
Enhancing Host Security Using External

Environment Sensors

Ee-Chien Chang1,�, Liming Lu1, Yongzheng Wu1,2,��,
Roland H.C. Yap1, and Jie Yu3,� � �

1 School of Computing, National University of Singapore, Singapore
{changec,luliming,wuyongzh,ryap}@comp.nus.edu.sg

2 Temasek Laboratories, National University of Singapore, Singapore
3 Department of Computer Science

National University of Defense Technology, China
yj@nudt.edu.cn

Abstract. We propose a framework that uses environment information
to enhance computer security. We apply our framework to: enhance IDS
performance; and to enrich the expressiveness of access/rate controls.
The environment information is gathered by external (w.r.t the host)
sensors, and transmitted via an out-of-band channel, and thus it is hard
for adversaries not having physical access to compromise the system.
The information gathered still remains intact even if malware use rootkit
techniques to hide its activities. Due to requirements on user privacy, the
information gathered could be coarse and simple. We show that such sim-
ple information is already useful in several experimental evaluations. For
instance, binary user presence indicating at a workstation can help to de-
tect DDoS zombie attacks and illegal email spam. Our framework takes
advantage of the growing popularity of multimodal sensors and physical
security information management systems. Trends in sensor costs sug-
gest that it will be cost-effective in the near future.

Keywords: intrusion detection, spam, sensors, access control, host
security.

1 Introduction

Securing computers against malware is increasingly difficult today. Anecdotes
abound that the survival time of an unpatched PC running Windows XP con-
nected to the Internet is in the order of minutes [1,2]. The recent Conficker
worm [3] is estimated to have infected 6% of computers on the Internet.

Often the goal of the attackers is to infect a host to make it part of a botnet.
The malware may be mostly dormant until it is activated, as such, it can be
difficult to detect that the host is infected. The detection problem is made worse

� Chang is supported by Grant R-252-000-413-232 from TDSI.
�� Wu and Yap are supported by Grant R-394-000-037-422 from DRTech.

� � � This work was done during internship at the National University of Singapore.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 362–379, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Enhancing Host Security Using External Environment Sensors 363

since malware can exploit rootkit techniques to hide its presence and also any
activity. For example, the Mebroot rootkit infects the master boot record of the
hard disk allowing it to infect the Windows kernel during boot. After that it
hides the changes to the master boot record to make it difficult for antivirus
software to detect its presence.

Most security mechanisms tend to be host-based, and are often part of the
operating system or interact with it. A primary exception is network-based se-
curity mechanisms which analyze network data and traffic. While there are some
successes in detecting the presence or activity of malware by network-based se-
curity mechanisms, there are many other sources of information outside the host
that are also useful for improving detection.

In this paper, we propose fusing environment information in decision mak-
ing so as to enhance security. Our framework is designed to protect stationary
machines (e.g. workstation) which users work on rather than servers controlled
remotely or mobile laptops. We take advantage of the growth in pervasive com-
puting and sensor technology providing relatively cheap sensors which can take
a variety of physical measurements. We use the sensors in a variety of ways. As
a measurement of how a resource is being used on the host, e.g. correlating CPU
usage (the resource) with CPU temperature (the sensor measurement). The sen-
sors allow us to determine the presence or absence of the user on the host and
physical user activity such as keyboard usage. We remark that “user” means
the human using the host and although there may be more than one user, we
simply say user. Although it is possible to obtain comprehensive user activity
information, e.g. user identity and key strokes from surveillance cameras, due
to concerns of user privacy, we generally only consider sensors that only pro-
vide binary information like the presence of a user or keyboard activity or other
coarse-grained indirect data. Another source of environment information could
be from physical security information management systems. Such systems are
already in-place in many organizations and could provide relevant environment
information whereby user activities can be derived, e.g. the door entry control
system gives evidence that a particular user is in the machine room.

One usage of environment information is in enhancing IDS performance by
providing an external source that is difficult to be accessed or compromised by
malwares or intruders. The results of an environment sensing based malware de-
tector can be correlated with alerts from an IDS to reduce false positives. While
existing IDS may incorporate network traffic information in gateways which are
external to the host, the difference is that we make further use of other tamper-
proof sensors and fuse it with user presence and activity. The following example
shows the difference from the network intrusion problem. Consider the case of a
single email being sent. At the network level, there is insufficient information to
be able to identify whether it is a spam email generated by malware. Whereas,
in our framework, suppose that the email is sent in the absence of the user and
user activity, we can conclude that the email has been sent automatically. Fur-
thermore, in the absence of any additional information, it is reasonable for a
default rule to classify this email as spam activity. In this paper, we give some

364 E.-C. Chang et al.

application scenarios of malware detection – detecting when a botnet is using
the host for email spam, distributed denial of service (DDoS) attack, and as a
compute engine for offline dictionary attacks.

Environment information is also useful in other security applications. It in-
creases the expressivity of access control and rate control policies by requiring
privileged actions on a host to be correlated with physical user presence and
physical activity. This prevents remote attacks which escalate privileges, e.g. en-
force privileged actions to be only be performed if the administrator is present
and using the console.

