
Realizing a Source Authentic Internet�

Toby Ehrenkranz1, Jun Li1, and Patrick McDaniel2

1 Department of Computer and Information Science
University of Oregon

Eugene, OR 97403 USA
{tehrenkr,lijun}@cs.uoregon.edu

2 Department of Computer Science and Engineering
Pennsylvania State University

University Park, PA 16802 USA
mcdaniel@cse.psu.edu

Abstract. An innate deficiency of the Internet is its susceptibility to IP
spoofing. Whereas a router uses a forwarding table to determine where
it should send a packet, previous research has found that a router can
similarly employ an incoming table to verify where a packet should come
from, thereby detecting IP spoofing. Based on a previous protocol for
building incoming tables, SAVE, this paper introduces new mechanisms
that not only address a critical deficiency of SAVE when it is incremen-
tally deployed (incoming table entries becoming obsolete), but can also
push the filtering of spoofing packets towards the SAVE router that is
closest to spoofers. With these new mechanisms, and under the assump-
tion of incremental deployment, we further discuss the security of SAVE,
evaluate its efficacy, accuracy, and overhead, and look into its deployment
incentives. Our results show incoming-table-based IP spoofing detection
is a feasible and effective solution.

Keywords: IP spoofing, IP source address, IP spoofing detection,
incoming table, pushback.

1 Introduction

Attackers today can send packets pretending to be from any Internet address.
Any host on the Internet can be a victim of such “spoofing” attacks. Even in
today’s botnet infested Internet, an attacker prefers to use IP spoofing whenever
possible. While the attacker may simply spoof a victim’s address to hide the real
attack source, it is very likely the victim address is the focus of a targeted attack.
For example, only through IP spoofing can an attacker perform DNS amplifica-
tion (subverting DNS servers to perform a bandwidth-based DDoS attack [1,2]),

� This material is based upon work supported by the USA National Science Foundation
under Grant No. 0520326. Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 217–234, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

218 T. Ehrenkranz, J. Li, and P. McDaniel

reset a victim’s TCP connections (sending spoofed TCP reset packets with in-
window sequence numbers [3]), poison a DNS cache (transparently redirecting
victims to the attacker’s server [4]), or circumvent spam filters (getting around
mail blocks an ISP may place on a botnet’s zombie machines [5,6]). Although the
underlying threat of IP spoofing is not new, the problem continues to worsen: at-
tackers persist in finding new ways of crafting attacks using spoofed IP packets,
and attackers can spoof from a greater portion of the Internet than before [6].

If every network in the world was able to coordinate a deployment of even
simple ingress filtering [7] and unicast reverse path forwarding [8] checks, the
threat would be all but eliminated. Unfortunately due to both technical and
logistical reasons, this is an unattainable goal [9]. When even a small percentage
of networks do not deploy such basic filtering methods, nobody is safe. Everyone’s
Internet address is still at risk of being spoofed. Researchers have proposed more
sophisticated spoofing prevention mechanisms over the years [9], but all have
failed to neutralize the threat of IP spoofing.

Fortunately there has been promising research, showing that if even a small
percentage of routers on the Internet deploy a more finely grained filtering table
to discard packets with a forged source address, a synergistic filtering effect can
be achieved to stop a large fraction of spoofed IP packets [10,11]. SAVE [12,13] is
a light-weight protocol to build such a filtering table, called an incoming table, at
routers. As a router has multiple physical interfaces to receive incoming packets,
every entry of the incoming table specifies the valid incoming interface for packets
from a specific IP address prefix to arrive at the router. A recent survey [9] has
further shown that compared to other IP spoofing prevention methods, using an
incoming table to filter spoofed packets is the most effective.

Although SAVE provides the incoming tables necessary for effective filtering
with only a small deployment, the SAVE protocol itself faces a serious challenge
when incrementally deployed. A router’s incoming table that is up-to-date at
time t may become obsolete at some time after t because of routing changes on
the Internet. We describe how a router’s incoming table becomes obsolete below.

