
CED2: Communication Efficient

Disjointness Decision

Luciana Marconi1, Mauro Conti2, and Roberto Di Pietro3

1 ”Sapienza” Università di Roma, Department of Computer Science,
Roma 00198, Italy

marconi@di.uniroma1.it
2 Vrije Universiteit Amsterdam, Department of Computer Science,

Amsterdam HV 1081, The Netherlands
mconti@few.vu.nl

3 Università di Roma Tre, Department of Mathematics,
Roma 00146, Italy

dipietro@mat.uniroma3.it

Abstract. Enforcing security often requires the two legitimate parties
of a communication to determine whether they share a secret, without
disclosing information (e.g. the shared secret itself, or just the existence
of such a secret) to third parties—or even to the other party, if it is
not the legitimate party but an adversary pretending to impersonate
the legitimate one. In this paper, we propose CED2 (Communication
Efficient Disjointness Decision), a probabilistic and distributed protocol
that allows two parties—each one having a finite set of elements—to
decide about the disjointness of their sets. CED2 is particularly suitable
for devices having constraints on energy, communication, storage, and
bandwidth. Examples of these devices are satellite phones, or nodes of
wireless sensor networks. We show that CED2 significantly improves the
communication cost compared to the state of the art, while providing the
same degree of privacy and security. Analysis and simulations support
the findings.

Keywords: sets disjointness test, communication complexity, privacy,
security, probabilistic algorithms.

1 Introduction

Secure communications often require the involved parties to share a secret. As an
example, two parties can use a pre-loaded shared symmetric key to encrypt the
communication between them [4]. However, a problem arising in such scenarios
is for the parties to determine whether they share such a secret. In this paper, we
deal with this problem. In particular, we aim at minimizing the communication
effort needed by the two parties to discover whether they share any common
element from a given set. Note that this approach is mandatory where the com-
munication cost is a driving system parameter. For instance, this is usually the
case in satellite communications—where bandwidth can be limited or it has to

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 290–306, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

CED2: Communication Efficient Disjointness Decision 291

be shared between multiple users at the same time—or when elements exchange
is unfeasible because of the set or elements size.

Note that in this paper we present the problem of deciding whether there is
an intersection between two sets for a security purpose. However, set intersection
operations are required in a wide range of applications, particularly in the area of
information integration across databases [1,9]. Further examples of applications
are: finding common volumes between large libraries; finding common friends
or interests in social networks without exchanging the corresponding lists; and,
public welfare survey establishing how many welfare recipients are treated for a
specific illness [1,9].

For the majority of these applications, there are often privacy and security
concerns requiring the use of privacy-preserving techniques that usually relies
on expensive asymmetric cryptographic primitives and a considerable commu-
nication cost [8,15]. However, there are scenarios that call for inexpensive cryp-
tographic primitives and reduced communication cost, such as the ones cited
before; these are the niche applications where CED2 comes at hand.

Contribution. In this work, we propose CED2 (Communication Efficient Dis-
jointness Decision): a probabilistic and distributed protocol for deciding set in-
tersection. We assume that each of the two parties of a communication has a set
of secrets (or more generally, elements): the sets being A and B, with elements
from a domain D. CED2 is particularly concerned in minimizing the commu-
nication cost. Hence, focusing on communication complexity means to reduce
the bits of information that the two parties exchange until at least one of them
discovers whether A∩B = ∅. The proposed solution does not require the parties
to actually send any element of the set. CED2 leads to a global communication
saving compared to the state of the art—that, to the best of our knowledge, is
represented by the algorithm by Kurtz and Manber [10] (we later refer to this al-
gorithm as KM). Finally, this improvement is achieved providing the same level
of privacy and security of KM—our solution does not disclose more information.
The main contribution of this work is in the reduced communication overhead
compared to KM, that is a building block protocol for many security settings
where two parties need to know (efficiently) whether they share a secret.

Roadmap. The rest of the paper is organized as follows. Section 2 describes
the related work in the area. Section 3 presents our solution, that is the CED2

protocol. Section 4 provides the analysis of CED2, while Section 5 is devoted to
the protocol evaluation and comparison with the state of the art. Finally, Section
6 reports some concluding remarks.

2 Related Work

The literature on set intersection decision problem makes available a wide range
of applications from set theory, combinatorial optimization, database searching,
circuit complexity and applied cryptography [2,3,5,15]. In this paper, we focus
on the evaluation of communication complexity of the disjointness problem. This
problem is characterized as follows: two parties, Alice (A) and Bob (B), hold sub-
sets A and B respectively, both of n elements from a given domain D. Alice and

292 L. Marconi, M. Conti, and R. Di Pietro

Bob follow a protocol to jointly decide whether they share some elements or not.
That corresponds to the computation of the disjointness function Disj(A,B),
defined as follows:

Disj(A,B) =

{
1, if A∩ B = ∅
0, otherwise

(1)

The two parties do not know each other’s input. To determine the output value,
they alternatively exchange bits according to the protocol. In a deterministic
protocol, their answer must always be correct, i.e., equal to Disj(A,B) for ev-
ery input pair A,B. In a probabilistic protocol, the algorithms of the parties
depend on unbiased coin tosses, and are required to be correct with a bounded
probability (1/2) on every input. Interested readers can refer to [11] for a survey.

