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Abstract. Many embedded systems have relatively strong security
requirements because they handle confidential data or support secure elec-
tronic transactions. A prototypical example are payment terminals. To
ensure that sensitive data such as cryptographic keys cannot leak, security-
critical parts of these systems are implemented as separate chips, andhence
physically isolated from other parts of the system.

But isolation can also be implemented in software. Higher-end com-
puting platforms are equipped with hardware support to facilitate the
implementation of virtual memory and virtual machine monitors. How-
ever many embedded systems lack such hardware features.

In this paper, we propose a design for a generic and very lightweight
hardware mechanism that can support an efficient implementation of
isolation for several subsystems that share the same processor and mem-
ory space. A prototypical application is the software implementation of
cryptographic support with strong assurance on the secrecy of keys, even
towards other code sharing the same processor and memory. Secure co-
habitation of code from different stakeholders on the same system is also
supported.
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1 Introduction

Many embedded systems, including for instance payment terminals and other
terminals supporting secure electronic transactions, have relatively strong secu-
rity requirements. In order to meet these requirements, security-critical parts
of these systems, like the cryptographic processor, are implemented as separate
chips, and hence physically isolated from other parts of the system [1,2,3,4].
This increases the assurance that sensitive data such as cryptographic keys can-
not leak.

But isolation can also be implemented in software. Many of the hardware
security features of today’s higher-end computing platforms – including mem-
ory protection hardware and hardware to support virtualization – were designed
to enable the software implementation of efficient isolation of components that
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share the computing platform. Based on these hardware building blocks, effi-
cient software implementations of virtual memory, virtual machine monitors or
hypervisors are feasible, and these in turn make it possible to have high assur-
ance isolation between several software components sharing the same physical
hardware [5,6,7,8].

Several trends in embedded system design make it interesting to investigate
to what extent such isolation mechanisms can play a role in secure embedded
systems.

First, the desire to minimize cost pushes towards the reuse of one single proces-
sor for tasks that were traditionally divided over physically separated hardware.
A prime example are the hardware security modules or cryptographic copro-
cessors mentioned above: the increased computational power of general purpose
processors combined with an increased support for high assurance isolation of
software components sharing the processor makes it feasible to design software-
based cryptographic coprocessors. Obviously, this raises security concerns that
need to be investigated. In particular, one would like to maintain the strong
assurance on key secrecy that separate hardware security modules provide.

Second, the co-location of different applications owned by different stakehold-
ers on the same embedded system makes it important to provide high-assurance
isolation between these applications. Prime examples are third-party applica-
tions on mobile phones, multi-application smartcards, or shared sensor networks.
While some of the security requirements of such multi-stakeholder embedded
platforms are similar to these of high-end multi-user computing platforms, there
are also essential differences, and hence it is necessary to re-evaluate and where
needed re-design the security mechanisms to provide secure isolation.

This paper proposes self-protecting modules (SPM): based on a minimal form
of hardware support for memory access control, we show how trusted subsys-
tems can share the same processor and memory space, while still maintaining
strong security properties including strong isolation guarantees between two such
subsystems, and high assurance on the confidentiality of subsystem-private data.

More specifically, the contributions of this paper are the following:

– a novel memory access control model, where access to memory locations can
also depend on the value of the program counter,

– based on this access control model, the design of self-protecting modules:
software modules that can provide strong security guarantees both for the
data they handle as well as for how they can be invoked by other modules,

– a proof sketch of the security of this design,
– and a discussion of several application examples.

The remainder of this paper is structured as follows: in the next Section the
threat model will be presented as well as the security properties provided. Sec-
tion 3 will present SPM’s in more detail including an overview, layout of an
SPM and the required hardware modifications. We also discuss a proof sketch of
the security properties of SPM’s. In Section 4 we discuss possible applications.
Finally we discuss related work and offer a conclusion.
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2 Problem Statement

2.1 Threat Model

We assume that an attacker has the ability to inject machine code of his choice
into the memory space of the system under attack. This is a realistic assump-
tion: there are several ways in which an attacker can achieve this. First, the
attacker can exploit a software vulnerability such as a buffer overflow in one of
the applications on the system, and perform a code injection attack [9,10].

Second, the attacker could be one of the stakeholders in a system where several
mutually distrusting stakeholders cohabit the same platform. Third, the attacker
may have compromised the software layer below (for instance the OS kernel).

