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Abstract. In order to tolerate servers’ Byzantine failures, a distributed
storage service of self-verifying data (e.g., certificates) needs to make
three security properties be Byzantine fault tolerant (BFT): data con-
sistency, data availability, and confidentiality of the (signing service’s)
private key. Building such systems demands the integration of Byzantine
quorum systems (BQS), which only make data consistency and availabil-
ity be BFT, and threshold signature schemes (TSS), which only make
confidentiality of the private key be BFT. Two families of correct or valid
TSS-BQS systems (of which the server protocols carry all the design op-
tions) have been proposed in the literature. Motivated by the failures
in finding a third family of valid server protocols, we study the reverse
problem and formally prove that it is impossible to find any third family
of valid TSS-BQS systems. To obtain this proof, we develop a validity
theory on server protocols of TSS-BQS systems. It is shown that the only
two families of valid server protocols, “predicted” (or deduced) by the
validity theory, precisely match the existing protocols.

Keywords: Byzantine fault tolerance, Byzantine quorum systems,
threshold signature schemes.

1 Introduction

Malicious codes, software bugs or operator mistakes can cause servers’ Byzantine
(or arbitrary) failures [12], and then compromise the services of network systems.
As a result, BFT (Byzantine fault tolerant) systems, which run correctly in the
presence of failures and do not have any assumptions about the behavior of
faulty entities, are increasingly important. Several techniques [5,6,8,12,13] are
proposed to provide BFT properties, such as integrity, consensus, consistency,
availability and confidentiality. Of these techniques, BQS (Byzantine quorum
systems) [13] and TSS (threshold signature schemes) [6] are remarkable.
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BQSprovide distributed storage services by replicating data onmultiple servers,
despite the Byzantine failures of (a certain number of) servers. To ensure data con-
sistency and data availability, each read/write operation is performed on some quo-
rum of servers (every quorum is a subset of servers; any two quorums have at least
one server in common). In particular, in order to tolerate up to f faulty servers,
3f + 1 servers are needed to compose a dissemination BQS storing self-verifying
data, and every quorum contains 2f + 1 servers (i.e., each operation is performed
on at least 2f + 1 servers; the intersection of quorums masks the impact of faulty
servers and enables clients to obtain the right replica).

TSS are also proposed to tolerate servers’ Byzantine failures by distributing
a private key among n servers. Each server holds a share (or partition) of the
private key. A threshold number (denoted h, 1 < h ≤ n) of servers can coopera-
tively use the distributed private key to sign messages, while any subset of fewer
than h servers cannot. Every server partially signs a message (i.e., uses its key
share to generate a partial signature), and h partial signatures can be combined
into a fully signed message.

Essentially, a) the goal of BQS is to make data consistency and data avail-
ability be BFT; and b) TSS can be viewed as a measure to make confidentiality
of the (signing service’s) private key be BFT. This key observation provides an
intuitive understanding about the merits of integrating BQS with TSS, two BFT
techniques holding different security properties. In a nutshell, traditional BQS
[13,14] make two properties (i.e., data consistency and availability) be BFT,
while the integration of BQS and TSS yields three BFT properties (i.e., confi-
dentiality of the private key, data consistency and availability). More specifically,
this integration benefits the services that demand Byzantine fault tolerance on
all of the three properties instead of two.

Given these nice properties of TSS-BQS systems, people have been trying to
design TSS-BQS systems. COCA [26] is a TSS-BQS system for BFT certificate
query/update services, and its protocol is adopted in CODEX [15] to store secret
data. [10] proposed another server protocol. Their study shows that when BQS
(e.g., public key infrastructures or publish/subscribe systems) need to support
write operations (e.g., create or update) on self-verifying data, the third property
is much useful. From the user point of view, letting confidentiality of the signing
service’s private key BFT ensures non-repudiation of service signatures; so clients
can have full trust in the service. Besides, proactive recovery, not implemented
in traditional BQS, is enabled by the integration with TSS [15,26]: the service’s
private key keeps unchanged while servers are recovered periodically.

This integration provides more assurance than the “sum” of BQS and TSS.
In particular, it is recognized that an integrated storage service in this manner
shall and can ensure two “upgraded” security properties:

Service Availability. In the presence of Byzantine failures, a read/write re-
quest from authorized clients still gets a response to it, which is signed using the
distributed service private key.
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Service Integrity. Each fully signed response guarantees that the requested
read/write operation has been performed on some quorum of servers.

These two integrated properties are beyond both BQS and TSS, and cannot be
satisfied automatically even when confidentiality of the service private key, data
consistency and availability are all ensured. Compared to traditional BQS [13,14],
clients can directly update self-verifying data without the assistance of external
signing services. Compared to TSS, the implication of a signed response is beyond
asserting that the request has been processed by the signing service itself; it also
asserts that the requested operation has been performed on a quorum of servers
and that Byzantine failures won’t affect the correctness.

At first glance, there appear to be lots of options in designing a valid TSS-BQS
system. For example, a) the threshold to sign might be any number between 2
and 3f + 1; and b) integrated with TSS, BQS might construct a response when
less than 2f + 1 servers are examined to have performed the requested opera-
tion. Moreover, the comparison of existing TSS-BQS systems [10,26] in terms
of communication costs, computation costs and the ability to handle concurrent
operations (see Section 6) shows that these options can affect performance of
TSS-BQS systems, and suggests that there might be different optimized options
or tradeoffs when TSS-BQS systems are applied for specific applications.

However, only two valid server protocols [10,26] are proposed in the literature
(they have roughly the same client protocol). We had tried to design a different or
better one, but the outcome is always similar to [10,26]. The failures suggest that
there may not exist any third family of valid server protocols! This suggestion is
hard to believe, but our research shows that this conjecture should be true.