We briefly remind the notion of the communication complexity, introduced
by Yao [14]. The communication complexity of a protocol P is the number of
bits exchanged by the involved parties during the protocol run. In general, the
communication complexity of a function f is that of the best possible protocol
that computes f . The probabilistic communication complexity, denoted by R(f),
takes into account also the coin tosses used. Two access models to the random
bits distinguish the private coin model, in which each party tosses his private
coin, from the common randomness model, in which both parties share a common
random bit string. It is known that R(Disj) is Θ(n): the lower bound Ω(n) is
given in [7], [11]; the upper bound corresponds for both parties of just sending all
of their input. More recently, H̊astad and Widgerson studied the communication
complexity of the disjoint function [6]. They proved that in the model of common
randomness:

– R(Disjk
n) = O(n), for all n;

– R0(Disjk
n) = O(n), for instances of disjoint sets, and R0(Disjk

n) = O(n +
log k) for not-disjoint sets. R0(f) represents the number of bits exchanged
to compute f with the Las-Vegas type probabilistic algorithm, where the
answer is required to be always correct (zero-error) [13].

Disjk
n(A, B) indicates the disjoint function of sets of size n whose elements are

represented as bit strings of length k.
Thus computing |A ∩B| requires Θ(n) communication. Therefore, even with-

out taking any other requirement into consideration (e.g. privacy), the commu-
nication complexity of any set intersection algorithm is at least proportional to
the input size. Moreover, Freedman et al. [5] showed a reduction from disjoint-
ness, proving that the communication cost of an approximation algorithm for
the intersection size is lower-bounded by Ω(n).

The cited works study the formal properties of the disjointness problem con-
sidered as a communication problem. However, in order to evaluate the design of
our solution and compare its performance, we consider a specific solution to the
disjointness problem. This solution is provided by the algorithm from Kurtz and
Manber appeared in 1987 [10]. The authors describe a distributed probabilistic al-
gorithmthat solves the disjointness problem inO(log2 log2 n) rounds. The solution

CED2: Communication Efficient Disjointness Decision 293

requires to exchange a message of O(cn) bits at each round (where c is the number
of bits (O(log2 n)) for the representation of the vector’s indexes (see Section 4).

The basic idea of their solution is to reduce setsA andB at each round, eliminat-
ing all elements that are not in the intersection. The algorithm terminates when
either i) no more elements are left—in which case the sets are guaranteed to be
disjoint—or ii) when, with high probability, a set of candidates belonging to the in-
tersection is left. The core of the KM solution is to use random hash functions taken
from a pre-determined class of hash functions, to establish which elements are not
in the intersection. The KM solution can be summarized as follows. At a generic
round i > 0, the parties agree on a randomhash function Hi. The agreement can be
reached in several ways. For instance, we can assume that only one party chooses
(uniformly at random) the function from the family, and then it sends a descrip-
tion of the function to the other party. Alternatively, if we suppose that the family
of hash functions is an ordered set, one party can send to the other just the index
of the selected function . Let be x a vector of size n with all values initialized to
false, and let Ai denote the elements of A that are not eliminated after round i. A
computes Hi(as) for each as ∈ Ai and set x[j] = x[j]∨(Hi(as) = j). Note that x[j]
is true iff there exists at least one element as ∈ Ai such that Hi(as) = j (i.e. as is
hashed into the jth position). The party B executes the same computation using a
vector y. The corresponding vectors x and y (of length n) are then exchanged. This
requires sending n bits. A can now eliminate all elements of Ai that were hashed
into position j, such that y[j] = false; B does the same for Bi. Intuitively, this is
equivalent to a bins and balls model where balls are the set elements and bins are
the vector positions. Hashing is assumed to be equivalent to random throwing balls
in bins (A throwing in vector x and B throwing in vector y). At each round, the al-
gorithm eliminates all the balls for which the corresponding bin of the other party
is an empty bin.

In our solution we use similar techniques. That is, the same probabilistic
model (bins and balls) and the same simulation technique of the model (hashing).
Exploiting a result on the bins and balls model contained in [12], we consider at
each round only the maximum loaded bin. Thus, exchanging only one index at
each round we build a protocol that computes the disjointness function with a
global saving in the number of bits exchanged.

3 Our Solution: CED2

In this section, we propose CED2 (Communication Efficient Disjointness Deci-
sion), a communication efficient protocol for deciding whether there are elements
in the intersection of two given sets. Section 3.1 introduces the system model and
the notation used in the paper. Section 3.2 gives an overview of the proposed
solution, while the protocol description can be found in Section 3.3.