We also assume that the attacker does not have the ability to perform a
physical attack: he can for instance not disconnect memory from the processor,
place probes on the memory bus, or perform a hard reset of the system. An
example of such an attack is discussed by Halderman [11]: memory chips con-
taining sensitive information are placed in a machine that is under total control
of the attacker, and the secrets can be extracted relatively easy. Such attacks
are not considered in this paper. If such physical attacks are an important con-
cern, the software-based implementation of security proposed in this paper is not
appropriate.

2.2 Security Properties

Under the threat model discussed above, we want to support the execution of
software modules that share the same memory address space guaranteeing the
following security properties:

– Restriction of entry points. Software modules can securely restrict how they
can be invoked. In other words, the entry points into the module can be
defined by the module provider. An attacker can not jump to an arbitrary
location within the module.

– Security of module data. Sensitive information, such as keys, managed by
the module can only be read or modified by code from the module.

– Authentication of modules. Modules have a secure mechanism of identifying
other modules in memory.

– Secure communication between modules. Modules can communicate efficiently
with other modules they have authenticated. Moreover, the integrity and con-
fidentiality of messages passed over this communication channel can be
assured.

– Minimal Trusted Computing Base (TCB). The correct and secure execution
of a module depends only on (1) the hardware, (2) a small part of the
boot process of the system (see Section 3.7), and (3) the correct behavior of
the code of the module itself and any third-party modules that it calls. In
particular, the operating system kernel is excluded from the TCB.

Note that we do not aim to protect a module against vulnerabilities in its own im-
plementation: if a module contains a logical fault (e.g. a faulty API design [12]),
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or an implementation-level vulnerability (e.g. a buffer overwrite [9], a buffer over-
read [13] or other low-level vulnerabilities [10]), then sensitive data may leak. We
only protect the module against attacks that are a consequence of malicious code
sharing the memory space of the module. Protection against vulnerabilities in the
module itself can be provided by other countermeasures [14].

Note also that we do not protect against denial-of-service: malicious code
running on the machine can go into an infinite loop, or can install any number of
additional modules thus exhausting CPU-time or memory space. In Section 3.10
we discuss some possible mitigations.

3 Self-Protecting Modules

3.1 Overview

A self-protecting module (SPM) is an area of memory with a particular layout
and with particular memory protection settings. Many SPM’s as well as other
code or data can share the same memory address space. Any code outside the
SPM, including code in other SPM’s, could be potentially hostile. Here is an
overview of how SPM’s operate.

First, an SPM is structured in three sections. Each section is a contiguous
range of memory. The SSecret section will contain data that untrusted code
should not be able to access directly. The SPublic section will contain data that
can be accessed in a read-only manner, as well as the code of the module. Finally,
the SEntry section defines the entry points into the module’s code: this is a list
of pointers into the SPublic section, and the only way to call the SPM is by
jumping to an address in this list.

Second, memory access control restricts the rights to read, write or execute
memory locations, based on both the value of the program counter (PC), as well
as on the address being accessed. For instance, the SSecret memory will only
be readable while the PC is in the SPublic section, and the SPublic section is
read-only accessible when the PC is outside the SPM. We discuss the access
control rules in more detail further on.

The creation and initialization of an SPM takes several steps and is displayed
graphically in Fig. 1a. First, the operating system loads the SPublic and SEntry
sections into memory (step 1). This part of the initialization does not need to
be trusted: if an attacker interferes with the loading, it will be detected later on.

Second (step 2), a new hardware instruction, setProtected, to create the
SPM. This instruction defines the boundaries of the three sections of the SPM,
enables memory access control, and clears the SSecret section to all zeros. Mem-
ory protection enforces, from this point on, that only the SPM itself can de-
stroy itself, or modify its contents. As a consequence, the identity of SPM’s can
be securely authenticated from this point on: SPublic and SEntry sections are
world-readable, and together they define the identity of an SPM.

Third, loading the secret data of the module in the SSecret section requires
the assistance of another trusted SPM that we call the vault (step 3). This SPM
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(a) Initialization

(b) Destruction

Fig. 1. The life of an SPM from initialization (1a) to destruction (1b)

will authenticate the identity of the newly loaded SPM and then provision it
with its initial secret data.

Of course, the question then remains how the vault itself gets initialized.
For that, we trust (a part of) the boot process: the vault gets installed and
provisioned with secret data at boot time, and is never unloaded.