Our main contribution is a formalization of this impossibility conjecture and
a proof asserting that it is true. In particular, we propose a validity theory on
server protocols of TSS-BQS systems. To the best of our knowledge, it is the first
validity theory on this problem. Using this theory, we prove that there are only
two families of valid server protocols of TSS-BQS systems. The representatives of
these two families are that of COCA [26] (denoted SP-I in this paper) and that
of [10] (denoted SP-II ), respectively. The validity theory also shows that SP-I
and SP-II are the only two efficient (and valid) protocols. Our conclusion advises
researchers to a) apply TSS-BQS systems through one of these two protocols,
and b) improve TSS-BQS systems by more efficient TSS, task schedulers or
resource management of servers, but not by server protocol designs.

The rest of this paper is organized as follows. Section 2 describes the TSS-BQS
system model. The problem of server protocol design is formulated in Section 3,
followed by the main results of the validity theory in Section 4. In Section 5,
we deduce the two existing server protocols based on the proposed theory. Per-
formance is analyzed in Section 6, and related work is presented in Section 7. We
conclude in Section 8.

2 System Model

A TSS-BQS system consists of n servers, and an arbitrary number of clients
that are distinct from the servers. Servers can be correct or faulty. A correct
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server always follows its protocol, while a faulty one can arbitrarily deviate
from its protocol (i.e., Byzantine failure). Assume up to f servers can be faulty
throughout this paper. We assume that clients always behave correctly.

Data Replication. TSS-BQS systems are demanded by the security requirements
arising in maintaining self-verifying data (e.g., certificates), whose authenticity
(or origin) and integrity can be verified by any entity (server or client). Before
being replicated on servers of a TSS-BQS system, each data item is signed by
the system to make it self-verifying; thus any modification (by faulty servers or
other attackers) can be detected by any entity.

To tolerate servers’ Byzantine failures, data are replicated on multiple servers,
which can be regarded as variables supporting read/write operations. For a vari-
able x, each server (denoted Si, 1 ≤ i ≤ n) independently stores its replica
(consisting of a value v and a timestamp t, which are signed together as one
replica), denoted [x, vi, ti]. Timestamps are assigned by a client when it writes
the variable, and each client c has its own timestamp set TSc, not intersecting
other TSc′ for any other client c′ [13]. For example, timestamps can be formed
as ascending sequence numbers appended with the name of clients [14].

Quorum. In order to tolerate up to f faulty servers, a dissemination BQS is
composed of n = 3f + 1 servers, and each quorum contains 2f + 1 servers [13].
Then, every pair of quorums intersect on at least f + 1 servers. This “perva-
sive intersection” feature enables BQS to achieve data consistency; i.e., a read
operation returns the right replica, which is written by the most recent write
operation. To leverage this feature, a new data item [x, v, t] must be delivered to
some quorum of 2f +1 servers before the write operation ends. The right replica
of variable x is obtained out of the (different) replicas stored on 2f + 1 servers,
by choosing the unmodified one with the highest timestamp [13].

Service Key. A TSS-BQS system holds one system-wide key pair, the service
private key and the service public key. The service private key is split into ser-
vice key shares based on TSS, and distributed among the same 3f + 1 servers
composing the dissemination BQS. Any h (1 < h ≤ n) servers can use their
service key shares to sign messages cooperatively. Conspiracies by fewer than h
servers cannot compromise the service private key or use it to sign any messages.

The service public key is known to every entity, and clients accept responses
and replicas only if they are verifiable using the service public key. That is,
servers can use the service private key to sign a) a response to clients, and b)
each data item stored in TSS-BQS systems.

Server Key. To prevent outside attackers from impersonating servers of TSS-
BQS systems and for secure communications among servers, each server also
holds a key pair denoted server key, which has nothing to do with the service
key pair. A server knows others’ public keys, and server keys are used to sign
and verify messages only among servers.

Clients only (need to) know the service public key but not any server keys. As a
further benefit, they aren’t disturbed by proactive recovery [8,27] (i.e., periodic
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refreshment of service key shares and server keys) against mobile adversaries
[19] (which attack and compromise one server for a limited period of time before
moving on to another), because the service key pair keeps unchanged while
service key shares are refreshed.

Uniformity. All servers are uniform. Given a TSS-BQS system, all (correct)
servers follow one same protocol. If a message is delivered to two correct servers,
they process it following the same protocol. Servers are not assumed to run iden-
tically. Each server runs independently according to its own state and messages
received, and then they may run to different branches of the same protocol.
However, there is no sentence with any special servers’ identities in the protocol.
Note that this uniformity assumption has not any constraints on faulty servers,
which always run in an arbitrary way.

This assumption is generalized from usual threshold cryptographic schemes
and quorum systems. Assuming that all servers are uniform, the threshold to
sign and the size of a quorum can depict the condition to fully sign a messages
by TSS and to finish a read/write operation in BQS, respectively.

Asynchronous Fair Link. A fair link [15,26] is a channel that doesn’t deliver all
messages sent, but if an entity sends infinitely many messages to another entity
then infinitely many of these messages are correctly delivered. In addition, the
link is asynchronous; i.e., there is no bound on message delivery delay or server
execution speed.

We assume that only asynchronous fair links are provided among all entities.
Adversaries may eavesdrop, delay, delete or alter messages in transmit, and re-
play or insert messages. However, a message sent sufficiently often by an entity
to another will be delivered eventually.

3 Problem Formulation

The problem is to formally prove that it is impossible to design any third family
of valid server protocols. To make this problem tangible, we need to define the
notion of “validity” and firstly model the activities of clients and servers.