3.1 System Model and Notation

Let us consider two sets A = {a1, a2, ..., an} and B = {b1, b2, ..., bm}, with n, m ∈
N. We can assume w.l.o.g that A,B ⊆ {0, 1, ..., 2k − 1} with k ∈ N and m = n.

294 L. Marconi, M. Conti, and R. Di Pietro

A and B are stored at two different parties, A and B respectively, that can
exchange messages.

We would like to establish whether A∩B = ∅ or not. Moreover, we would like
to establish what is the communication cost payed in terms of total numbers of
exchanged bits. Table 1 summarizes the notation used in this paper.

Table 1. Notation Table
A input set
B input set
A (Alice); protocol party
B (Bob); protocol party
X A ∩ B
H family of hash functions
Hi hash function randomly selected from H at round i
jM index of the max loaded bin
Ai elements not eliminated from A after round i
Bi elements not eliminated from B after round i
U i

A[j] elements from A hashed, at round i, in position j
UA[j] configuration of j-th bin of A at a generic round
U i

B[j] elements from B hashed, at round i, in position j
UB[j] configuration of j-th bin of B at a generic round
log n natural logarithm
log2 n base 2 logarithm
R0(f) communication complexity of a Las-Vegas probabilistic pro-

tocol for function f
R(f) communication complexity of a Monte Carlo probabilis-

tic protocol for function f

Disjk
n the disjointness function: Disjk

n(A,B) = 1 iff A ∩ B = ∅,
A and B having n elements

KM Kurtz and Manber algorithm [10]

3.2 Protocol Overview

CED2 works through different rounds. In particular, similarly to KM [10], the
idea of CED2 is to reduce the sets A and B at each subsequent protocol round.
CED2 also uses the bins and balls concept and, at the beginning of each protocol
step, the remaining set’s elements (balls) are assigned to bins accordingly to
a hash function—different for each round. The basic idea is to eliminate, at
each round, elements that are not in the intersection, exchanging the minimum
number of bits for this purpose. To achieve the goal, we focus only on one
particular bin at each round, the most loaded one. This allows us to cut the
maximum number of balls possible with the minimum communication cost (just
one index at each time).

Using this technique, we can save a significant amount of communication in
the single round, as shown later in the paper. In fact, we exchange a single index
(the one of the bin with the max load) instead of the whole vector (pairs index,

CED2: Communication Efficient Disjointness Decision 295

load), as done by KM. The simple fact that the cost of a single round is less than
the one of a single round of KM does not directly implies that the overall cost
of CED2 is less than the one of KM. In fact, the overall cost depends also on the
number of steps, that it is different for the two considered protocols. Analysis
and the experimental results show that CED2 outperforms KM.

3.3 Protocol Description

CED2 can be described via the bins and balls model. At every round i, we assign
(throw) the n elements (balls) of each set in n indexes of a vector (bins). The
launches are simulated by a hash function Hi, mapping elements of the sets into
the vector indexes. In the following, the two vectors UA and UB denote bins,
while U i

A[j] (U i
B[j]) denotes the set of values ai ∈ A (bi ∈ B) mapped to the j-th

position at round i. At each round, the parties agree on the hash function Hi—
chosen uniformly at random from a family H of hash functions. In particular,
we consider H = {H ≡ �ax + b(modp)	(modn)}, where a, b < p (a
= 0) are
chosen at random, p is a prime > 2k, and n is the sets cardinality—we remind
that we assume that the two sets have the same cardinality. We denote with
Hi the hash function randomly selected at round i. Furthermore, Ai and Bi

denote the elements not eliminated after round i, from A and B respectively.
Notation Hi(ak) = j indicates that the item ak ∈ A has been assigned to
the bin j, for the round i. Each of the parties involved in the protocol computes
the assignment independently—without requiring any communication. However,
using both parties the same hash function (even if different for each round)
guarantees that elements belonging to A ∩ B map to the same position. Let us
assume that for a given j, UA[j] contains v elements (of A) and the corresponding
bin (same vector’s index j) UB[j] is empty. This assure that the v elements of
A mapped into UA[j] do not belong to the intersection A ∩ B. From the hash
function definition we have the following two properties:

as = bt ∈ A ∩ B =⇒ Hi(as) = Hi(bt) = j (2)

Hi(as) = Hi(bt) = j
=⇒ as = bt ∈ A ∩ B. (3)

Equation 3 justifies the need for using different hash functions in the subsequent
protocol rounds. In fact, let us assume that, at a given round, the randomly
selected hash function induces a configuration of the bins such that bin UA[j]
contains elements of A that are not in A∩B, and bin UB[j] contains elements of
B that are not in A∩B (hash collisions). Intuitively, changing the hash function
at the next round gives a different distribution for the balls in the bins. Thus,
we have a chance to eliminate the balls that do not belong to the intersection—
using randomly chosen functions at each round permits to have launches behave
differently at each round.