One advantage of our framework is that we are able to give reliable security
guarantees even when the host is compromised. Without the fusion of sensor
data from the environment surrounding the host, the attacker can simply hide
inside the host or erase traces of an attack or intrusion. Some malware may even
be able to shut down IDSs deployed in the host. A limitation of our framework is
that the sensor data obtained is coarse grained and possibly noisy. Nevertheless,
our evaluations show such coarse data is already useful in identifying certain
mismatches between the host’s and user’s physical activities.

The rest of this paper is organized as follows. Sec. 2 introduces the framework
of integrating the data from external sources to the access control or intru-
sion detection logic. We apply the framework to malware detection in Sec. 3
to demonstrate that information external to the host enhances the detection of
malware activity. The framework is extended to rate and access control in Sec.
4. Related work is discussed in Sec. 5 and Sec. 6 concludes.

2 The Framework

Fig. 1 illustrates the relationship among different entities in our framework. The
host considered in this paper is a stationary computer which typically includes
keyboard, mouse, hard-disk, CPU, monitor, etc., and is operated through key-
board and mouse. Under this framework, users are persons who are directly ac-
cessing the computing resources. To access the computing resources, a user needs
to be in the proximity of the host and interacting with it directly through the
keyboard, mouse and display. Alternatively, users or attackers could be access-
ing the host remotely through a network connection. All network traffic in and
out of the host is channeled through some routers. We consider all information
processed and stored in the host as internal information. Potentially, internal
information can be manipulated by an adversary if the host is compromised. We
are more interested in the external information. In general, we call sensors in-
stalled outside the host external sensors, and the information gathered external
information. External sensors could be an infrared sensor detecting whether a
user is sitting in-front of the host’s display, or a sensor installed in the router
logging traffic information. The infra-red sensor is an example of an environment
sensor gathering information from the physical environment, instead of the com-
puted data from the host or routers. Information gathered can be classified into
two types:

Enhancing Host Security Using External Environment Sensors 365

1. Information obtained from measuring computing resource usages, e.g. a tem-
perature sensor measuring temperature near the motherboard (correspond-
ing to CPU load), and a microphone to listen to sounds from the disk.

2. Information measuring user’s activities, e.g. infrared sensors to detect user
presence, pressure sensor to measure keyboard typing, etc. One method uses
infra-red in a similar way as the common shop entrance alarm system. A
reliable method is to derive the user presence from video captured by camera
[14,15] but that may raise privacy concerns. However, video privacy was
found to be an acceptable tradeoff to users [15].

Although we do not exclude the use of surveillance cameras as the environment
sensors in our framework, the issue of user privacy must be taken into consider-
ation in an implementation of the framework. A microphone not only can detect
keyboard activity, but it can also record conversation among the users. A camera
recording the user or display can also violate workplace privacy policies. Hence,
we mainly consider binary information on user activities, such as whether a user
is present, or detecting keyboard activities. Such information can be captured
by sensors that are designed to give binary output or other coarse information,
which alleviates privacy concerns, e.g. an infra-red sensor that detects user pres-
ence, or a camera that only outputs the detection outcomes.

All information gathered is channeled to a monitor which makes decisions.
External sensors should communicate to the monitor securely to ensure the host
is unable to compromise its integrity, authenticity and confidentiality. One solu-
tion is to have a separate private network for the sensors, e.g. a wireless sensor
network with the external sensors as the nodes. Alternatively, the communi-
cation can still be tunneled through the host using cryptographic means. The
privacy requirements and the need for a separate private network fit well with
wireless sensor networks equipped with multi-modality sensors. There are many
commercial wireless multi-sensor boards which fit our purposes, e.g. SBT80 from
the EasySen [4] contains a number of sensors including infra-red, temperature
and acoustic.

Besides wireless sensor networks, many physical security systems can provide
relevant information for our monitor. For example, the door entry control system

Sensors

user

Host

Physical environment

Monitor
Routers

Internet

control/feedback

information flow

Fig. 1. The components of the framework

366 E.-C. Chang et al.

can give information about who gained access to a machine room, while surveil-
lance cameras could reliably detect the presence of users near a console or other
devices like scanner and printer. Although physical security systems are costly,
some organizations could already have such systems in-place, together with a
management system that is able to collect and process the data.

It is possible for an attacker to gain information similar to the sensory data,
if the host is compromised, e.g. CPU temperature can be collected by the host
and user presence can be inferred from keyboard or mouse events. Nevertheless,
the CPU temperature and user presence information collected by sensors are
still authentic and not subject to tampering.

3 Applying to Malware Detection

We now apply our framework to malware detection and give three malware detec-
tion implementations which detect email spamming, DDoS attack and password
cracking.

A simple setup is to use two kinds of environment sensors. One detects whether
the user is using the host, i.e. sitting at the machine. This can be done in a
variety of ways, ranging from motion sensors to infrared sensors to video cameras.
Another sensor records the temperature near the CPU. The first class of sensor
records user activities while the second class measures the usage of computing
resources. Network traffic of the host is also monitored at the router.

In our experiments, the malicious activities are carried out by a modified
Agobot worm (also known as Gaobot). The worm sends spam email to other
email accounts using the SMTP protocol, carries out a DDoS attack by flooding
a target with UDP packets, and consumes CPU resources on the host to perform
password cracking by hashing a dictionary of possible passwords.