3.1 Client Protocol

When reading/writing variable x, an authorized client of TSS-BQS systems peri-
odically sends a request to at least f +1 servers until it receives a signed response
verifiable using the service public key. Because up to f servers could be faulty,
sending a request to f + 1 servers guarantees that at least one correct server
receives it eventually, and starts the server protocol.

A credential is generated and included in the read/write request, authorizing
this operation. To prevent attackers from replaying the past signed responses,
a nonce (e.g., the name of the client and an ascending sequence number) is
included in each request and also the corresponding response. For reading, only
the right replica is returned in each fully signed response. For writing, a client
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firstly reads the variable to obtain its current timestamp t′, and chooses a higher
timestamp t > t′ [13]. Then, the new value v and the timestamp t compose the
write request, and its response is a signed acknowledgement to it.

3.2 General Model of Server Protocols

We present a general model of server protocols to enable the design space iden-
tification for TSS-BQS systems, showing both the flexible and the fixed parts.
In our model, every server is abstracted to implement three functions as follows.

Storage. As a server of BQS firstly, Si maintains its replica of variable x in-
dependently. On receiving a read request, Si replies with its replica [x, vi, ti].
On receiving a request writing [x, v, t], Si acknowledges it, and only updates its
replica if the data item being written is unmodified (i.e., verifiable using the
service public key) and has a higher timestamp than its own (i.e., t > ti).

Delegate. Since clients only know the service public key, some servers shall be-
come delegates for each request, performing the requested read/write operation
among servers on behalf of the client sending the request [26]. Note that a dele-
gate is not a special or additional server; otherwise it will be a vulnerable com-
ponent not tolerating failures. On receiving a request from clients, each (correct)
server becomes a delegate for it. Since each request is sent to f +1 servers, there
may be more than one delegate for each operation. These delegates will return
same responses, unless there are concurrent read/write operations.

On receiving a request from clients, a delegate constructs a response, cooper-
ates with h servers to sign it, and then sends this signed response to clients. The
response (to be signed) is constructed as below: a) in the case of read operations,
the delegate lets the response be the right replica determined (or chosen) out of
the 2f + 1 replicas read from some quorum of servers; b) in the case of write
operations, the delegate firstly cooperates with h servers to sign the data item
being written to make it self-verifying, writes it to 2f + 1 servers, and lets the
response be an acknowledgement to this write request.

Partial-Signing. The service key pair is used to communicate with clients and
create self-verifying data. So, servers can generate partial signatures for a) a
response to clients, or b) a data item being written (to make it self-verifying).

Si can use its service key share to partially sign a response, when receiv-
ing a partial-signing request for it. However, since the delegate sending this
request may be faulty, the response (to be signed) may: a) be constructed when
the requested read/write operation has not been performed on enough servers;
sometimes, the corresponding request doesn’t even exist; or b) return an out-of-
date but self-verifying replica, even though the faulty delegate has read 2f + 1
replicas. To avoid signing such a fake response, before partially signing each re-
sponse, a (correct) server Si shall process the corresponding read/write request
by itself, and/or carry out some examinations. Messages that are signed using
server keys, indicating that some servers have processed the read/write request,
can be sent along with the partial-signing request as evidences to convince Si to
partially sign a response.
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Fig. 1. General Model of Server Protocols

Si can also generate a partial signature for each data item to make it self-
verifying, before delegates write it to some quorum. This data-signing requires
that: a) the service private key is available, and b) at least one correct server is
involved in checking that the write request is generated by an authorized client
(i.e., h ≥ f + 1). For a valid server protocol, these two requirements of data-
signing must be satisfied as well as service availability and service integrity (see
Section 1). Fortunately, they are satisfied automatically when service availability
and integrity are ensured. Otherwise, service availability isn’t ensured if the
service private key is unavailable, or service integrity isn’t ensured if h ≤ f and
then faulty servers can conspire to sign responses arbitrarily.

So, we skip this data-signing in the remainder due to limited space, focus on
how to ensure service availability and integrity, and assume that each data item
[x, v, t] has been self-verifying when a client sends the write request.

Figure 1 shows the relationship of these three functions when f = 2 and h = 3,
not showing the data-signing. A client sends a request to f + 1 servers. Then,
S3 assumes the role of delegate, performs the requested read/write operation on
2f + 1 servers (including S3), cooperates with h servers (also including S3) to
sign a response, and sends it to the client. It can be seen that in this flexible
model, the server subset of partial-signing can differ from that of storage, though
they may be the same in some instances or for some server protocols.

3.3 Defining the Validity of Server Protocols

As mentioned in Section 1, to provide BFT storage services as traditional BQS,
an integrated TSS-BQS system must provide two upgraded security properties:

Service Availability. A read/write request from authorized clients gets a
signed response to it, which is signed using the service private key.

Service Integrity. Each signed response guarantees that the requested opera-
tion has been performed on some quorum of servers. That is, a write response
is signed only if the request has been delivered to at least 2f + 1 servers; and
a signed read response is derived from (different) replicas of 2f + 1 servers,
returning the right replica which is written by the most recent write operation.

These two security properties produce the definition of valid server protocols.
On receiving a read/write request from clients, a delegate starts the valid server
protocol to perform the requested operation on some quorum of servers, get a
response fully signed, and return the signed response to clients.
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Definition 1 (Valid Server Protocol). A valid server protocol guarantees that
a response is fully signed using the service private key if and only if a read/write
request (generated by an authorized client) is delivered to some correct server
(i.e., a delegate) and the requested read/write operation is performed on each
server in some quorum. �

3.4 Existing Valid Server Protocols

Two valid server protocols are proposed in [10,26], ensuring service integrity
through different mechanisms. Based on these protocols, we can design similar
ones, leading to two families of TSS-BQS systems.