Once SPM’s are loaded and initialized, they can securely call functionality of
other SPM’s. That is: an SPM can call an entry point of another SPM with the
following guarantees: (1) it is calling into an SPM with the correct identity, and
(2) the integrity and confidentiality of parameters and return values is protected.

Destruction of an SPM is similar to initialization. Fig. 1b displays the steps
graphically. First, the vault is used to store secret data securely on untrusted
storage. In step two, the secret data is overwritten. Finally, access control on the
SPM is disabled and the SPM becomes unprotected memory again.

We now discuss several aspects of this design in more detail.

3.2 Layout of an SPM

An SPM is structured in three memory areas or sections (see Fig. 2) with different
access control settings. Table 1 gives a schematic overview and should be read as
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follows: the “from” index is determined by the current value of the PC, and the
“to” index is determined by the memory address being accessed. For instance, if
the PC is in the SPublic section, then memory locations in the SSecret section
of the same SPM can be read and modified. An identical instruction issued from
any other location will be prevented. Note that access to a section originating
from a different SPM is treated in the same way as access originating from
unprotected memory.

SSecret. Sensitive data of the SPM is stored in this section. This includes cryp-
tographic keys and application-level data such as credit card numbers, but also
a return stack to implement an SPM’s functionality and other control flow data.

In contrast with the other sections, any attempt to access this section from
outside the SPM will fail. This provides complete isolation of secret data. Data
can only flow out or into this section using the functionality provided by the
self-protected module.

In our design, execution of instructions stored in the SSecret section is pre-
vented for the following reasons: (1) the SSecret section is not a part of the
identity of the SPM that can be authenticated by other SPM’s, and (2) making
any the only writable section non-executable has important security advantages
from the point of view of protecting against vulnerabilities in the SPM itself
[15,16].

SPublic. Contrary to the SSecret section, the SPublic section can be read from
any location, including from unprotected memory locations. The instructions
implementing the functionality of the SPM are placed in this section, as well as
constant non-secret data such as security certificates. The hardware implemented
access control will prevent write instructions to this section from any location.
Therefore, it can’t be modified after access control on the module is enabled and
SPM’s can be authenticated easily (see Section 3.5).

The code in the SPublic section is assumed to be trustworthy. It is responsible
for instance to prevent undesired leaking of secret information to untrusted mem-
ory locations or to untrusted SPM’s. It should also make sure that an attacker
cannot inject false data.

SEntry. It is very hard to guarantee good properties of a piece of machine code
if one cannot restrict the possible entry points into the code [17]. By carefully
choosing the destination of a jump instruction, security sensitive code, such as
encryption functions, could be skipped.

To prevent such attacks, direct calls to the SPublic section from outside the
SPM are prevented (see Table 1). But jumping to the SEntry section is allowed.
This section contains a list of jump instructions to valid locations in the SPublic
section. By making SEntry executable from outside the secured section, and
SPublic not, entry points are effectively restricted to those listed in the SEntry
section. Note that jumping from SEntry to SPublic is allowed by the memory
access control model.

Modifications of the SEntry section are prevented by marking it only read
and executable, both from within as from outside the secured section.
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Fig. 2. The layout of an SPM in memory

Table 1. The memory access control matrix

from\to SEntry SPublic SSecret unprotected

SEntry x

SPublic rx rx rw rwx

SSecret

Unprotected/other SPM rx r rwx

3.3 Hardware Modifications

In order to use the proposed solution, some hardware modifications are required.
Besides the access control model, three instructions need to be supported.

setProtected. Installation of an SPM starts with loading the content of its sec-
tions into memory. Up to this point this content is not protected but any
modification will be detected later on. Only after successful execution of the
setProtected instruction with the correct parameters, access control is enabled
and the SPM is protected from hostile code stored at any location outside the
SPM, running at any privilege level.

To simplify checks executed before protection is enabled, the setProtected
instruction assumes a fixed ordering of the SPM’s sections in memory. The SEn-
try section is always placed at the lower memory locations immediately followed
by the SPublic and SSecret sections, respectively. Using this fixed layout, the
instruction only requires 4 arguments; start spm, size sentry, size spublic
and size ssecret (see Fig. 2). The first argument, start spm, provides the
address of the lowest memory location that will be protected, the base of the
SEntry section. The other arguments provide the length of each section as they
are placed in memory.
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Before access control can be safely enabled, a check needs to be performed
that the new SPM will not overlap with an existing one1.