The behaviour of CED2 is described in Algorithm 1. First, A randomly select
the hash function used in the current iteration i (line 1). Hence, A maps all the
elements A into the n elements vector, using the hash function (line 2). Then, A

296 L. Marconi, M. Conti, and R. Di Pietro

sends to B the vector index, jM , with the maximum number of elements mapped
into (line 3). B sends back to A the information whether its own vector is empty
at position jM . If this is the case (line 5), A cuts all the elements mapped in
jM (line 6). Then, it checks whether there are remaining elements (line 7). In
the negative case, A can conclude that the intersection is empty, and terminate
with output 1 (line 8). Otherwise, if the B vector is not empty at position jM

(line 10), A checks for how many are the consecutive rounds it was not able to
eliminate elements (line 11). If these consecutive rounds are more than a pre-
determined constant q (its value is discussed in Section 5), A terminates with
output 0 (line 12). If neither of the two termination conditions are verified (lines
8, 12), A iterates the procedure (line 14).

Algorithm 1. CED2

Round i; computation made by A

1: A chooses a random Hi from H and sends a description of Hi (i.e. function
parameters a, b, p) to B

2: A computes Hi(a) = j for each a ∈ Ai−1 and stores a in U i
A[j]

3: A sends to B the jM index, the maximum loaded bin
4: A receives from B the information whether the U i

B[jM] is empty or not
5: if U i

B[jM] = ∅ then
6: Ai = Ai−1 \ {as | as ∈ A and Hi(as) = jM}
7: if (Ai = ∅) then
8: output 1: Disjoint
9: end if

10: else
11: if i satisfy the condition Ai−q = Ai−q+1 = ... = Ai then
12: output 0: Not-Disjoint
13: else
14: i = i + 1; throwing again
15: end if
16: end if

In figures 1 and 2, we depict the two possible scenarios for CED2: disjoint
sets (Figure 1) and not-disjoint sets (Figure 2). For the sake of clarity we do not
show the configuration of the entire bins vectors U i

A and U i
B but just a sample

of them.
Figure 1 shows an example of disjoint sets instances, presented in Figure 1a.

Considering these sets, an example of a cutting round is shown in Figure 1b
and a not cutting round in Figure 1c. Looking at Figure 1b, let us suppose that
position 4 of the A vector is the maximum loaded bin jM . We can observe that
the corresponding position in the vector of B (U i

B[4]) is empty. Thus, at the
subsequent round i + 1, Ai+1 = {0, 1, 3, 5, 6, 7, 8}. Instead, in the case depicted
in Figure 1c the corresponding position in the vector of B is not empty. In fact,
U i
B[4] contains the element labeled 16. Hence, at the subsequent round i + 1,

Ai+1 = Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

CED2: Communication Efficient Disjointness Decision 297

(a) Sets A and B (b) a cutting round (c) a not cutting round

Fig. 1. Example of Disjoint Instances

(a) Sets Aand B (b) a cutting round (c) a not cutting round

Fig. 2. Example of Not-Disjoint Instances

Similarly to Figure 1, Figure 2 shows an example of two not-disjoint sets,
presented in Figure 2a; the green balls indicating elements belonging to the in-
tersection. Considering this case, a cutting launch is shown in Figure 2b and
a not cutting launch in Figure 2c. In Figure 2b, the position 4 is the max-
imum loaded bin jM of A, it does not contain any intersection element and
the corresponding bin U i

B[4] is empty. Hence, at the subsequent round i + 1,
Ai+1 = {0, 1, 3, 5, 6, 7, 8, 9}. Instead, in the case depicted in Figure 2c the green

298 L. Marconi, M. Conti, and R. Di Pietro

ball labeled 1 makes U i
B[4] not empty. This produces, at the subsequent round

i+1, Ai+1 = Ai = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. In fact, the green ball belongs to the
intersection and falls in the bin jM = 4.

4 Analysis

In this section, we analyze the communication cost of CED2 and KM. The anal-
ysis given in this section only considers the scenario where the two sets are
actually disjoint.

We start analyzing the cost for CED2. The overall result is given in Lemma
4. However, we need the following intermediate results: Lemma 1, Lemma 2 and
Lemma 3. Lemma 1 is a result from [12].

Lemma 1. When n balls are thrown into n bins, the maximum number of balls
in any bin is O(log n

log log n) with high probability, i.e., 1 − 1
n .

Lemma 2. When n balls are thrown into n bins the probability of a particular
bin being empty is 1

e for large n.
Proof. The probability that a ball does not fall into a particular bin is 1 − 1

n .
Therefore: Pr[bin j is empty] =

(
1 − 1

n

)n ≈ 1
e . �

Lemma 3. Given two sets A and B with | A |=| B |= n, if A∩B = ∅ then the
average number of messages exchanged for CED2 (Algorithm 1) is O(n · log log n

log n).