SP-I. COCA [26] is the first system integrating BQS with TSS: a) 3f +1 servers
compose a dissemination BQS to provide certificate query/update services; b)
the service private key is distributed among the exactly same 3f + 1 servers;
c) the threshold to sign certificates or responses is f + 1; and d) before using
its service key share to partially sign a response, each server examines that the
corresponding read/write operation has been performed on 2f +1 servers. Since
up to f servers can be faulty, at least one correct server carries out the necessary
examinations before partially signing it, ensuring service integrity.

By increasing the threshold to sign of COCA, we can get a family of similar
server protocols, where service integrity is still ensured through the examinations
by the correct server(s) partially signing responses. For example, h = f +2 while
all other features keep unchanged. Then, service integrity is ensured repeatedly,
because there are at least two correct servers carrying out the examinations.

SP-II. Another valid protocol (SP-II) is suggested in [10]: a) the threshold to
sign is equal to the size of a quorum (i.e., h = 2f + 1); and b) each server
processes the read/write request itself before partially signing a response. Thus,
when a response is fully signed, 2f +1 servers must have performed the requested
operation; and service integrity is ensured through the threshold to sign.

By requiring servers of SP-II to carry out additional examinations, we can get
another family of server protocols, where service integrity is ensured through
the threshold to sign. For example, before partially signing the response, each
server processes the read/write request itself and examines that the requested
operation has been performed on d (d < 2f+1) servers. However, service integrity
is still ensured through the threshold to sign (but not the examinations), because
the d servers may be a subset of the h servers signing responses and multiple
examinations together don’t guarantee that the operation has been performed
on more than h servers.

3.5 Is It Possible to Find Any Third Family of Valid Protocols?

SP-I and SP-II ensure service integrity of TSS-BQS systems through different
mechanisms. Some questions appear when we analyze these protocols. Firstly, are
there any valid server protocols ensuring service integrity through mechanisms
essentially different from SP-I and SP-II? We had tried to design a different
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one, but the outcome is always similar to SP-I or SP-II. Secondly, can we design
valid server protocols with a combined mechanism requiring fewer examinations
than SP-I while having a smaller threshold to sign than SP-II? Such combined
protocols might have advantages of both SP-I and SP-II, and offer balanced per-
formance. Finally, (if such a combined mechanism exists) can we discover the
relationship of these two mechanisms to ensure service integrity? The relation-
ship may lead to parameterized TSS-BQS systems with flexible configurations.

4 Main Results

In this section, we present the validity theory on TSS-BQS systems. The “soul” of
this theory is to identify the “bonds” between the validity definition (Definition
1) and the design space for server protocols in a mathematically rigorous way so
that a formal proof of our impossibility conjecture is derived. In particular, we
prove that: a) there exist only two families of valid server protocols integrating
BQS with TSS; b) service integrity is ensured through either the threshold to
sign or the examinations by the correct server(s) partially signing responses; and
c) nobody can design a combined mechanism, e.g., a server protocol requiring
fewer examinations than SP-I and having a smaller threshold than SP-II.

4.1 Design Space for Server Protocols

Based on the general model in Section 3.2, it can be seen that the design flex-
ibilities of server protocols are mainly associated with how servers validate the
correctness of a response (to be signed) and partially sign it. We find that the
design flexibilities can be “captured” by a rather simple concept called signing-
condition (i.e., the condition to satisfy when a server partially signs a response).

For example, following some server protocol, a correct server Si can partially
sign a response only if it receives messages indicating that the corresponding
read/write request has been processed by certain servers, e.g., replicas or ac-
knowledgements signed using their server keys. So, when Si partially signs a
response, it is asserted that the operation has been performed on these servers.
However, it doesn’t mean that all these servers strictly serve the storage func-
tion. A read/write operation is defined to be performed on a server of BQS [13],
if it receives the request and replies with a replica or acknowledgement.

Definition 2 (Signing-Condition). Given a server protocol, whenever Si (ei-
ther correct or faulty) uses its service key share to partially sign a response, it
is asserted that the corresponding read/write operation has been performed on
some subset of servers. This specific subset is called one signing-condition of Si,
denoted C(Si). �

Given one server protocol, the condition enabling a server to partially sign a
response can be not unique. Rather, alternative signing-conditions exist. In Fig-
ure 1, for example, S5 uses its service key share to partially sign a response
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after it is convinced that {S1, S2, S3, S4, S7} have processed the read/write re-
quest. However, if the delegate S3 performs the operation on another quorum
of servers (e.g., {S1, S2, S3, S4, S5} or {S2, S3, S4, S5, S6}), S5 will also partially
sign it. Thus, there are at least three alternative signing-conditions of S5.

Definition 3 (Signing-Condition-Set). Given a server protocol, the set of
all signing-conditions C(Si) of Si is called the signing-condition-set C (Si) of Si;
i.e., C (Si) = {C(Si)}. �

Correct and faulty servers often have different signing-condition-sets, because
faulty servers can partially sign either correct or fake responses (without satis-
fying the conditions as correct servers must follow).

4.2 Properties of Valid Server Protocols

Assumption 1. For a valid server protocol, the read/write request from clients
is included in the partial-signing request (sent by a delegate to servers).

Justification. When requesting servers to partially sign a response, a delegate
shall firstly convince them that an authorized client has sent the corresponding
request. Otherwise, if a response is signed even when clients don’t send the
request, this response can be cached by faulty servers to launch attacks later.
For example, if faulty servers can (convince others to) sign responses returning
the current right replica with “potential” nonce when there doesn’t exist a read
request, these signed responses can be accepted by clients later, even when the
returned “right” replica is updated by some write operation.

