt reconstruction to high complexity
protocols. In some cases where domain knowledge is available, traditional HMMs
may scale better than ε-machines, and we leave this investigation to future work.
However, our approach is well suited to protocol inference where domain knowl-
edge is lacking for manual construction of state machine models.

Acknowledgements

This work was partially supported by the DARPA Physical Intelligence Program,
as well as the Director, Office of Computational and Technology Research, Di-
vision of Mathematical, Information, and Computational Sciences of the U.S.
Department of Energy, under contract number DE-AC02-05CH11231.

References

1. Erman, J., Mahanti, A., Arlitt, M.: Internet traffic identification using machine
learning. In: Proceedings of the 49th IEEE Global Telecommunications Conference,
pp. 1–6 (2006)

2. Rabiner, L.: A tutorial on Hidden Markov Models and selected applications in
speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

3. Crutchfield, J.P., Young, K.: Inferring statistical complexity. Phys. Rev. Let. 63
(1989); Crutchfield, J.P.: Physica D 75 11–54 (1994); Crutchfield, J. P., Shalizi, C.
R.: Phys. Rev. E 59(1), 275–283, 105–108 (1999)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley In-
terscience, New York (2006)

5. Beddoe, M.: Network protocol analysis using bioinformatics algorithms. Technical
report, McAfee Inc. (2005)

6. Cui, W., Paxson, V., Weaver, N., Katz, R.: Protocol-independent adaptive replay
of application dialog. In: Proceedings of the 13th Annual Symposium on Network
and Distributed System Security (2006)

7. Cui, W., Kannan, J., Wang, H.: Discoverer: Automatic protocol reverse engineering
from network traces. In: Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium, pp. 1–14 (2007)

8. Lin, Z., Jiang, X., Xu, D., Zhang, X.: Automatic protocol format reverse engi-
neering through context-aware monitored execution. In: Proceedings of the 15th
Annual Network and Distributed System Security Symposium (2008)

9. Wondracek, G., Milani Comparetti, P., Kruegel, C., Kirda, E.: Automatic net-
work protocol analysis. In: Proceedings of the 15th Symposium on Network and
Distributed System Security (2008)

10. Caballero, J., Poosankam, P., Kreibich, C., Song, D.: Dispatcher: enabling active
botnet infiltration using automatic protocol reverse-engineering. In: Proceedings of
the 16th ACM conference on Computer and Communications Security, pp. 621–634
(2009)

428 S. Whalen, M. Bishop, and J.P. Crutchfield

11. Leita, C., Mermoud, K., Dacier, M.: Scriptgen: An automated script generation tool
for honeyd. In: Proceedings of the 21st Annual Computer Security Applications
Conference, pp. 203–214 (2005)

12. Milani Comparetti, P., Wondracek, G., Kruegel, C., Kirda, E.: Prospex: Protocol
specification extraction. In: IEEE Symposium on Security and Privacy (2009)

13. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (1997)
14. Crutchfield, J., Feldman, D.: Regularities unseen, randomness observed: Levels of

entropy convergence. Chaos 15, 25–54 (2003)
15. Shalizi, C.R., Shalizi, K.L.: Blind construction of optimal nonlinear recursive pre-

dictors for discrete sequences. In: Proceedings of the 20th conference on Uncertainty
in Artificial Intelligence, pp. 504–511 (2004)

16. Shalizi, C., Shalizi, K., Crutchfield, J.: Pattern discovery in time series, Part I:
Theory, algorithm, analysis, and convergence, 2002 Santa Fe Institute Working
Paper 02-10-060; arXiv.org/abs/cs.LG/0210025

17. Li, H., Zhang, K., Jiang, T.: Minimum entropy clustering and applications to gene
expression analysis. In: Computational Systems Bioinformatics Conference, Inter-
national IEEE Computer Society, pp. 142–151 (2004)

18. Postel, J.: Internet Control Message Protocol (1981), Updated by RFCs 950, 4884
19. Modbus Organization: Modbus Messaging Implementation Guide 1.0b (2006)
20. Bugalho, M., Oliveira, A.L.: Inference of regular languages using state merging

algorithms with search. Pattern Recognition 38 (2005)
21. Godefroid, P.: Random testing for security: blackbox vs. whitebox fuzzing. In:

Proceedings of the 2nd international workshop on Random testing, p. 1 (2007)
22. Infigo Information Security: Multiple FTP Servers vulnerabilities (2006) (accessed

October 29, 2006)

	Hidden Markov Models for Automated Protocol Learning
	Introduction
	Related Work
	Background
	Markov Models
	Hidden Markov Models
	-Machines

	Protocol Inference
	Approach
	Results

	Future Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