The basic idea behind our detection rule is simple: the patterns of legitimate
resource usage when the user is interacting with the host, is different from that
when no user is present. If malware does not have the user presence information,
its behavior will not be correlated with the user presence. We divide the time into
intervals, in each interval, the user is either present or absent. The changepoint
detection algorithm [5,6] is then applied to each interval to detect malicious
activity. Table 1 gives an overview of the detection rules.

Table 1. Overview of malware detection rules

Malware Threat Rules for triggering alarms

Email Spammer (i) No user is present, and at least one email is sent; or
(ii) A user is present, and changepoint detection decides that

the cumulative sum of email sent exceeds a threshold.

DDoS Zombie Changepoint detection detects the cumulative sum of the net
outgoing packet rate exceeds thresholds for user present and absent

Password Cracker Changepoint detection detects the cumulative sum of
CPU temperature exceeds a certain threshold when user is absent

Enhancing Host Security Using External Environment Sensors 367

Table 2. Detection time of different spam worms. (Detection threshold N = 120 emails
in t = 6 hours at user presence, and N = 1 during user absence.)

Spam worm User present (min) User absent (sec)

Storm 6.1 4

Rustock 3.6 3

Srizbi 0.07 < 1

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5 6 7 8 9 10 11

E
m

ai
l r

at
e

Time (minute)

False alarms

Missed detections

User email
Spam

Detection threshold

Fig. 2. False detections caused by email
rate based spam detection

 1

 2

 0 4 8 12 16 20 24

E
m

ai
l r

at
e

pe
r

m
in

ut
e

Time in a day (hour)

Outgoing email rate
User present

Fig. 3. Samples of user email rate

3.1 Changepoint Detection

The problem of changepoint detection [6] is to detect changes from normal be-
havior. We use a customized version of CuSum [7] to do such detection. In our
model, behaviors are described as a real-valued time series of xn. Normal be-
havior is estimated to have a value a or smaller. To detect an increase from the
normal behavior, the following cumulative sum Sn is computed.{

S0 = 0,

Sn = Sn−1 + max(0, xn − a), n ≥ 1,

where xn is the observation at time n from the sampling process. The value of
a can be determined by the system administrator, or by observing samples of
normal behaviors to select the smallest acceptable normal upper bound of xn.
If Sn exceeds the threshold N , a change point is detected at time n and the
alarm will be triggered. Note that a can be exceeded when normal behavior is
violated, so a is a lower detection threshold of abnormal behavior, Sn is the actual
signal and N is the changepoint detection threshold. CuSum can be shown to be
optimal under certain conditions [6]. As it is simple and efficient, it is suitable
for real-time processing of streaming sensor data.

We use spam detection to show the difference between rate based detection
and changepoint detection. Fig. 2 illustrates situations where rate based detec-
tion causes false positives and false negatives. Occasionally, a user email rate

368 E.-C. Chang et al.

exceeds the spam detection threshold, causing false alarms, even though the
high rate is a transient. On the other hand, spam malware can control its email
rate to just below the threshold, by spreading the operation over a long period
of time. Rate based spam detection do not report such cases correctly, while
changepoint detection can. With changepoint detection, we can set the upper
bound of normal email rate as a baseline, e.g. one email per minute, then ac-
cumulate the excess amount of emails over a time period. Thus, it computes
within a time interval, the area in the graph enclosed below by the baseline and
bounded above by the email rate curve. With changepoint detection, occasional
high email rates do not cause false alarms, and constant medium email rates
cannot evade detection.

Changepoint detection relies on empirical or administrative thresholds, ad-
vanced attackers may gain information on user presence and adapt their behav-
ior accordingly. Our mechanism cannot fully stop such malware, but it effectively
mitigates the malicious activity.

3.2 Experimental Setup

Our experimental setup consists of one router and several hosts connected by
100Mbps connections to the Internet through the router. First, we gather nor-
mal data from three uncompromised hosts for a period of 12 days. Next, we
“compromise” one host by installing the modified Agobot on it and control it
from another machine. The compromised host carries out different activities
on demand: generate spam email, start a DDoS attack and perform password
cracking. More experimental details are described in the relevant section.

Three types of sensor data are collected on the hosts: (i) user presence; (ii) CPU
temperature; and (iii) network traffic. User presence is represented by a binary-
valued time series, indicating whether the user is sitting at the host. We use in-
frared sensors to detect user presence. This is more reliable compared to using
acoustic sensors to detect keyboard typing or mouse clicks. One reason is that a
user can be simply looking at the monitor. Another reason is that malware can
fool the sensor by playing back clicks. The CPU temperature is represented by a
real-valued time series measuring temperature at the processor, which correlates
to CPU load. In principle, the CPU temperature should be measured with a sen-
sor between the CPU heat sink and fan, but we had difficulty in doing so with
our sensor. To prove the concept, we used the CPU temperature obtained from
the host’s operating system as a proxy.1 We remark that the sensor data should
be measured and sent to the monitor via a secure channel, and thus our tempera-
ture readings is only a simulation to simplify the experiments. For network traffic,
headers of all packets and partial payload passing through the router are logged.

3.3 Spam Detection

Spam can be sent out at different rates. Some worms like Storm and Rustock
have been reported to send at lowish rates of 20 and 33 emails/min while others
1 We use the system call IDebugDataSpaces–>ReadMsr() in Windows.