So, it is necessary for (correct) servers to check that the corresponding request
exists before they partially sign a response. A safe and straightforward way is to
include the intact read/write request in each partial-signing request, and then
any server can authenticate it1. �

Assumption 2. On receiving a read/write request, either forwarded by delegates
directly or sent along with a partial-signing request, a correct server performs
the requested read/write operation.

Justification. Each correct server Si of TSS-BQS systems is firstly a server of
BQS and serves the basic storage function. On receiving a read/write request
forwarded by delegates, Si acts as a server of BQS [13,14]: it replies with its
replica or an acknowledgement signed using its server key, and only updates its
replica if the data item being written has a higher timestamp than its own.

On receiving a read/write request sent along with a partial-signing request
(to sign a replica to be returned or an acknowledgement)2, Si uses its service
1 We can require clients to sign the read/write request; then each server can use clients’

public keys to authenticate it. And each client’s public key (or certificate) can also
be stored in the TSS-BQS system as a self-verifying variable and servers can (act as
read-only clients to) read it, making the system self-contained.

2 In the meantime, some signing-condition of Si must be satisfied.
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key share to partially sign a) the replica to be returned if it is identical with its
own3, or b) the acknowledgement. Si also updates its replica if the data item
being written has a higher timestamp than its own. In this case, Si actually
acts the same as that of BQS: serves the storage function and signs the same
messages, except that one is signed using its server key and the other is done
using its service key share, which are both held by Si only. �
Because TSS-BQS systems assume asynchronous channels, this assumption
doesn’t harm the security. Moreover, it allows more flexible and efficient server
protocols. Firstly, it doesn’t require a strict order between the read/write opera-
tion and the partial-signing of each server. Secondly, the read/write request can
be sent along with the partial-signing request to reduce communication costs.
In addition, a correct delegate also “sends” the request to itself, then serves the
storage function and performs the requested read/write operation.

Lemma 1. For a valid server protocol, ∀C(Si) ∈ C (Si) : Si ∈ C(Si).

Proof. This lemma can be directly concluded from Assumptions 1 and 2. When
Si (either correct or faulty) accepts a partial-signing request and replies with a
partial signature, this partial-signing means that Si has a) received the corre-
sponding read/write request according to Assumption 1, and b) performed the
requested operation according to Assumption 2. So, Si ∈ C(Si). �
In BQS (and TSS-BQS systems), “an operation performed on each server in some
quorum” doesn’t mean that all these servers strictly follow the server protocol
and serve the storage function. As long as 2f +1 servers reply with their replicas
or acknowledgements (and the correct ones of them have accepted and processed
the read/write request), data consistency is ensured. Although up to f faulty
servers may send fake replicas or acknowledge write requests without updating
their replicas, the negative impact of faulty servers and their replies are masked
by (the correct ones in) any quorum of 2f + 1 servers.

Lemma 2. For a valid server protocol, C (Si) = {C : Si ∈ C} if Si is faulty.

Proof. If Si is faulty, it can uses its service key share to partially sign a response
arbitrarily, whether with any process or not. Then, a partial signature by Si may
ensure no operations on any other servers except itself according to Lemma 1.
So, any subset C containing Si (Si ∈ C) can be a signing-condition of Si. �

Theorem 41. C (·) of valid server protocols satisfies the following signing-
condition-inequality:
For any h-server set H = {Si1 , Si2 , · · · , Sih

} (|H | = h), ∀C(Sie) ∈ C (Sie : 1 ≤
e ≤ h) :

⋃
H C(Sie ) = C(Si1 )∪C(Si2 )∪· · ·∪C(Sih

) contains some quorum of
2f + 1 servers; that is, |⋃H C(Sie )| ≥ 2f + 1.

3 If the replica to be returned is unmodified and has a higher timestamp than its own,
Si also partially signs it. This case can be explained as two steps: firstly Si updates
its replica with the one to be returned (which must be written by a more recent
write operation), and then partially signs the response returning its replica.
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Proof. To prove this theorem by contradiction, assume a server protocol not sat-
isfying the inequality, and then we will find that service integrity is not ensured
either. If the signing-condition-inequality is not satisfied, there must exist an h-
server set (denoted H ′), ∃C′(Sie) ∈ C (Sie : Sie ∈ H ′) : |⋃H′ C′(Sie)| < 2f + 1.

On receiving a read/write request, a faulty server can serve as a delegate:
1. Perform the requested operation on servers in

⋃
H′ C′(Sie), and construct

a response to be signed;
2. Request Si1 ∈ H ′ to partially sign the response, and Si1 (either correct or

faulty) will partially sign it because the operation has been performed on servers
in C′(Si1 ) ⊆

⋃
H′ C′(Sie);

3. Request Si2 , Si3 , · · · , Sih
∈ H ′ to partially sign the response, and collect

the partial signatures generated by these h servers; and
4. Combine these h partial signatures into a signed response.
Then, this signed response will be accepted by the client even when the re-

quested operation is performed on fewer than 2f + 1 servers, i.e.,
⋃

H′ C′(Si).
Hence, service integrity is not ensured. So, the signing-condition-inequality is a
necessary condition of valid server protocols. �

Theorem 42. A server protocol is valid if and only if the following conditions
are satisfied:
A. There exists an h-server set H∗ (|H∗| = h) consisting of correct servers only;
and ∃C∗(Si) ∈ C (Si) for all Si ∈ H∗ : |⋃H∗ C∗(Si)| ≤ n − f = 2f + 1.
B. Every signing-condition-set C (·) satisfies the signing-condition-inequality.

Proof. Necessity. Firstly, an h-server set H∗ consisting of correct servers only,
is necessary to sign responses using the service private key, when faulty servers
don’t partially sign any messages. Secondly, the subset that performs the re-
quested read/write operation (i.e.,

⋃
H∗ C∗(Si)), shall be available if f servers

are crash, so it cannot contain more than n-f servers. Thus, Condition-A is a
necessary condition as well as the signing-condition-inequality.