In the SAVE protocol, every SAVE-capable router that is in charge of a source
address space periodically sends updates to its downstream routers about the
current incoming interface for the source address space. Furthermore, when a
routing change occurs at any downstream router, that router must send out
a new update immediately to ensure routers further downstream learn the new
valid incoming interface of the source address space in question. Otherwise, those
routers will stay out of date until the next periodical update. However, legacy
routers that do not run SAVE will simply do nothing when a routing change oc-
curs; legacy routers will never initiate a SAVE update! As shown by the example
in Figure 1(a) and 1(b), if R was a legacy router, the lack of SAVE update from
R after its routing change will cause the SAVE-capable router T ’s incoming ta-
ble about packets from router S to be out of date (until the next periodic SAVE
update from S reaches T).

As SAVE is incrementally deployed, there will be many legacy routers, prob-
ably even outnumbering SAVE-capable routers for a long time; it is highly likely

Realizing a Source Authentic Internet 219

(a) R is a SAVE router and initiates
a SAVE update when the link from R
to P is broken. T ’s incoming table is
updated to show that packets from S
should come from its lower left incom-
ing interface.

(b) R is a legacy router so it does not
initiate a SAVE update when the link
from R to P is broken. T ’s incoming ta-
ble is out of date, still showing packets
from S should come through upper left
incoming interface.

Fig. 1. An example showing how an incoming table can contain obsolete entries

that incoming tables at SAVE-capable routers will often contain obsolete entries.
While it is promising to use incoming tables to stop spoofed packets, it is also
difficult to use them if they carry obsolete entries.

In this paper we make the following fundamental contributions: We study if
we can introduce new mechanisms to enable SAVE-capable routers to reliably
discard spoofing packets, even though their incoming table may be obsolete.
In particular, we devise and evaluate three new elements that a SAVE-capable
router can employ: a blacklist data structure, an on-demand-update mechanism,
and a pushback mechanism.

– Blacklist : The blacklist complements the incoming table at a router in clas-
sifying an incoming packet, including determining if the packet is spoofed.

– On-demand update: A SAVE-capable router can request SAVE updates on
demand to verify possibly incorrect or outdated information.

– Pushback : SAVE-capable routers along the way of a spoofing flow can push
the filtering of spoofed packets to the router that is the closest to the spoofer.

In combination, these new elements allow SAVE to function properly even in the
presence of legacy routers. Referring back to the example in Figure 1(b), T can
request an on-demand update from S, essentially replacing the triggered SAVE
update in Figure 1(a). The blacklist gives a router more state information, so
the router does not need to request an on-demand update for every packet that
does not match the incoming table. Finally, the pushback mechanism serves two
purposes. First, it helps to reduce spoofing traffic by dropping spoofing packets
as close to the attacker as possible. Second, it tells a router in charge of a
source address space when downstream routers have incorrect information in
their blacklists regarding its address space.

Also of great importance is the security of SAVE with these new mechanisms.
SAVE must secure itself against all possible attacks. Not only may attackers try
to evade the IP spoofing detection at SAVE routers, they may also attempt to
introduce illegal control messages. For example, an attacker (or a bot machine

220 T. Ehrenkranz, J. Li, and P. McDaniel

it controls) could try to establish wrong incoming information at SAVE routers
by injecting a SAVE update about a source address it is going to spoof. In this
paper, we also discuss how security can be addressed.

Our evaluation demonstrates the viability of these new mechanisms. We per-
form a detailed simulation to evaluate their effectiveness at detecting spoofing
packets, and explore the relationship between efficacy and adoption rates. These
Internet-scale simulations show that with as little as 0.08% deployment, attack-
ers cannot spoof protected source addresses in over 90% of all cases. Moreover,
we evaluate the storage, traffic, and computational overhead of SAVE with the
new mechanisms, showing that the overhead is low.

The rest of the paper is organized as follows. We first describe how a SAVE
router can introduce a blacklist alongside the incoming table to help classify
incoming packets in Section 2. We then describe the on-demand-update mecha-
nism and the pushback mechanism in Sections 3 and 4, respectively. Section 5
discusses how SAVE can secure itself. We present our evaluation in Section 6,
with open issues discussed in Section 7. Finally, we discuss related work in Sec-
tion 8, and conclude our paper in Section 9.

2 Incoming Table, Blacklist, and Packet Classification

In addition to an incoming table described above, we add to every SAVE-capable
router a blacklist data structure. With both the incoming table and the blacklist,
a router classifies incoming packets into several different types, and takes some
action specific to each of those types. In this section we describe the blacklist
data structure and classification mechanism.