When the check succeeds, the content of the SSecret section is blanked with
zeros to prevent an attacker from injecting false data. Finally, the SPM is pro-
tected by enabling access control on each section.

isProtected. Before secret data can be passed between SPM’s securely, they
should be able to authenticate one another. The ability to read the code and
public data part of an SPM is not sufficient. Its correct installation must be
proven. This not only includes that the access control is enabled, but also that
the layout of the SPM is as expected.

The isProtected instruction takes a memory location as an argument and
returns the layout of the surrounding SPM in the same format as expected by
the setProtected instruction. In case the memory location is not protected an
error value is returned.

resetProtected. Once an SPM is created, its protection cannot be disabled from
outside the SPM, not even by code running at the processor’s highest privilege
level. Only the SPM can remove it by executing the resetProtected instruction.

To keep data stored in the SSecret section secret from attackers, it should be
destroyed before access control is disabled. Since we need to trust the SPM code
to correctly clean up for other purposes as well (see Section 3.6), we require the
SPM to overwrite the data explicitly rather than blanking it automatically when
the resetProtected instruction is issued.

3.4 Initialization of SPM’s

Initialization of SPM’s takes three steps (see Fig. 1a). First, the content of its
SEntry and SPublic sections is loaded in unprotected memory (step 1). Next, its
SSecret section is blanked by the setProtected instruction and access control on
all sections is enabled (step 2). Finally, the SPM should initialize its internal data
structures (step 3). For example, a new return stack should be created within
the SSecret section as control flow data of the SPM should never be stored at an
unprotected location. There are two approaches for the initialization of SPM’s.

First, it may be possible to initialize it using only public data. This situation
occurs when only secure execution is an issue, not secrecy. When the provided
data stays the same over time, it could be shipped and placed alongside the code
in the SPublic section. To allow its modification by the SPM, it can be copied
to the SSecret section. In case the public data changes repeatedly over time and
only integrity needs to be protected, the SSecret section could be created and
cryptographically signed by a trusted third party and sent to the SPM. After
checking the signature, the provided data can be used to initialize the SPM.

1 In principle the SEntry and SPublic sections could be shared by multiple instances
of the same SPM to reduce memory consumption. This optimization and its security
issues are considered to be out-of-scope for this paper.
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Second, the SSecret section could be initialized using secret data stored in a
cryptographically encrypted and signed file. As a secret key must be available
for decryption and since prior to initialization, an SPM can not contain secret
data, help of another trusted SPM is required. Our design proposes a special
SPM called vault to provide such functionality. We discuss this in Section 3.7.

3.5 Authentication of SPM’s

Previous sections described how an SPM could be loaded into memory from an
untrusted source. Even when a software module has been received correctly, it
may have been modified while it was stored on disk. Before it can be trusted
with secret data, its trustworthiness must be validated.

For this purpose, each SPM is shipped with a security report. It states that
the correct implementation of the SPM has been verified by its issuer. In case
that third party is trusted, so can the SPM when the security report is valid.
Recall that our threat model assumes that the SPM does not contain logical
faults nor implementation-level vulnerabilities (see Section 2.1).

By placing the security report in the SPublic section, it can be accessed easily
and efficiently as access control of the SPM allows read access from any location.

Each security report contains following information:

– Hash of SEntry and SPublic sections : To be able to establish trust in an
SPM, it must be identical to the SPM certified by the trusted third party. By
providing a hash result of the SEntry and SPublic sections2, any modification
will be detected.

– The layout of the SPM : When incorrect parameters are supplied with the
setProtected instruction, the SPM may use unprotected memory locations
to store secret data. To avoid such situations, the layout of the SPM is
included in the security report. Using the results of the isProtected in-
struction, the layout of the newly installed SPM can be validated.

– Cryptographic signature: The security report is signed with its issuer’s private
key. An SPM that wishes to verify the trustworthiness of another, has a list
of trusted certificate authorities (CA’s). When a chain of trust can be built
from a CA to the public key of the issuer, the security report can be trusted.

If an SPM A wishes to authenticate SPM B, it should (1) verify the signature
of B’s security report, (2) verify the hashes of the SEntry and SPublic sections,
and (3) verify the SPM layout using the isProtected instruction.

3.6 Secure Communication

The ability to communicate securely between two mutually trusted SPM’s does
not only result in a more modular system, it is also required to bootstrap the
system. Section 3.7 describes how an SPM loaded from an untrusted location
2 The hash of the SPublic section implies knowledge of the security report. To break

this circular dependency, the security report is replaced with zeros during calculation.
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can be authenticated and provided its secret data. This Section presents how two
SPM’s can communicate with one another while preserving secrecy and integrity
of the exchanged messages. Injection of false data is prevented as well.