Sufficiency. On receiving a read/write request from clients, a (correct) dele-
gate can perform the requested operation on servers in

⋃
H∗ C∗(Si), cooperate

with the h correct servers in H∗ to sign the response, and send it to clients.
So, the service is available. Service integrity is also ensured because the signing-
condition-inequality is satisfied and

⋃
H∗ C∗(Si) contains some quorum. �

Lemma 3. For a valid server protocol, f + 1 ≤ h ≤ 2f + 1.

Proof. Firstly, there exists an h-server set consisting of correct servers only
according to Theorem 42, and up to f out of n servers can be faulty, so
h ≤ n − f = 2f + 1. Secondly, let’s prove f + 1 ≤ h by contradiction. As-
sume h < f + 1; there exists an h-server set consisting of faulty servers only
(denoted H̄). For each Sj ∈ H̄ , {Sj} is a signing-condition of Sj according to
Lemma 2. Then, |⋃H̄ C(Sj)| = |⋃H̄{Sj}| = |H̄ | = h < f + 1, and the signing-
condition-inequality is not satisfied. Thus, h ≥ f + 1; i.e., faulty servers cannot
conspire to use the service private key to sign responses arbitrarily. �
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4.3 Two Families of Valid Server Protocols

We investigate C (Si) of valid server protocols under the uniformity assumption.

Lemma 4. Assuming that servers are uniform and Si is correct, if C ∈ C (Si)
and Sj ∈ C, then C ∈ C (Sj), where j 	= i.

Proof. According to Lemma 2, C is a signing-condition of Sj (Sj ∈ C) if Sj

is faulty. Let’s assume Sj is correct. Since C is a signing-condition of Si, Si

uses its service key share to partially sign a response after examining that the
requested operation has been performed on servers in C (Si ∈ C). Following
the same server protocol as Si, Sj also partially signs it after examining that
the requested operation has been performed on the same subset C (Sj ∈ C; the
relationship between C and Si is the same as that between C and Sj). Thus, C
is also a signing-condition of Sj ; i.e., C ∈ C (Sj). �

Lemma 5. Assuming that servers are uniform and Si is correct, if C ∈ C (Si)
and Sj 	∈ C, then {Sj} ∪ C′ ∈ C (Sj), where C′ = C \ {Si}.

Proof. According to Lemma 2, {Sj}∪C′ is a signing-condition of Sj if Sj is faulty.
Let’s assume Sj is correct. Since C = {Si}∪C′ is a signing-condition of Si, Si uses
its service key share to partially sign a response, after it processes the request
itself and examines that the requested operation has been performed on servers
in C′ (Si 	∈ C′). Following the same server protocol as Si, Sj also partially signs
the response, after it processes the request itself and examines that the requested
operation has been performed on the same subset C′ (Sj 	∈ C′; the relationship
between C′ and Si is the same as that between C′ and Sj). Thus, {Sj} ∪ C′ is
a signing-condition of Sj ; i.e., {Sj} ∪ C′ ∈ C (Sj). �

Theorem 43. Assuming that servers are uniform, there are only two families
of valid server protocols as listed below, and it is impossible to find any third
family:
1. 2f + 1 > h ≥ f + 1, and for any h-server set H, ∃S∗ ∈ H : C (S∗) = {C :
S∗ ∈ C ∧ |C| ≥ 2f + 1}.
2. h = 2f + 1, and ∀C(Si) ∈ C (Si) : Si ∈ C(Si).

Proof. Two cases are analyzed to find h and C (·) of valid server protocols. Note
that these complementary cases cover all possible scenarios.

1. For any h-server set H , ∃S∗ ∈ H, ∀C(S∗) ∈ C (S∗) : |C(S∗)| ≥ 2f + 1.
The signing-condition-inequality is satisfied without additional constraints be-

cause |⋃H C(Si)| ≥ |C(S∗)| ≥ 2f + 1. Furthermore, since Si ∈ C(Si) according
to Lemma 1, C (S∗) = {C : S∗ ∈ C ∧ |C| ≥ 2f + 1}.
2. There exists an h-server set (denoted H̃), ∀Si ∈ H̃, ∃C̃ ∈ C (Si) : |C̃| < 2f +1.

According to Lemma 3, h ≥ f + 1 and there is at least one correct server
S̃ ∈ H̃ . There exists C̃ ∈ C (S̃) : |C̃| < 2f + 1. For each Sj ∈ C̃, C̃ is a
signing-condition of Sj according to Lemma 4. Select all servers in C̃, and then
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|⋃C̃ C(Sj)| = |C̃ ∪ · · · ∪ C̃| = |C̃| < 2f + 1. So, in order to satisfy the signing-
condition-inequality, more servers than C̃ are needed to compose a valid h-server
set, i.e., h > |C̃|. Then, we can find an h-server set H̃∗ ⊃ C̃.