Enhancing Host Security Using External Environment Sensors 369

like Srizbi’s rate is 1800 emails/min [12]. While 20 emails/min is probably too
high for humans, malware could also send at lower rates. We remark that humans
might also send email at high rate, e.g. when using a script to send emails to a
group of recipients.

Our experiment is meant to show reliable spam detection when data from
external sensors is included. We also experiment on different modes of sending
email, namely, SMTP-based clients and also webmail clients.

Spam Detection Using the Framework. To detect bots that send spam,
we use the following rules: (i) when the user is absent, any outgoing email flags
a spamming activity; and (ii) when the user is present, changepoint detection
is applied on the number of emails sent. Essentially, if over N emails are sent
within a time interval of length t, the algorithm flags it as spamming activity,
where N and t are the two tunable parameters.

The first rule relies on the fact that emails are usually directly sent to the
mail servers when the user hits send. Any scheduled delay in delivery is based on
the server itself. The actual value of N and t in the second rule can be learned
from the normal traffic for each host. Although the rules are simple, no matter
how slow the spam rate is, we can detect spam when the user is absent. So if a
stealthy spam program sends out only a single email at night, this could slip out
unnoticed by normal email rate based spam detection while we would detect it.

We apply CuSum to detect changes in the amount of emails sent when the user
is present. We incorporate a limit on the accumulation time t, and set a = 0,
N = 120 and t = 6 hours. The effect is that whenever there is an outgoing email,
we accumulate the count, and no more than N = 120 emails can be sent in 6
hours. If the accumulated sum exceeds 120, we raise a spam alarm for the host. The
allowable average email rate is three minutes per email. It is high for a human user,
since users do not consistently send an email every 3 minutes for 6 hours. When
user is absent, we set N = 1, meaning any outgoing email indicates a spam.

Experimental Results on Spammer Detection. The detection of outgo-
ing email is done by matching packets with a list of signatures. Table 3 shows
the signatures of email sent using SMTP and webmail. Email sent using SMTP
protocol is relatively easy to detect, since an SMTP command MAIL indicates
the user is submitting email. Webmail interfaces are more complex – Table 3
summarises how we identify emails sent using Hotmail, Gmail, NetEase, and
SquirrelMail. The destination IP is first matched with a set of possible known
servers. Next, we examine the first few bytes of packet payload to look for HTTP
request method POST. Existence of such a method indicates that the client could
be submitting email, logging into the mail server, making a request to retrieve
email, requesting for the email listing, or requesting housekeeping operations.
To determine whether the client is sending an email, different checks are car-
ried out for different mail services. For Hotmail, we look for URI that starts
with mail/SendMessageLight.aspx?. For NetEase, the request URI ends with
&func=mbox:compose. For Gmail, the request URI contains &view=up&act=sm.2

2 Gmail uses HTTPS from late Jan. 2010, but our experiments were performed earlier.

370 E.-C. Chang et al.

Table 3. Rules for email detection

SMTP the SMTP request command is MAIL.

The destination IP is in the set of hotmail.com server IPs,
hotmail.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI starts with /mail/SendMessageLight.aspx?

The destination IP is in the set of netease.com server IPs,
netease.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI ends with &func=mbox:compose

The destination IP is in the set of gmail.com server IPs,
gmail.com the protocol is HTTP, the HTTP request method is POST, and

the HTTP request URI contains &view=up&act=sm

SquirrelMail A particular HTTP request immediately after an email is sent.

To perform these checks, we need to read 33 bytes into the HTTP message for
Hotmail, 64 bytes for NetEase and 80 bytes for Gmail. Hence during packet cap-
tures, the packet payload needs to be logged partially. Detecting SquirrelMail
is less straightforward as the payload is encrypted. We found that immediately
after an email is sent, there is an HTTP Get request in plain text of a large size
to fetch the listing of the current folder. The signatures enable us to identify the
sending of email reliably. Compared to a typical spam filter that inspects the
email content, our method has less privacy concerns.

Fig. 3 shows the typical email activity of a user in a day. About 10 to 20
emails are sent daily. It shows that our hypothesis that all emails are sent with
the user present is reasonable.

In our experiment, spam is sent from the monitored host using the modified
Agobot. We tested the detection of spam at rates corresponding to Srizbi, Rus-
tock and Storm worms. Table 2 shows the detection time when the user is present
and absent. Note that threshold N is set on the parameter of the accumulated
email amount. It is easy to see the detection time is inversely proportional to
the spam rate. Since the spam rate of Srizbi is much higher than Rustock or
Storm, it takes least time to detect. When the user is present, the detection time
of Srizbi is less than 0.1 minute and about 4 and 6 minutes for Rustock and
Storm respectively. When the user is absent, all three spam worms are detected
instantly, because the detection threshold N = 1 at user absence.

3.4 Detecting DDoS Zombie Attacks

This experiment deals with detecting zombies which carry out UDP packet flood-
ing for a DDos attack. In this attack, the compromised host sends out UDP
packets to a victim to consume the victim’s network bandwidth. When the user
is absent, legitimate network traffic rate is low and thus we can potentially de-
tect the malicious UDP packet flood by observing the traffic rate. However, there
could be background processes that generate network traffic, e.g. automated up-
dates. Another scenario in our experiment is a legitimate P2P program. The
P2P program constantly generates network traffic even when the user is absent.