Each of the presented protocols assumes that the SPM’s know each others
location and implemented functionality. In practice this can be accomplished by
requiring each SPM to register itself to a centralized service. As this service does
not have to be trusted, its inner workings are not considered in this paper.

One-Way Authentication. Some applications only require that one endpoint
of the communication channel is authenticated. Consider for example an SPM
SecureRandom, providing the service of secure random number generation. For
obvious security reasons, the client needs to authenticate the service. SecureRan-
dom in turn, has no need to verify the trustworthiness of its client as it does not
leak any secrets, it only creates unpredictable random numbers.

The protocol described in this Section offers the following security guarantees
for communication between SPM’s: authentication of one endpoint, secrecy and
integrity of the messages sent and received.

Fig. 3 displays the protocol. In the first step, the client authenticates Se-
cureRandom. It does so by fetching its security report from its SPublic section
and validating it. This operation can be performed without leaving the client
SPM as SEntry and SPublic sections are world-readable (see Section 3.2).

Next, the generation of a new random number is requested. This request can
be made similar to an ordinary function call; by jumping to the correct location
in the SEntry section of SecureRandom and passing arguments in registers. How-
ever, unlike a function call, execution cannot return directly to the instruction
following the call instruction, as this would provide SecureRandom with a way
of (re-)entering the calling SPM at an address that is not in the SEntry list, thus
enabling return-into-libc-like attacks [17]. The access control on the SPM will
prevent such jump instructions into the SPublic section as it originated from
outside the SPM. Instead, returning from a service call is implemented by creat-
ing a new entry point, client entry, in the SEntry section and sending it as an
argument with the request. After the random number is created, SecureRandom
will then issue a jump instruction to the specified entry point. There control flow
is directed to the correct, fixed, location, as allowed by the access control. This
is similar to continuation-passing-style programming.

In the third step of the protocol, the random generator returns the random
number k, by placing it in a register and jumping to the return entry point
specified by the client.

Placing sensitive information in registers is an inexpensive solution as it does
not require encryption and signing. Unfortunately it can only be used when a
small amount of data needs to be transferred from one SPM to another. When
bulk data needs to be exchanged, it can either be divided and transported using
multiple jump instructions, or it can be communicated in untrusted, unprotected
memory after appropriate encryption and signing. The keys used can than be
exchanged securely in registers.
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Fig. 3. One-way authentication between SPM’s. A client authenticates the random
number generator before requesting a new random number.

Mutual Authentication. The protocol presented in Section 3.6 can be modi-
fied easily to authenticate both communication endpoints (see Fig. 4). As before,
the client initiates the protocol and authenticates the vault. Next, a message is
sent requesting the secret data. The entry point to be used to return the data,
client entry, is added as well as the location of the security report of the client,
client sec rep.

At the reception of the message, vault must verify that the security report of
the client is valid and trusted. To prevent sending the secret to an unprotected
location or to an incorrect SPM, vault also has to check that the given entry
point is located within the SPM described by the security report. Only when
both tests are valid, the secret information, k, will be returned.

Fig. 4. Two-way authentication between SPM’s

Mutual Authentication with Support of Both Endpoints. The previ-
ous protocol is inefficient in case multiple authenticated communication events
between the same SPM’s occur. With support of both endpoints, performance
overhead can be reduced by avoiding repeated checks of the security reports.

Fig. 5 displays the protocol where SPM’s A and B wish to communicate. The
protocol establishes a persistent secure channel in only two passes.

First, A authenticates endpoint B. After trust is established, the notify -
destruction entry point of B is called providing an entry point of A, notifyA

that should be called when B is about to be destroyed. A freshly generated
cryptographic nonce NBA is also added to the request. As only B has knowledge
of the nonce, any message containing NBA must be sent by B. This avoids
repeated authentication of B.