For each Sk ∈ H̃∗ \ C̃, {Sk} ∪ C̃′ is a signing-condition of Sk according to
Lemma 5, where C̃′ = C̃ \ {S̃}; and |⋃H̃∗ C(·)| = |⋃C̃ C(Sj)

⋃
H̃∗\C̃ C(Sk)| =

|C̃ ∪ · · · ∪ C̃
⋃

H̃∗\C̃({Sk}∪ C̃′)| = |C̃ ⋃
H̃∗\C̃{Sk}| = |H̃∗| = h. So, h ≥ 2f + 1 to

satisfy the signing-condition-inequality.
Thus, h = 2f + 1 because 2f + 1 ≥ h according to Lemma 3; and the signing-

condition-inequality is satisfied: |⋃H C(Si)| ≥ |⋃H{Si}| = |H | = h = 2f + 1.
These two solutions cover all possible scenarios and there is no other solution

for the signing-condition-inequality (i.e., Condition-B of Theorem 42), and it can
be verified that these solutions also satisfy Condition-A. Therefore, according to
Theorem 42, they are the all solutions (or valid server protocols) of TSS-BQS
systems, and no other valid protocol exists. �
These solutions correspond to two families of valid server protocols, respectively.
The first family satisfies the signing-condition-inequality (i.e., ensures service in-
tegrity) through the examinations by correct server S∗ (|C(S∗)| ≥ 2f + 1), and
the second does through the threshold to sign (h = 2f + 1). There is no valid
protocol with combined mechanisms requiring fewer examinations than 2f + 1
while having a threshold h < 2f + 1. Although we can design a protocol where
|C(·)| ≥ 2f + 1 for correct servers and h = 2f + 1, service integrity is ensured
repeatedly through each of these two mechanisms, instead of a combined one.

5 Efficient Server Protocols

In this section, two existing server protocols [10,26] are deduced by minimizing
the computation costs of the solutions predicted in Theorem 43. Two types of
computations are reflected in these solutions as follows:

Partial-signing using service key shares. The computation cost is measured
by h: h partial signatures are needed to fully sign a response.

Examinations that the requested read/write operation has been performed
on certain servers. The computation cost is measured by |C(·)|: before partially
signing a response, a (correct) server Si verifies messages which are signed using
server keys, to examine that servers in C(Si) have processed the read/write
request. In fact, since Si ∈ C(Si), it can verify only |C(Si)| − 1 messages from
other servers.

By minimizing the amount of computations (i.e., choosing the minimal h and
|C(·)| allowable), we find two solutions of efficient (and valid) server protocols:

1. h = f + 1, and for any h-server set H , there exists a (correct) server
S∗ ∈ H : C (S∗) = {{S∗} ∪ C′ : |C′| = 2f + 1} (C′ may contain S∗ or not).

2. h = 2f + 1, and C (Si) = {{Si}} if Si is correct.

Based on the efficient solutions, we design two server protocols as below. They
are essentially the same as SP-I [26] and SP-II [10], which may have additional
design details for specific applications (e.g., the means of generating timestamps).
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5.1 Server Protocol I

The service private key is shared by 3f + 1 servers, and the threshold to sign is
f + 1. Servers use the following protocol, and Sd is a delegate.

A. On receiving a read/write request from clients, Sd forwards it to all servers.
B. On receiving a read/write request from Sd, Si uses its server key to sign

a reply and sends it to Sd. The reply is its replica for reading. For writing, Si

replies with an acknowledgement, and only updates its replica if the data item
being written has a higher timestamp than its own.

C. Sd repeats Step-A periodically until it receives replies from 2f +1 servers.
D. Sd generates a partial-signing request and sends it to all servers. The

partial-signing request includes: the read/write request, the response (to be
signed), and those 2f + 1 replies collected in Step-C. For reading, the response
is the right replica (i.e., the unmodified one with the highest timestamp out of
those 2f + 1 replicas). For writing, the response is an acknowledgement.

E. On receiving a partial-signing request from Sd, Si uses its service key
share to generate a partial signature for the response and sends it to Sd, after
examining that those included replies are generated by 2f + 1 servers for the
included read/write request. For reading, Si also examines that the replica to
be returned a) is the unmodified one with the highest timestamp out of those
included 2f + 1 replicas, and b) has a timestamp higher than or identical with
its own. Otherwise, Si replies to Sd with a rejection. For writing, Si also updates
its replica if the data item being written has a higher timestamp than its own.

F. Sd repeats Step-D periodically until it receives partial signatures from
f + 1 servers, or re-starts from Step-A if it receives f + 1 rejections for reading
(happening when a write operation overlaps the read operation). Sd combines
these f +1 partial signatures into a fully signed response and sends it to clients.

5.2 Server Protocol II

The threshold to sign of SP-II is equal to the size of a quorum (i.e., h = 2f +1).
Steps for reading and writing are described separately, and Sd is a delegate.

Read
A. On receiving a read request from clients, Sd generates a partial-signing

request and sends it to all servers. The partial-signing request includes: the read
request, and the response (to be signed) which includes the right replica to be
returned. Sd sets the “right” replica to its own replica tentatively.

B. On receiving a partial-signing request from Sd, Si uses its service key share
to generate a partial signature for the response and sends it to Sd, after checking
that the replica (to be returned) is unmodified and has a timestamp higher than
or identical with its own. Otherwise, Si replies to Sd with a rejection.

C. Sd repeats Step-A periodically until it receives partial signatures from
2f + 1 servers, or breaks to Step-D if it receives f + 1 rejections. Sd combines
these 2f +1 partial signatures into a fully signed response and sends it to clients.
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Fig. 2. Communication Costs of SP-I and SP-II

D. Sd forwards the read request (from clients) to all servers. Step-D is exe-
cuted only if Sd receives f + 1 rejections, happening when it doesn’t store the
right replica and shall collects replicas from other servers to update its own.

E. On receiving a read request from Sd, Si replies with its replica.
F. Sd repeats Step-D periodically until it receives replicas from 2f +1 servers.

Sd obtains the right replica out of these 2f + 1 replicas, updates its own, and
re-starts from Step-A.

Write
A. On receiving a write request from clients, Sd generates a partial-signing

request and sends it to all servers. The partial-signing request includes: the write
request, and the response (to be signed) which is an acknowledgement.

B. On receiving a partial-signing request from Sd, Si uses its service key
share to generate a partial signature for the response and sends it to Sd. Si also
updates its replica if the data item being written has a higher timestamp.