Enhancing Host Security Using External Environment Sensors 371

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
 o

f f
lo

w
s

(%
)

Packet rate

Outgoing packet rate
Net outgoing packet rate

Fig. 4. Difference in the outgoing packet rate and the net outgoing packet rate of 2351
active TCP flows during user presence

Hence, it is desirable to derive another feature, instead of the overall rate, to
distinguish UDP flood.

We observe that the UDP flood generates one-way traffic, whereas typical
legitimate processes generate two-way traffic. This motivates us to consider the
net outgoing packet rate pnet,

pnet = max(pout − pin, 0),

where pout and pin are the outgoing and incoming packet rate respectively. We
apply CuSum on pnet, but with a different threshold a when the user is absent
and present.

In addition to pnet, we also monitor the ratio r of outgoing packets that are
not responded to,

r = pnet/pout.

We have 0 ≤ r ≤ 1 where r = 1 if the flow has only outgoing packets; and r = 0
if pout ≤ pin. The excess of pnet over a is accumulated only if r ≈ 1.

Fig. 4 compares the maximum net outgoing packet rate pnet and the outgoing
packet rate pout of 2,351 non-attack TCP flows, observed in 10 minutes. A flow
is identified by (local IP, remote IP, transport protocol) – port numbers are not
differentiated as attackers may open multiple ports to flood the same victim.
Over 60% of the flows have the maximum pout > 10 packets a minute; whereas
less than 5% of the flows have the maximum pnet > 10. In some flow, maximum
pout is 2,443 packets per minute, but the maximum pnet is as low as 10 packets.

Fig. 5 shows the distribution of pnet for 13,620 flows. Fig. 5(a) shows the net
outgoing packet rate is close to 0 for most flows. When the user is present, 35% of
the flows have pnet = 0; and 80% flows have pnet less than 10 packets a minute.
When the user is absent, 90% of the flows have pnet = 0. Fig. 5(b) shows that
the difference in pnet when user is present and absent, it can be as large as 600
for some flows, so different upper bounds of normal pnet should be used for user
presence and absence and for each flow.

From Fig. 5(a), initializing the upper bound of normal pnet to be a = 60
packets per minute is sufficient for most flows. Parameter a can be lowered by

372 E.-C. Chang et al.

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f f
lo

w
s

(%
)

pnet (packets per minute)

User present
User absent

a0 = 60

(a) Distribution of flow net outgoing
packet rates

 0

 20

 40

 60

 80

 100

 1 10 100

C
D

F
 o

f f
lo

w
s

(%
)

Difference in pnet

(b) Difference in the flow rates when user
is present and absent

Fig. 5. Distribution of the maximum net outgoing packet rate pnet with 13,620 TCP
and UDP flows, each flow is observed for 10 minutes during user presence and absence

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300 350 400

N
et

 o
ut

go
in

g
pa

ck
et

 r
at

e

Time (minute)

Attack starts

Attack detected

Continuous attack
Increasing attack
Fluctuating attack

Flow threshold
User present

Fig. 6. Net outgoing packet rate of the
DDoS attack flow in different attack
patterns

 32

 34

 36

 38

 40

 42

 44

 46

 48

 0 10 20 30 40 50 60 70 80 90 100

C
P

U
 T

em
pe

ra
tu

re

CPU Load

Fig. 7. Correlation of CPU load and CPU
temperature

examining the online traffic. To accumulate the excess of pnet over a, r must be
close to 1 and we set it at 0.95. The threshold to trigger an alarm is N = 800
packets, accumulated over 20 minutes. It ensures an attack flow can be detected
if at least 2 UDP packets are sent a second on average.

Some non-attack flows have large net outgoing packet rate. However, they do
not cause false alarms, because the outgoing packets are responded to, or r is not
close to 1. In terms of absolute value, pnet = 1278 is high, but its pout = 2, 812,
making r = 0.45, so there is 1 response in about 2 packets, the ratio is reasonable
and hence the high net outgoing packet rate is also accepted.

Fig. 6 shows the net outgoing packet rate pnet of the attack flow under 3
different attack scenarios. The upper bound a of normal pnet is 10 and 2 packets
a minute for user present and absent respectively. These bounds are determined
from analyzing the training data of the flow. The attack starts at the 125th
minute. For the continuous attack, pnet sharply increases to around 600. After

Enhancing Host Security Using External Environment Sensors 373

 34

 35

 36

 37

 38

 39

 40

 41

 42

 43

 0 20000 40000 60000 80000 100000 120000 14000

C
P

U
 te

m
pe

ra
tu

re

Time in seconds

Fig. 8. CPU temperature variation during user absence and presence. User is absent
from 0 to 64,000 second; and present from 64,000 second onwards. The vertical line
separates user absence from presence.

1.36 minutes, the alarm is triggered. The increasing rate attack increases its
attack intensity very slowly to delay detection. This attack might not be detected
if the detector adapts to the flow rate in near real time. Our approach detects the
attack in about 15 minutes, long before it reaches its peak rate. The fluctuating
attack in Fig. 6 constrains the attack intensity, and releases attack traffic in
pulses. This is to avoid detection if average traffic rate or peak rate is used by
the detector. Our approach detects the fluctuating attack within 3 minutes.