2.1 Blacklist

Whereas the incoming table of a router specifies the legitimate incoming in-
terfaces for different source address spaces, the blacklist indicates whether an
incoming packet is spoofing based on its source address, destination address,
and the incoming interface. More specifically, a router’s blacklist is maintained
through two separate blacklists corresponding to two different ways of matching
an incoming packet against a blacklist entry:

SI: Matches the source address and the incoming interface of the packet.
SD: Matches the source address and the destination of the packet.

A router receiving spoofing packets that match its SI blacklist could be on the
legitimate path from the spoofed source to the destination, but not from the
spoofing packet’s incoming direction. A router receiving spoofing packets that
match its SD blacklist should not be on the legitimate path from the spoofed
source to the destination, and so should never see a packet with such a source
and destination.

Realizing a Source Authentic Internet 221

2.2 Packet Classification

With both its incoming table and blacklist in place, a router classifies an incom-
ing packet as:

– Valid if it matches the incoming table but not the blacklist.
– Suspicious if it matches neither the incoming table nor the blacklist.
– Invalid if it matches the blacklist.
– Unknown if there is no information regarding the packet’s source address.

Only when the packet is classified as invalid will the router drop the packet. For
the other three types the router will forward the packet.

Furthermore, if a packet is suspicious, the router will initiate the on-demand-
update mechanism. The packet is suspicious either because the packet is spoof-
ing, or because the packet is legitimate but the router’s incoming direction infor-
mation is outdated. As we described in Section 1, the routing change at a legacy
router upstream will not lead to an immediate SAVE update for this router to
update its incoming table.

If a packet is invalid, the router will initiate the pushback mechanism. No
further actions are taken for valid or unknown packets.

We describe both on-demand-update and pushback in the following sections,
including how they deal with obsolete incoming table entries.

3 On-demand Update

When a router classifies a packet as suspicious, it still forwards the packet as
usual, but it will also initiate an on-demand update. From the incoming table
entry that matches the packet’s source address, the router determines the source
address space in question and the source router in charge of the source address
space. It then requests that the source router sends an on-demand update—
which is on behalf of the entire source address space—towards the destination
of the suspicious packet.

Following the same design as in SAVE [12,13], the on-demand update will
travel the same path as the legitimate packets that originate from the source
router’s address space. When the on-demand update arrives at the router from
a specific incoming interface, this interface is then also the legitimate interface
for the source address space in question. The router then makes sure its incoming
table records this interface as the legitimate incoming interface for the source
address space.

If the on-demand update does not arrive from the same incoming interface as
the suspicious packet, the suspicious packet was in fact spoofing. Furthermore,
the router updates its blacklists. Denote the spoofing packet’s spoofed source
address space as S and its incoming interface as i. It adds to the SI blacklist a new
entry 〈S, i〉. If in the future a packet matches the newly added blacklist entry, the
router will classify it as invalid. The router does not add a new entry to the SD
blacklist, because the router could legitimately see packets from the suspicious

222 T. Ehrenkranz, J. Li, and P. McDaniel

packet’s source to its destination—just not from the incoming interface that the
suspicious packet used.

If the on-demand update does arrive from the same direction as the suspicious
packet, the packet was not spoofing. Note the router already forwarded the
packet earlier so no false positive occurs.

It is also possible the on-demand update never reaches the router. This could
be because the router is not on the path from the source to the destination, or
because congestion caused the update request or the update itself to be dropped.
Since the router cannot know for sure, it takes no action. Assuming similar
suspicious packets continue to arrive, the router will continue to request updates.
We use a truncated binary exponential backoff scheme for subsequent requests.

4 Pushback of Spoofed Packets

The aim of the pushback is to push the filtering of spoofed packets all the way
toward the router that is the closest to the spoofer(s). The pushback procedure is
packet-driven and it is triggered when a SAVE router receives an invalid packet.

Once the pushback procedure is triggered by an invalid packet, the router
sends pushback messages to immediate upstream SAVE routers that the packet
possibly passed through. (The router uses incoming SAVE updates to record
upstream SAVE routers along every incoming interface, and can easily identify
those upstream along the incoming interface of the packet.) Assume the packet
is from source address space S to destination address d. When an upstream
SAVE router receives a pushback message, it adds an entry 〈S, d〉 to its SD
blacklist. The incoming interface does not matter—the upstream router is not
on the legitimate path from the packet’s inscribed source to its destination at
all. Upon receiving subsequent packets that match this new blacklist entry, the
upstream router will classify them as invalid and continue to propagate the
pushback further upstream.