C. Sd repeats Step-A periodically until it receives partial signatures from
2f + 1 servers. Sd combines these 2f + 1 partial signatures into a fully signed
response and sends it to clients.

6 Performance

In this section, SP-I and SP-II are compared in terms of communication costs,
computation costs and the read responses on concurrent read/write operations.

6.1 Communication

Assuming that there are no concurrent read/write operations, Figure 2 shows
the communication costs of SP-I and SP-II. It can be seen that SP-I always needs
two rounds of communications among servers, while SP-II-write needs only one
round, because SP-II doesn’t need to collect process results from some quorum
as SP-II does before delegates request other servers to partially sign responses.

The communication cost of SP-II-read varies whether delegates store the right
replica or not. If Sd stores the right replica, one round is enough. Otherwise, three
rounds are needed: after receiving f +1 rejections, Sd collects replicas to update
its own, and requests other servers to partially sign the response again.
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6.2 Computation

The major computation costs of TSS-BQS systems are public key cryptographic
computations [15,26]: signing using server keys and partial-signing using service
key shares. Firstly, the computation costs of server key depend on the commu-
nications among servers, because they are used to sign messages among servers.

Secondly, while SP-II always needs partial signatures by more f servers than
SP-I, the cost of each partial-signing varies with different TSS. The following
analysis is specific to the scheme used in [15,26,27]: each partial-signing includes
Ln,h = l(n− h + 1)/n modular exponentiations of long integer (e.g., 1024 bits),
where l =

(
n

h−1

)
. It can be verified that L3f+1,f+1 = L3f+1,2f+1, i.e., each

partial-signing of SP-I and SP-II costs approximately equal resources.

6.3 Concurrent Read/Write Operations

Since each read/write operation must be performed on 2f + 1 servers and may
last a long time, concurrent operations can happen usually in TSS-BQS systems.
We analyze the responses of the read operations overlapped by a concurrent write
operation, and firstly define the windows of operations:

Read. A read operation returning [x, vr , tr] from some quorum starts (denoted
Trs) when the first server in this quorum receives the read request and replies
with its replica, and ends (denoted Tre) when the delegate determines to return
[x, vr, tr], which is eventually signed and sent to clients. Note that the delegate
may determine and be rejected for several times before the operation ends.

Write. An operation writing [x, vw, tw] on some quorum starts (denoted Tws)
when the first correct server in this quorum receives the write request and up-
dates its replica, and ends (denoted Twe) when the last correct one in this quorum
does. Variable x really starts to change only when a correct server receives the
write request, because even if faulty servers receive the request before Tws, they
can drop it maliciously.

Assume that [x, v0, t0] is the right replica before the concurrent operation writ-
ing [x, vw , tw] and tw > t0. All situations of concurrent operations are analyzed
as below.
1. Tws < Trs < Twe < Tre or Trs < Tws < Twe < Tre

SP-I may return [x, vw , tw] or [x, v0, t0], while SP-II always returns [x, vw, tw]
at the cost of (possible) more rounds of communications among servers. Following
SP-I, the 2f +1 replicas sent along with the partial-signing request as evidences,
may be collected before Twe and contain [x, v0, t0] only (e.g., these replicas are
collected when only one correct server has updated its replica). And the f + 1
servers signing the read response, may contain only another correct server which
doesn’t receive the concurrent write request or update its replica.

Following SP-II, the 2f+1 servers signing the read response, must contain one
correct server which has received [x, vw, tw] when Twe, because BQS guarantee
that the intersection of any two quorums contains at least one correct server.
This correct server partially signs the response only if the replica to be returned
has a timestamp higher than or identical with its own (i.e., tr ≥ tw); otherwise,
it rejects to sign it, leading to two more rounds of communications.
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2. Tws < Trs < Tre < Twe or Trs < Tws < Tre < Twe

Both SP-I and SP-II may return [x, vw, tw] or [x, v0, t0]. Although at least one
correct server has received [x, vw, tw] after Tws, it may not be involved in the
concurrent read operation at all. It is possible that all servers involved in the read
operation, store [x, v0, t0] only; and then the read response returns [x, v0, t0].

7 Related Work

BQS of self-verifying data over asynchronous, authenticated and reliable chan-
nels are proposed in [13]; variations of other data or over different channels can
be found in [4,13,17]. Dynamic BQS [1,11,16] can reconfigure the number of
servers and faulty ones (i.e., dynamic n and f).

Several distributed storage systems [7,9,22,24,25] apply threshold cryptogra-
phy (e.g., secret sharing, erasure code, etc.) to protect data integrity and confi-
dentiality. In [18] and [23], secret sharing is integrated with quorum systems and
BQS, respectively, to provide fault-tolerant storage services.

TSS are utilized to sign messages in state machine replication [2,3,20,21]
and distributed storage systems [9,22]: signatures by TSS indicate that enough
servers agree with the content of signed messages or have performed the re-
quested operations, masking the impact of faulty servers. COCA [26] is the first
work to integrate BQS with TSS, and its protocol is adopted in CODEX [15] to
store secret data. [10] proposed another server protocol of TSS-BQS systems.

8 Conclusions

To provide self-contained BFT storage services of self-verifying data, traditional
BQS are no longer sufficient. Achieving this goal demands the integration of
BQS and TSS, and only two valid TSS-BQS systems have been proposed in
the literature. Based on these two systems, we can find similar server protocols,
leading to two families of TSS-BQS systems. We develop a validity theory on
server protocols of TSS-BQS systems and formally prove that it is impossible to
find any third family of valid TSS-BQS systems. It is also shown that the only
two families of valid server protocols “predicted” (or deduced) by the proposed
theory precisely match the existing protocols.
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