3.5 Detecting Misuse of Compute Resources

Bots are often recruited to invert cryptographic functions to break passwords.
Inverting such functions requires extensive computations which are distributed
to the bots. To detect such activities, we look for increases in the CPU load after
user has been absent for a while. As CPU load is internal to the host, we rely
on CPU temperature as a measure of the CPU load.

 35

 40

 45

 50

 55

 60

 0 2000 4000 6000 8000 10000

C
P

U
 te

m
pe

ra
tu

re

Time in seconds

Game starts
Matlab starts

Cracker starts

User leave
Threshold

Fig. 9. CPU temperature variation during
various activities

 36

 38

 40

 42

 44

 46

 48

 50

 0 120 240 360 480 600 720 840 960 1080 1200

C
P

U
 te

m
pe

ra
tu

re

Time in seconds

100%
80%
60%
40%
20%

start (t=180)
end (t=780)

Fig. 10. Correlation of attack intensity
and CPU temperature

374 E.-C. Chang et al.

Fig. 7 shows the correlation between CPU load and temperature. The correla-
tion is good but it includes fluctuation and noise. Fig. 8 shows the temperature
when a user is present and absent. Note when the user is absent, the temperature
is around 37◦C, and varies less. We measured the temperature during automated
software update and found the temperature increase of 2-3◦.

We employ CuSum to detect the increase in CPU temperature. Fig. 8 shows
normal temperature variations during user presence and absence. From the ob-
servation of Fig. 8, we set the upper bound of system idle temperature to be
a = 38.5◦C. We set the threshold for the accumulated increase in temperature
as N = 2400 in 30 minutes. This threshold N is chosen to allow software update
that increases the CPU temperature by 2◦and lasts for 20 minutes. We set a
grace period of g = 10 minutes at the transition from user presence to absence,
that is, if the changepoint is detected within 10 minutes after a user leaves, the
alarm is not activated.

Fig. 9 shows the temperature during various computation tasks. The change-
points in temperature for playing games and running matlab are detected 10.4
minutes and 5.2 minutes respectively after they start. Since the user is present
or just left when the changepoint occurs, the activities are considered initiated
by the user and accepted as normal. The password cracker activity triggers an
alarm 4.5 minutes after it starts. Since the changepoint is detected when user is
absent, it is considered as malicious computation. If the malicious computation
executes during user presence, it can be noted by the user.

We also conducted an experiment which varies the intensity of the CPU usage.
This investigates if the CPU usage can be detected when the malware throttles
its computation at a lower rate. CPU usage is controlled as follows: for each
one-second interval, the bot computes at full speed for x seconds and then sleep
for 1 − x seconds, where x < 1. We denote the CPU usage to be 100x% in Fig.
10. We carry out the attack for 600 seconds (starts at 180 seconds and ends
at 780 seconds). Fig. 9 shows the temperature under intensity variation. Note
that after the attacks stop, the temperature gradually returns to normal. For
the password computation running at 100% usage, we detect the change after
about 4.5 minutes. For the computation at 20% usage, we can also detect the
change if the computation lasts for more than 20 minutes. To evade detection,
the malicious computation can only further reduce its CPU usage or shorten
its execution time. Thus, our system effectively limits the amount of malicious
computation.

We need to handle carefully the non-malicious programs that commonly run
when no user is present. Besides system auto-updates, these programs include
nightly backup, nightly virus scan, remote desktop and user scheduled compu-
tation. Backup and virus scan are regular tasks. Their resource consumption
can be profiled, in terms of the start time, duration, and the increase in CPU
temperature. Based on our measurement, system backup only increases the CPU
temperature by 1-3◦. Virus scan usually increases the CPU temperature by 2-3◦.
These host profiles are basis of a whitelist kept by the monitor to suppress false
alarms. Even if attacker tries to hide the malware execution by running it at

Enhancing Host Security Using External Environment Sensors 375

the same time as these tasks, the excess increase in temperature or duration will
still trigger the alarm.

User scheduled computations may cause irregular behavior. As the execution
of scheduled computation can be planned ahead, the user simply declares in
advance to the monitor the estimated process start time, duration and CPU load
(converted to temperature increases by the monitor). The monitor suppresses
any false alarm within the specified resource consumption. The user is advised
to give a conservative estimation, for it is better for the user to intervene if excess
resources are consumed, than allowing the attacker to free ride.

4 Application to Access Control and Rate Control

Here we investigate how environment information can be useful in controlling
and allocating resources. A security policy may require administrators to be
physically inside the machine room to access server consoles and administrative
tools. In order to mitigate malware from sending spam email, we could implement
rate control in the router or the mail server, and the rate limit is based on user
presence. In both cases, environment information is used as a condition to access
certain resources. Note that the first case is on access control, while the second
is on rate control.

4.1 Access Control

Our framework can be used to implement location-based access control. One
location-based access control scheme was proposed by Ardagna et al. [8] to
restrict access to certain resources based on physical location of the user. In
their work, the physical location is obtained from mobile devices, such as mobile
phones carried by users. Our framework also implements location-based access
control, but in a different way. Their work adopts a user-centric approach where
the device is attached to the user and user’s location is measured in order to fig-
ure out which resources can be accessed. We adopt a resource-centric approach
where the device is attached to the resource and user presence is observed near
the resource in order to decide whether to grant the access. Both approaches
have advantages and disadvantages.