Proof. From Lemma 1, we know that if at each round it is possible to cut log n
log log n

elements. Hence, the expected number of rounds to cut all the elements is n· log log n
log n .

The expected trials to find empty a given box j is e (Lemma 2). Thus, the total
expected number of rounds needed to cut all the elements is e · n · log log n

log n . �
We can now give the following Lemma for CED2.
Lemma 4. Given two sets A and B with | A |=| B |= n, if A ∩ B = ∅ then
the average number of bits exchanged for CED2 is O(n · log log n).
Proof. From Lemma 3, we know that e · n · log log n

log n is the expected number of
rounds required by CED2 to cut all the elements. At each round CED2 exchanges
a message of O(log2 n) bits. Indeed, each party sends one single index using log2 n
bits for its representation. Hence, the expected CED2 total bits expenditure is:

e · n · log log n

log n
· log2 n. (4)

Substituting log2 n = log n
log 2 in (4), the claim follows. �

The communication complexity of KM is given by the following Lemma, provided
in [10].

Lemma 5. Given two sets A and B with | A | = | B |= n, if A ∩ B = ∅ then
the average number of bits exchanged for KM is O(n(log2 n)(log2 log2 n)).

Comparing Lemma 4 to Lemma 5, we conclude that CED2 communication com-
plexity (Lemma 4) is lower than KM communication complexity (Lemma 5) by
a factor O(log2 n).

CED2: Communication Efficient Disjointness Decision 299

5 Protocol Evaluation

In the previous section we have provided the analysis of both CED2 and KM for
the disjointness case. In this section, we evaluate our solution leveraging both
the previous analysis and the results of the simulations we run. We consider
both disjointness and not-disjointness cases—and discuss them separately. We
compare our solution to the one of Kurtz and Manber that, to the best of our
knowledge, is the most efficient solution in the literature. In order to run the
simulations shown in this section, we implemented a simulator using Python.
The inputs sets are generated as random integers using the Python libraries
for randomness. The same libraries have been also employed to implement the
family of hash functions described both for CED2 and KM. Each point plotted
in the graphs shown in this section represents the average computed over 500
run of the algorithms.

5.1 Disjoint Sets Instances

We first consider disjoint sets instances as input for the algorithms. Both algo-
rithms work over subsequent rounds by removing elements (“cutting”) from the
starting sets. The two algorithms both terminate when all elements are removed.
Hence, we start investigating how the size of the remaining sets vary with the
number of rounds. The results are shown in figures 3a and 3b for CED2 and KM,
respectively. We specify that data for Figure 3b has been obtained fixing a value
for the number of rounds, and calculating the average number of elements cut
(y-axis value) for that value. Comparing the results for the two protocols, we ob-
serve that CED2 requires a significant higher number of rounds to complete with
respect to KM. As an example, for sets of n = 1000 elements, CED2 requires
some 600 protocol rounds to complete, while KM terminates in 3 iterations.

From just these results, one might conclude that the communication cost of
CED2 is higher than the one of KM. However, we still need to investigate what

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 100 200 300 400 500 600 700 800 900 1000

re
m

ai
ne

d
se

t i
te

m
s

iterations

n=600
n=1000
n=1400
n=1800

(a) CED2

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 1 2 3 4 5 6

re
m

ai
ne

d
se

t i
te

m
s

iterations

n= 600
n=1000
n=1400
n=1800

(b) KM

Fig. 3. Disjoint Sets: Cuts Trend

300 L. Marconi, M. Conti, and R. Di Pietro

 0

 5000

 10000

 15000

 20000

 600 800 1000 1200 1400 1600 1800 2000

bi
ts

 p
er

 r
ou

nd

cardinality

 KM
 CED2

Fig. 4. Disjoint Sets: Average Bits per Round

is the communication cost of each single protocol iteration. Hence, we run our sim-
ulator to collect the number of bits exchanged in each single protocol round and we
considered the average of all the rounds. The results are shown in Figure 4.

From Figure 4, we observe that the key difference between the two algorithms
is the communication bits payed in each single iteration. In fact, while CED2

requires more rounds than KM (figures 3a and 3b), each round has a very small
communication cost—almost negligible compared to a round of KM. In particu-
lar, for the sets cardinality considered in the simulation (x-axis of Figure 4), the
communication cost of CED2 varies from 12 to 15 bits per round. Whereas, the
cost of KM varies from 4113 bits (for sets of 600 elements), up to some 17276
bits (for sets of size 2000).

We note that “cutting” all the elements provides an answer to the question
whether the sets intersect. Hence, this is a zero-error termination criteria for
both algorithms. Unfortunately, we do not have the same characterization for
the not-disjoint sets, as discussed in Section 5.2.