In the second part of the protocol endpoint B performs identical steps, pro-
viding A with the entry point notifyB and the fresh nonce NAB. Now A and
B are able to communicate securely without repeated authentication events. As
before, entry points of the other SPM can be called passing secret data in reg-
isters. Providing the received nonce with each communication event, proves the
origin of the message.
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Fig. 5. Two-way authentication between SPM’s with support

3.7 Vault: Bootstrapping Trust

After loading the SEntry and SPublic sections into unprotected memory and
calling the setProtected instruction (step 1 and 2 in Fig. 1a respectively), the
SSecret section of newly created SPM’s is blank. As described in Section 3.4,
SPM’s can be easily initialized using public data (step 3). However, in some cases
secret data, for example a cryptographic key, of a previous instance of an SPM
needs to be restored. A special SPM called vault provides such functionality.
It is able to store secret data securely in persistent but untrusted memory and
guarantees that the secret data will only be returned to the same SPM that
requested its storage.

Requesting storage goes as follows. First, an SPM establishes an one-way
authenticated channel to the vault. Next, the secret data is transferred to the
vault where it is appended with the security report of the requesting SPM,
encrypted and signed with the vault’s cryptographic keys and stored in persistent
storage. Note that vault only stores secret data from other SPM’s. As it does
not provide any of its own secrets, it does not have to trust its clients.

A different instance of the same SPM, for example after the system is re-
booted, is now able to retrieve the stored secrets from the vault. First, it estab-
lishes a two-way authenticated channel with the vault. The secret data is fetched
from persistent storage3, its signature checked and decrypted by the vault. Only
when the stored security report matches the requesting SPM’s, the secret data
is passed over the secure channel.

This leaves the problem of how the vault itself gets initialized with its keys.
For this we trust (a part of) the boot process: the system is modified to create the
vault as early in the boot sequence as possible. Unlike any other SPM, its secret
data is provided directly by hardware by copying it from protected memory that
is only accessible at boot time.

3.8 Destruction

Before protection on the module is disabled, the SPM’s destruction should be
prepared. In general two cases need to be considered. First, the stored secret data
in the SPM. When access control is disabled, it can be accessed from any location.
To avoid disclosing it in unprotected memory, it needs to be overwritten.

3 How the secret data is found on persistent storage is not relevant from a security
point of view and is omitted for clarity. However, the vault could return an identifier,
for example a filename, when storage is requested and stored unprotected.
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Second, other SPM’s may assume the presence of the trusted, protected mod-
ule at a certain memory location. These SPM’s need to be notified of the immi-
nent destruction to prevent them from issuing jump instructions to unprotected
and/or untrusted code while passing secret data in registers.

3.9 Discussion

Limitations of the Current Design. The proposed solution reduces the TCB
to only the SPM’s used, a small part of the boot process and the hardware. By
eliminating the kernel from the TCB, its correct behavior can no longer be
trusted upon and access in any way conflicting with the access control model
presented in Section 3.2 needs to be prevented. As a result, support of many
advanced features, such as interrupts, virtual memory and others, must be im-
plemented in the SPM’s, in collaboration with the hardware. Supporting these
features is considered to be out of the scope of this paper.

– interrupts : when an interrupt occurs during the execution of an SPM, sen-
sitive information stored in registers will be accessible to the kernel. There-
fore SPM’s should be executed in the highest interrupt level, preventing
interrupts from being handled during execution. Hence, SPM implementors
should make sure that SPM calls return within a reasonable amount of time.

– swapping: in case more memory is required than is available on the machine,
the kernel will swap chunks of memory to disk. This may not only prevent
the correct memory location from being called, as secret data is stored at
an unprotected location, confidentiality and integrity may be compromised.
Therefore, swapping of SPM’s should be prevented.

– direct memory access (DMA): peripheral devices often use DMA to access
memory locations directly; protected memory locations must be excluded.

– paging: paging allows the same physical page to be mapped to different
address spaces, even at different addresses. In itself this does not pose a
security problem as long as access control remains correctly enforced. In
practice this may be difficult, as an SPM may span multiple pages and
additional pages may be injected at runtime. Support for paging is considered
to be out-of-scope, SPM’s are currently expected to use physical addresses.

– concurrent execution of SPM’s : When multiple SPM’s exchange secret data,
authentication of endpoints does not suffice. In the limited amount of time
between authentication and a communication event, one of the endpoints
may have been removed. Issuing jump instructions in that case, may leak
secret data stored in registers. For this reason, concurrent execution of SPM’s
is currently not supported.

Note that these assumptions are only made during the execution of self-protecting
modules. Execution of unprotected code, including concurrent execution on a dif-
ferent core, are not restricted as long as the access rights presented in Section 3.2
are enforced. By using a multi-core processor to execute the kernel on a different
core than the SPM’s, the system will remain responsive.
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Proof Sketches of Security Guarantees

Security of module code. After installation, an SPM contains all the code that
implements its functionality. It cannot be modified nor influenced, not from
outside nor from within the SPM, and can only be called using the entry points
into the module as defined by the module’s provider.