Our access control policy not only incorporates user presence information but
also user activity information. For example, the user activity information can be
“the user has typed some keys”. Enforcement is implemented both on the host
and router depending on the type of the resource. Enforcement implemented on
the host implicitly assumes that malware is not in control of the host and the host
decides the access based on environmental information gathered by the monitor,
but the malware cannot affect access control policies at the environment level.
Here we give two access control policies as examples.

1. The user can execute the /usr/bin/sudo program only if he is sitting at
the host. This policy is used to mitigate the problem of remote attacks - it
requires that there is a human present before the sudo operation is allowed.

376 E.-C. Chang et al.

This policy has to be enforced on the host. A remote attacker who does not
yet have control of the host would be prevented from performing actions
which could be used to infect the operating system.

2. The user can send email only if he is sitting at the computer and has mouse
or keyboard activity. This policy is used to prevent malware from sending
email while the user is away. Since user activity is enforced in the policy, it
also prevents sending email while the user is idle, e.g. watching a movie. The
intuition is that the user must have performed some typing or mouse action in
order to send an email. Unlike user presence, which can be thought of as being
a continuous signal, mouse and keyboard input are discrete events which
may happen at time points which do not overlap with the email sending
time interval. Thus, the precise meaning of the policy is “An email can be
sent at time t if user presence is observed at that t and there is mouse or
keyboard input between [t−Δ, t+Δ]”. This policy is enforced in the router
or the mail server instead of the host and thus provides enforcement even
when the host is compromised.

4.2 Rate Control

Previously we showed that abnormal resource usage when the user is absent
can be easily detected under several scenarios. This can be easily extended to
controlling the resource usage rate in the case of activities involving external
resources. Two natural scenarios of external rate control are:

– Shaping Network Traffic
To mitigate computers being used as bots to perform DDoS attacks, router
can shape network traffic based on user presence information. By limiting the
traffic on flows, this becomes a form of inverse quality of service, providing
reduced quality when the user is not present. If P2P programs are being
used, this would save some network bandwidth, e.g. if the host uses Skype
and becomes a Skype supernode, it could lose its supernode status under
the reduced network flow.

– Sending Email
Similarly, the emails could be simply denied when the user is absent. If the
threshold is above zero, then for both webmail and SMTP, the router can
simply rate limit the protocol. Alternatively for an SMTP server, it could
quarantine email beyond the threshold. In both cases, outgoing spam emails
are rate limited possibly to zero.

The email rate can also be rate limited when the user is present. The
idea is that email is based on typing and/or mouse clicks. This data can also
be recorded using environmental sensors. The email rate can then be based
on a function of the detected keystrokes and/or mouse clicks.

The framework can make resource rate limiting policies more flexible and usable.
The idea is to have feedback if a usage is too high for a resource. External
sensors can then be used as a secure channel to request a higher resource rate.

Enhancing Host Security Using External Environment Sensors 377

For example, a monitor on the host can display the resource usage and warn
the user if he is reaching the limit. The user can have something as simple as a
button which is pressed to function as the secure request channel to obtain more
network bandwidth or more emails. Notice that such a policy cannot be done
securely without the help of external environment information.

In the access and rate control application discussed above, to control the
resource utilization, essentially we need to verify whether an entity is “hu-
man”. Instead of using external environment to infer user presence, alternatively,
CAPTCHA [9] or graphical Turing test could be implemented to verify that the
user is human. Using the environment information has the advantage that the
users are not interrupted by the challenges issued by the graphical Turing test.

5 Related Work

If we consider a computer host to include the host, the user channel and the
network channel, then host security can be divided into: (i) software security,
which ensures the software running in the host is authentic, e.g. antivirus [19],
system call filtering [16] and binary authentication [17]; (ii) user security, which
ensures the user is authentic, e.g. password/biometric authentication, physical
perimeters and surveillance camera monitoring; and (iii) network security, which
ensures the network communication is authentic, e.g. personal firewalls [18]. Our
approach to enhance host security is substantially different from the existing
designs in three aspects. Firstly, the model we propose fuses data from a few
channels of external environment sensors to monitor the host activity. Secondly,
as our model does not require controlling or modifying the host OS or software,
it is able to provide some security even when the host is compromised. Thirdly,
our system detects outbound or on-host malware execution, which complements
intrusion detection.

There are a few works which correlates information from different channels
to improve host security. The system BINDER [10] correlates user events (user
input), process events (process creation and process termination), and network
events (connection request, data arrival and domain name lookup) to detect mal-
ware. Both our malware detection system and BINDER correlate user presence
information and system behaviour to detect malware. BINDER uses information
collected by the user’s machine, which potentially could be manipulated by the
compromised host.

The systems proposed by Gu et al. [11] and Yen et al. [13] detect botnets
by analyzing and correlating network traces. The two systems and our malware
detection system use information from the network router rather than the host
in question so as to be able to deal with the case when the host is compromised
and gives false information. The difference with our malware detection system
is that we have user presence and activity information in addition to network
information.

Kumar et al. proposed a system [14] which continuously monitors user’s bio-
metric identity and locks up the computer if it cannot detect the correct user.