In the following graph (Figure 5) we report the overall communication com-
plexity for the two protocols; that is, the number of bits required for the two
protocols to complete. More specifically, in Figure 5, we give a global view of
analysis and simulations for both algorithms showing:

– the expected behaviour from analysis, respectively from Lemma 4 for CED2

and from Lemma 5 for KM;
– the results of simulations of the two algorithms.

Observing the results shown in Figure 5, we can draw the conclusion that CED2

(Algorithm 1) performs better than KM algorithm. We underline that the aim of
these results is to show a qualitative behaviour without taking into consideration
any specific communication protocol. In fact, one might argue that when our
solution is used in a practical scenario, the size of the exchanged message might
be bigger than the one shown in the figure—due to the message header of the
communication protocol used. However, we observe that the advantage provided

CED2: Communication Efficient Disjointness Decision 301

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 600 800 1000 1200 1400 1600 1800 2000

bi
ts

 e
xc

ha
ng

ed

sets cardinality

KM (sim)
CED2 (sim)

KM (an)
CED2 (an)

Fig. 5. Disjoint Sets: Analysis (an) and Simulations (sim) of Communication Com-
plexity

by our solution is preserved even when a practical message header is considered.
For example, let us consider sets of 1400 elements. Our solution would require
an average of 843 messages (see Figure 3a) each of 15 bits of payload (Figure
4). The KM solution would require an average of 5 messages (see Figure 3b),
each of 73654 bits of payload (Figure 4). Let us consider a message header of 10
bits—that is a practical choice for setting like WSN, where the header can have
a small size that includes the bits required to identify the receiver (e.g. among
some 1000 nodes). With 10 bits of header our solution would send about 843
messages, each of 25 bits, while KM would use 5 messages of 73664 bits. Hence,
the overall number of bits would be 21075 for our solution, compared to the
368320 required by KM. This example shows that the advantage of our solution
compared to KM remains even in practical scenario.

The simulations confirmed that the number of bits sent in the two solutions
differs of a O(log2 n) factor, as predicted in Lemma 4 and Lemma 5. We note that
KM analysis gives an upper bound on the number of exchanged bits based on
the O(log2(n)) bits representation for bins indexes (see Lemma 5). Running the
KM simulation produces averaged values for indexes representation expenditure,
� log2(n)+1

2 	. This motivates the gap between the two KM curves. Similar argu-
ment justifies the fact that indexes representation cost in bits does not affect our
solution. In fact, as each party in the protocol sends just one index at a time, the
upper bound from analysis (see Lemma 3) and the result of the simulation are
likely to be close to each other. We also observe that in the experiment shown in
Figure 5 we used an optimized implementation of the KM algorithm. In fact, we
send just empty bins indexes to the other party, saving on the total transmitted
bits. Actually, the KM algorithm would send the entire vector of size n. In the
latter case, the difference between the two compared communication costs would
be larger. The conclusion is that in case of disjoint sets instances, choosing to
reduce the exchanged bits in the single round provides a global saving in the
total communication complexity.

302 L. Marconi, M. Conti, and R. Di Pietro

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 10 20 30 40 50 60 70

bi
ts

 e
xc

ha
ng

ed

intersection percentage

n= 500
n=1000
n=1500
n=2000

(a) Bits exchanged

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 10 20 30 40 50 60 70

ro
un

ds

intersection percentage

n= 500
n=1000
n=1500
n=2000

(b) Rounds

Fig. 6. Not-Disjoint Sets: KM; q = 2

5.2 Not-disjoint Instances

For not-disjoint instances, let us first analyze KM termination that authors left
as an open issue. In KM the termination condition occurs at round r when
Ar−q = Ar−q+1 = ... = Ar, for a pre-determined constant q (not specified in
[10]). This condition is similar to the one used in CED2 (see Algorithm 1, line
11), but the value of q is influenced by different underneath stochastic processes.
In fact, even though the two algorithms use the same hashing strategy, the
stochastic process produced by the choice of the maximum loaded bin at each
round (CED2), is not equal to the one produced by the exchange of all the empty
bin indexes (KM).

We argue that q = 2 would be a good choice for KM to establish if two sets
are disjoint or not. In fact, KM algorithm is likely to cut elements at each round.
The only adverse circumstance is the configuration in which all not empty bins
indexes, for one party, match all not empty bins indexes for the other party. As it
is unlikely that KM algorithm does not cut elements at a given round, if for two
rounds it is not possible to cut elements, this means that, with high probability,
KM cut all the elements not belonging to the intersection. We report in Figure
6 both the amount of exchanged bits (Figure 6a) and the total rounds employed
(Figure 6b) with this termination criteria. From Figure 6b, we can observe that
the numbers of rounds employed to end, for all the cardinalities considered, vary
in a short range from some 3.8 for n = 500 and 50% of common elements between
the input sets, up to some 5.4 for n = 2000 and 20% of common elements. From
Figure 6a, we can observe that the bits expenditure is ranged between some
22000 bits, obtained for n = 500 up to nearly 160000 for n = 2000. The second
hypothesis from KM is to run the algorithm for c · (log2 log2 n) rounds, with
constant c > 1. If not all the elements are eliminated, then the sets are not
disjoint with an error probability depending on c.