This property almost directly follows from access control enforced on SPM’s.
Only the SEntry section is executable from outside the module. A user has
no other option than to use these specified entry points. After calling an entry
point, the SPM is entered and control flow is directed to the SPublic section. Both
SPublic as SEntry sections are now executable. As both sections are not writable
from any location, an attacker is not able to modify the stored instructions.

Only modification of control data still needs to be considered. In the SSecret
section, a return stack may be built to allow easy implementation of the SPM’s
functionality. Implementation vulnerabilities may allow this data to be overwrit-
ten, for example by exploiting a buffer overflow vulnerability [9,10]. Modification
of a return address, frame pointer, or other control data may result in modified
behavior of the SPM as defined by the SPM’s provider. However, it is assumed
that code stored in the SPM does not contain such vulnerabilities.

While an attacker is able to modify the code of the SPM before access control
is enabled, such modification will be detected during authentication.

Security of module data. Sensitive data such as keys stored in the module must be
protected. Access must be restricted to the SPM and unless explicitly specified,
secret data must not leak. For example, a key may only leave the SPM when it
is securely passed to another, trusted, SPM or when it is encrypted and signed.

Isolation of data stored in the SSecret section is directly provided by the
access control model enforced upon it. Any access attempt from outside the
SPM is prevented. In contrast, instructions within the SPM are allowed to read
and modify data stored in the SSecret section. Considering that the code of the
module is secure and cannot be modified nor influenced after installation, as
stated by the previous security guarantee, we conclude that secret data can only
leave the SPM as implemented by the SPM’s provider.

Finally the destruction of an SPM needs to be considered. As access control
only allows an SPM to disable its own protection and the SPM is able to enforce
the conditions under which the resetProtected instruction is issued, any secret
data can be overwritten prior to the destruction of the SPM.

Secure communication between modules. Combining the strong isolation of data
and code with a secure communication scheme between SPM’s, will result in a
modular and secure subsystem. Only the existence of such a secure communi-
cation mechanism still needs to be argued. In order to pass secret data between
modules securely, (mutual) authentication and a secure channel are required.

To authenticate an SPM, its implementation needs to be verified. Access con-
trol restricts execution of code within the SPM to the SEntry and SPublic sec-
tions. As these sections are world-readable, the functionality of an SPM can be
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checked easily. The presence of self-modifying code or code injection attacks does
not have to be considered; in a previous paragraph it is already argued that after
installation the code of an SPM cannot be modified. Finally, the isProtected
instruction can be issued to check the correct setup of the SPM’s protection.

Authentication can only consider the SEntry and SPublic sections as the
SPM’s protection will prevent access to the SSecret section. Without proper se-
curity measures, an attacker may still carefully craft an SSecret section. This
could, for example, trick the trusted code into storing received secret data at
an unprotected location encrypted using a key under the attackers control. Such
spoofing attacks are prevented by automatically clearing the entire SSecret sec-
tion when the setProtected instruction is issued. After initialization the SPM’s
are responsible to prevent injection of false data.

Next, a secure channel between two modules can be established. Authenticity
and confidentiality of the exchanged messages must be provided. SPM’s can
be called like ordinary functions; by directly modifying the program counter
of the processor. Messages can be passed using registers. It is assumed that
the execution of modules cannot be interrupted. Therefore, the secrecy of data
passed in registers cannot be breached and both requirements are met.

Finally, it must be assured that the secure channel is set up between the
correct SPM’s. Between authentication and the first message, an endpoint may
be destroyed. In that situation, secrecy of the data stored in registers cannot be
ensured. An attacker may have replaced the SPM with malicious code.

To prevent such situations, control flow must not leave the SPM between
authentication and the communication event. Because SPM’s can only be de-
stroyed by themselves, the authenticated SPM must have been entered between
the two events. However, it is enforced that at any time no two SPM’s can be
executing simultaneous. Therefore such attacks are prevented.

Minimal trusted computing base (TCB). The hardware and implementation of
vault forms the root of trust of the systems. Because modules are able to control
the flow of secret data to authenticated modules or to unprotected memory under
specific conditions, a chain of trust can be built. This trust does not include the
kernel. As a result, the TCB only consists of the trusted modules, a small part
of the boot process creating a root of trust and the hardware.