378 E.-C. Chang et al.

Both their system and our access control system use physical user information
to provide additional factor for authentication. There are two main differences
between the two. Firstly, our system only detects user presence information,
while their system detects user’s biometric information which is much stronger
but gives less privacy. Secondly, their system runs entirely in the user’s ma-
chine, thus it cannot guarantee the authentication once the machine has been
compromised.

Location-based access control (LBAC) has been actively researched on wire-
less networks, e.g. [20]. The model in LBAC assumes user devices are mobile,
their locations are tracked for service continuity, or verified before granting ac-
cess. The problem we address is different in that we are not dealing with mobile
devices, instead our focus is on utilizing a combination of environment data to
enhance security, such as to detect malware on the host and to regulate the usage
of resources by the host.

6 Conclusion

In this paper, we proposed a framework that incorporates environment infor-
mation in securing host computers in a few ways: by using the environment
information as an additional source of information for malware detection, or by
integrating the environment information with existing conditions in rate-control
mechanisms and access control policies. We argued that, since the sensors are
“external” with respect to the host, they are difficult to be accessed and tam-
pered by a compromised host. Furthermore, by investigating several applica-
tions, we showed that the simple and coarse information on user activities and
resource usages is sufficient to provide good performance in malware detection,
and is useful in expressing certain rate-control and access control policies. We
have also identified a few important requirements of the sensors, in particular,
the concerns of user-privacy and the need of a secure channel. Thus, we have
proposed a simple and effective framework for security enhancement which is
arguably safe against compromise by attackers.

The framework also takes advantage of the growing popularity of pervasive
computing and sensor networks. As the trend in cost of wireless multi-modality
sensors is decreasing, applications of our framework are feasible for cost-effective
deployment in the near future.

References

1. The Myth of The Four-minute Windows Survival Time,
http://www.edbott.com/weblog/?p=2071

2. Unpatched PC ’Survival Time’ Just 16 Minutes,
http://www.informationweek.com/news/

showArticle.jhtml?articleID=29106061

3. Conficker, http://en.wikipedia.org/wiki/Conficker
4. EasySen SBT80 Product Page, http://www.easysen.com/SBT80.htm

http://www.edbott.com/weblog/?p=2071
http://www.informationweek.com/news/showArticle.jhtml?articleID=29106061
http://www.informationweek.com/news/showArticle.jhtml?articleID=29106061
http://en.wikipedia.org/wiki/Conficker
http://www.easysen.com/SBT80.htm

Enhancing Host Security Using External Environment Sensors 379

5. Wang, H., Zhang, D., Shin, K.G.: Detecting SYN Flooding Attacks. In: IEEE
InfoCom (2002)

6. Basseville, M., Nikiforov, I.V.: Detection of Abrupt Changes: Theory and Appli-
cation. Prentice-Hall, Englewood Cliffs (1993)

7. Page, E.S.: Continuous Inspection Schemes. Biometrika (1954)
8. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:

Supporting Location-Based Conditions in Access Control Policies. In: ACSAC
(2006)

9. Von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: CAPTCHA: Using hard AI
problems for security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656.
Springer, Heidelberg (2003)

10. Cui, W., Katz, R.H., Tan, W-.T.: Design and Implementation of an Extrusion-
based Break-In Detector for Personal Computers. In: ACSAC (2005)

11. Gu, G., Porras, P., Yegneswaran, V., Fong, M., Lee, W.: BotHunter: Detecting
Malware Infection Through IDS-Driven Dialog Correlation. In: USENIX Security
(2005)

12. John, J.P., Moshchuk, A., Gribble, S.D., Krishnamurthy, A.: Studying Spamming
Botnets Using Botlab. In: NSDI (2009)

13. Yen, T.-.F., Reiter, M.K.: Traffic Aggregation for Malware Detection. In: GI Intl.
Conf. on Detection of Intrusions and Malware, and Vulnerability Assessment (2008)

14. Kumar, S., Sim, T., Janakiraman, R., Zhang, S.: Using Continuous Biometric Ver-
ification to Protect Interactive Login Sessions. In: ACSAC (2005)

15. Kwang, G.K., Yap, R.H.C., Sim, T., Ramnath, R.: An Usability Study of Continous
Biometrics Authentication. In: IAPR/IEEE Intl. Conf. on Biometrics (2009)

16. Provos, N.: Improving Host Security with System Call Policies. In: USENIX Secu-
rity (2003)

17. Halim, F., Ramnath, R., Sufatrio Wu, Y., Yap, R.H.C.: A Lightweight Binary
Authentication System for Windows. In: IFIPTM (2008)

18. Ingham, K., Forrest, S.: A History and Survey of Network Firewalls. Tech. Rep.
TR-CS-2002-37, University of New Mexico Computer Science Department (2002)

19. Post, G., Kagan, A.: The Use and Effectiveness of Anti-Virus Software. Computers
& Security 17(7) (1998)

20. Ardagna, C.A., Cremonini, M., Damiani, E., di Vimercati, S.D.C., Samarati, P.:
Supporting Location-Based Conditions in Access Control Policies. In: ASIACCS
(2006)

	Enhancing Host Security Using External Environment Sensors
	Introduction
	The Framework
	Applying to Malware Detection
	Changepoint Detection
	Experimental Setup
	Spam Detection
	Detecting DDoS Zombie Attacks
	Detecting Misuse of Compute Resources

	Application to Access Control and Rate Control
	Access Control
	Rate Control

	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