For comparisons with CED2 we choose this latter hypothesis and set c = 1.1
for the simulations. The reason is twofold: on the one hand, as we are focusing

CED2: Communication Efficient Disjointness Decision 303

 0

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

(a) Intersection Percentage 10%

 200

 400

 600

 800

 1000

 1200

 0 500 1000 1500 2000 2500 3000

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

(b) Intersection Percentage 30%

Fig. 7. Not-Disjoint Sets: CED2; Cuts Trend with respect to Intersection Cardinality;
n = 1000

on the amount of exchanged bits, we are interested in the scenario in which KM
saves more—setting c = 1.1 means to have the minimum rounds and thus the
minimum bits expenditure for KM. On the other hand, the approach to cut all
the elements not belonging to the intersection (like in the first KM hypothesis)
is not applicable to CED2. In fact, for not-disjoint instances, if CED2 reaches, at
some round, a configuration where elements not in the intersection are less than
the bin maximum load (see Lemma 1), it will never be able to cut those elements
(it would be impossible to find them in the maximum loaded bin). Even if CED2

may not be able to cut all the elements not belonging to the intersection, still
the cuts trend shows meaningful information.

We start observing that the convergence rate to the intersection cardinality
is slow (see Figure 7) and goes slower as the intersection cardinality increases.
The phenomenon is captured in figures 7a and 7b where we compare the cuts
trend—using different intersection percentage—to the real intersection size.

The behaviour of the curves can be explained by observing that the possi-
bility to cut elements, at a certain round, depends on the probability that: no
intersection elements fall in the max loaded bin and the corresponding bin of the
other party is empty. It is possible to check that this probability is ≤ e−(|X|

n +1)

and that this is congruent with the simulations results depicted in Figure 7.
We also observe that, for all the curves in Figure 7, increasing the protocol
round number (x-axis), the cardinality of the remaining set (y-axis) decreases
slowly than the case for the empty intersection (or disjointness) curve—this is
shown in Figure 3a (see the curve for n = 1000). This behaviour can be ob-
served even for a small intersections size (e.g. 10% of common elements; see
Figure 7a). A direct comparison of these curves can be found in Figure 8a.
Looking at Figure 8b, we can check that a similar phenomenon can be recog-
nized in KM, even if it appears a bit less marked. We test CED2 termination
simulating the algorithm with q = 11. That is, if for 11 consecutive iterations
it is not possible to cut elements, then we conclude that the intersection is not

304 L. Marconi, M. Conti, and R. Di Pietro

empty and terminate the execution. From simulations results, the choice of the
value q resulted to be a good one. In fact (see Figure 10), setting q = 11 pro-
duces an error rate less than 20%. That is, we obtain the correct answer with a
probability > 4/5. The optimal value for q and the related error rate appears to
be an interesting matter for further investigations.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000 3500

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

Inters. Perc. 0%
Inters. Perc. 10%
Inters. Perc. 30%
Inters. Perc. 60%

(a) CED2

 0

 200

 400

 600

 800

 1000

 1200

 0 1 2 3 4 5 6 7 8 9

re
m

ai
ni

ng
 s

et
 it

em
s

rounds

Inters. Perc. 0%
Inters. Perc. 10%
Inters. Perc. 30%
Inters. Perc. 60%

(b) KM

Fig. 8. Not-Disjoint Sets: Cuts Trend; n = 1000

Figure 9 shows iterations (see Figure 9b) and communication bits (see Figure
9a) reported by CED2 simulations to decide if the two sets in input are not
disjoint. Since, we want also to be able to avoid errors when disjoint instances
are provided as input, we tested the two protocols providing in input to our
simulator 50% of disjoint sets input pairs and 50% of not disjoint sets. In such
a testing environment, CED2 terminated with a wrong decision on 4.21% of the
input pairs. This value is not plotted in Figure 9.

 5400

 5500

 5600

 5700

 5800

 5900

 6000

 6100

 6200

 6300

 6400

 0 10 20 30 40 50 60

bi
ts

 e
xc

ha
ng

ed

intersection percentage

(a) Bits exchanged

 280
 285
 290
 295
 300
 305
 310
 315
 320
 325
 330
 335

 0 10 20 30 40 50 60

ro
un

ds

intersection percentage

(b) Rounds

Fig. 9. Not-Disjoint Sets: CED2; n = 1000; q = 11

Figure 10 compares CED2 and KM simulations results using the termination
criteria discussed above. In both cases, fixed a protocol parameter (q for CED2

CED2: Communication Efficient Disjointness Decision 305

and c for KM) we can observe that the error rate increases as the cardinality of
the sets increases. On the KM side, it is possible to check that setting c = 1.1 is
equivalent to set the number of rounds for termination to 4. This can be verified
substituting the values of the cardinality tested in the termination condition.
As we can see in Figure 3b, the average number of rounds required to cut all
the elements is at least 6 for n = 2000, while it is just 3 considering n = 1000.
This justifies why, with 4 rounds, KM makes more errors for n = 2000 than for
n = 1000 on disjoint sets instances. On the CED2 side, the probability to find

empty the bin corresponding to the max loaded one at round i, is e−
|Ai|

n . This
value decreases as n increases. This justifies why, as the sets cardinality increases,
the number of consecutive launches before cutting elements also increases. As a
consequence, also CED2 makes more errors for n = 2000 than for n = 1000.