3.10 Extensions

The current design does not allow SPM’s to be interrupted during execution or
swapped to disk. Leveraging these limitations, an attacker is able to execute a
denial-of-service attack (DoS), for example, by installing an SPM that goes into
an infinite loop. On devices that support multiple privilege levels, the chances of
such an attack can be reduced easily. By restricting the setProtected instruc-
tion to kernel mode, an attacker with only user privileges must request the kernel
for the protection of an SPM. Before this request is validated, security checks
can be performed. For example, only SPM’s of trusted issuers could be allowed.
Note that an attacker who compromised the kernel to avoid these restrictions,
is also able to power the system down, executing a similar denial-of-service.
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4 Applications

Many embedded systems, for instance payment terminals and mobile phones
running third-party applications including m-banking applications, have strong
security requirements. For example, sensitive data such as cryptographic keys
must not leak. To assure these requirements, secret data is stored and computed
on a physically separated co-processor and memory, packaged together on a
single chip called a hardware security module (HSM). Many modern PC’s are
already being shipped with such a chip [1]. Similar hardware for mobile devices
is being developed.

However, isolation can also be guaranteed by SPM’s in software. This reduces
manufacturing cost as a separate co-processor and memory is no longer required.
For the same reason power consumption is reduced, making secure isolation
possible for low-end devices or improve mobility. Prime examples are multi-
application smartcards and shared sensor networks.

However, there are differences between HSM’s and SPM’s. First, a Trusted
Platform Module (TPM) [1], the HSM found on many desktop PC’s, can only
execute the cryptographic algorithms installed on the chip when it was manufac-
tured4. Other algorithms on secret data still need to be executed in unprotected
memory under a huge TCB. In contrary, SPM’s are able to isolate any module.

Second, many HSM’s do have advantages over SPM’s. Secret data can also be
protected against physical attacks. However, in many situations the user with
physical access to the device can be trusted. A user trying to access his banking
account, for example, is only interested to keep his/hers login data secure.

Third, HSM’s could also be used to improve performance. As they are built
with a specific purpose, they can be more easily optimized for performance. How-
ever, when the HSM chips can be omitted, it could be replaced by an additional,
general-purpose processor core. This would allow a performance improvement of
any process, not just cryptographic algorithms.

5 Related Work

Many security measures have been proposed to increase the security of comput-
ing devices. Early work proposed hardware support for multiple privilege modes
in the processor to separate trusted from untrusted code [18]. From these added
hardware features, a balance between secure and performant architectures have
been investigated, leading to a whole design-space ranging from micro-kernels to
large monolithic kernels [19].

The Dyad HW[2] and other architectures [3,4] uses hardware features more
extensively. Executing trusted code on a co-processor provides strong isolation,
even protecting against physical attacks.

Hardware security modules such as the TPM [1], allow integrity measure-
ments during boot process. While it is able to attest a trusted boot sequence, it
4 However, there exist HSM chips that are able to execute custom algorithms within

the secured boundaries.
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relies on the correctness of the entire code base [6]. An infeasible secure solution
considering the millions lines of code of modern monolithic kernels.

Recently, virtualization techniques, with or without hardware support, are
considered to provide isolation between trusted and untrusted code. For example,
Nizza [5], uses a minimal, trusted kernel to run both trusted AppCores and a
legacy operating system running untrusted processes. However, its TCB still
consists of hundred of thousands lines of code.

Oslo [6] takes advantage of virtualization instructions found in recent AMDTM

and Intel R© processors to establish a dynamic root of trust, providing more flexi-
bility. Flicker [7,8] also takes this approach. Running trusted code as virtualized
machines, called PAL’s and taking advantage of the functionality of a TPM,
strong isolation is provided with a small TCB. However, maintaining state be-
tween a PAL’s executions incurs a large performance overhead. In addition, the
requirement of both a TPM as hardware supported virtualization make it ill-
equipped for mobile and embedded devices.

6 Conclusion

Many embedded systems, for instance payment terminals and mobile phones run-
ning third-party applications including m-banking applications, have relatively
strong security requirements.

We propose a novel access control model where access to memory locations
also depends on the value of the program counter. Using this approach a secure
subsystem can be built and isolated in software instead of hardware, reducing
manufacturing cost and offering strong security guarantees to low-end devices
such as multi-party smartcards and sensor-networks.
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