From the performances perspective, Figure 10 shows that even if we consider
the scenario with the minimum bits expenditure for KM (i.e. c = 1.1), still
CED2 obtains a lower error rate. In fact, in the majority of the cardinality
considered, with a single exception, CED2 requires much less communication
bits. This allows us to conclude that the CED2 strategy to consider a single bin
at each round produces a global saving in the communication bits expenditure
for both disjoint and not-disjoint input instances.

 0

 5

 10

 15

 20

 25

 30

 1000 10000 100000

er
ro

r
ra

te

exchanged bits (logscale 10)

KM, c=1.1
CED2, q=11

n=500

n=1000
n=1500

n=2000

n=500 n=1000
n=1500

n=2000

Fig. 10. Not-Disjoint Sets: KM and CED2 Relation Between Communication Cost and
Error Rate

6 Conclusions

In this paper we presented CED2 (Communication Efficient Disjointness Deci-
sion), a probabilistic and distributed protocol that allows two parties to decide
about whether they share a secret. CED2 has been showed to be particularly
suitable for devices having constraints on energy, communication, storage, and
bandwidth. In particular, CED2 significantly improves the communication cost
compared to the work in the literature, having a communication complexity of
O(n log log n)—improving by O(log2 n) the state of the art. While in this paper

306 L. Marconi, M. Conti, and R. Di Pietro

we focused on the (probabilistic) discovery of shared secrets, our results can be
applied to any scenario where two parties need to determine the disjnointness of
their sets. Finally, this improvement has been achieved providing the same level
of privacy and security of the state of the art solution.

Further ongoing work focus on relaxing the termination criteria—introducing
probabilistic termination—and providing probabilistic assurance on the inter-
section size.

References

1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private
databases. In: Proceedings of the 22th ACM SIGMOD international conference
on Management of data (SIGMOD 2003), pp. 86–97 (2003)

2. Barbay, J., López-Ortiz, A., Lu, T., Salinger, A.: An experimental investigation of
set intersection algorithms for text searching. Journal of Experimental Algorithmics
14, 3.7–3.24 (2009)

3. Demaine, E.D., López-Ortiz, A., Ian Munro, J.: Adaptive set intersections, unions,
and differences. In: Proceedings of the Eleventh Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2000), pp. 743–752 (2000)

4. Eschenauer, L., Gligor, V.: A key-management scheme for distributed sensor net-
works. In: Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security (CCS 2002), pp. 267–282 (2002)

5. Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersec-
tion. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027,
pp. 1–19. Springer, Heidelberg (2004)

6. H̊astad, J., Wigderson, A.: The randomized communication complexity of set dis-
jointness. Journal Theory of Computing 3(1), 211–219 (2007)

7. Kalyanasundaram, B., Schnitger, G.: The probabilistic communication complexity
of set intersection. SIAM Journal on Discrete Mathematics 5(4), 545–557 (1992)

8. Kiayias, A., Mitrofanova, A.: Testing disjointness of private datasets. In: S. Patrick,
A., Yung, M. (eds.) FC 2005. LNCS, vol. 3570, pp. 109–124. Springer, Heidelberg
(2005)

9. Kissner, L., Song, D.X.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)

10. Kurtz, T.G., Manber, U.: A probabilistic distributed algorithm for set intersection
and its analysis. Journal of Theoretical Computer Science 49(2-3), 267–282 (1987)

11. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University
Press, New York (1997)

12. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York (2005)

13. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
Cambridge (1997)

14. Yao, A.C.-C.: Some complexity questions related to distributive computing. In:
Proceedings of the eleventh annual ACM symposium on Theory of computing
(STOC 1979), pp. 209–213 (1979)

15. Ye, Q., Wang, H., Pieprzyk, J., Mo Zhang, X.: Unconditionally secure disjointness
tests for private datasets. International Journal of Applied Cryptography 1(3),
225–235 (2009)

	CED2: Communication Efficient Disjointness Decision
	Introduction
	Related Work
	Our Solution: CED2
	System Model and Notation
	Protocol Overview
	Protocol Description

	Analysis
	Protocol Evaluation
	Disjoint Sets Instances
	Not-disjoint Instances

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