Blacklist entries can become outdated if a routing change causes the legitimate
path from the spoofing victim to become the same as that of the spoofing packets.
If that happens, the pushback procedure will finally reach the source router in
charge of the victim source address space. The source router can in turn send
out an update that travels along the path and reaches every SAVE router en
route. Every SAVE router can then remove its outdated blacklist entries.

Fig. 2 shows a pushback example. An attacker at legacy router A sends spoof-
ing packets with a source from space SX (X ’s source address space) and a des-
tination dstZ (an address towards which Z is downstream from X and Y). The
spoofing packets arrive at router Y along the same interface as legitimate packets
from SX . Y classifies the packets as valid and forwards them. Z however expects
packets from SX to arrive on interface 1 according to its incoming table, so it
classifies the first spoofing packet arriving at incoming interface 2 as suspicious.
Z requests an on-demand update. Upon receipt of the requested update, Z con-
firms its incoming table information was correct, and the suspicious packet was
in fact invalid (Fig. 2(a)). Z then adds a new entry to its SI blacklist: Based on

Realizing a Source Authentic Internet 223

(a) Z receives a
suspicious packet
and requests an
on-demand update.

(b) Z receives an in-
valid packet and be-
gins the pushback
process.

(c) After routing
change, legitimate
packets trigger
pushback to X.

(d) X discovers le-
gitimate packets are
misclassified and
sends an update.

Fig. 2. A pushback example. An attacker, A, sends packets spoofing X’s address space,
SX , towards dstZ .

source SX and incoming interface 2 of the suspicious packet, the new blacklist
entry is 〈SX , 2〉.

Z classifies later spoofing packets as invalid, and initiates the pushback pro-
cess (Fig. 2(b)). Z knows Y is its neighbor along the spoofing packet’s incoming
interface. Z sends Y a pushback message, instructing Y to add an entry to its
SD blacklist for all packets from SX to dstZ . When Y receives a packet match-
ing the new blacklist entry, it classifies the packet as invalid and continues the
pushback. Y finds all neighbors along the spoofing packet’s incoming interface,
and propagates the pushback towards such neighbors. Y ’s neighbors do not see
matching packets, so do not further propagate the pushback. Y is the closest
SAVE router to the attacker.

Later, if there is a routing change at a legacy router which causes the originally
invalid “X · · ·Y · · ·Z” path to become valid and legitimate packets begin to flow
along the path, SAVE will quickly converge to correct the error. During the
transient period, router Y and Z will misclassify valid packets from SX towards
dstZ as invalid. But now that Y ’s upstream neighboring SAVE routers also
see packets matching the pushback request, the upstream routers will relay the
pushback all the way to the source router X (Fig. 2(c)). After X receives the
pushback, it realizes that downstream routers have incorrect blacklist entries
matching its legitimate traffic. X sends an update towards dstZ , causing all
routers along the newly valid “X · · ·Y · · ·Z” path to remove their incorrect
blacklist entries (Fig. 2(d)).

5 Security Considerations

SAVE must also be secure. The security of SAVE encompasses securing SAVE
itself against attack and keeping attackers from being able to use SAVE to launch
attacks. In addition to basic security functions such as confidentiality, integrity,
and replay prevention, we must consider (1) origin authentication to ensure

224 T. Ehrenkranz, J. Li, and P. McDaniel

a router is authorized to speak for a source address space, and (2) collusion
prevention to ensure attackers cannot collude to manipulate incoming direction
information at SAVE routers.

5.1 Origin Authentication

Origin authentication ensures SAVE routers are authorized to speak for their
corresponding source address space. This requires a trusted authority to sign a
certificate that an address space owner can present. A public key infrastructure
as described in [14] can provide such certificates of address ownership. The root
certificate authority can be ICANN, with regional Internet registries such as
ARIN or RIPE at the next level, and ISPs below. If SAVE is simply deployed
inside an AS, the AS can simply use its self-signed certificates.

5.2 Collusion Prevention

Attackers may attempt collusion to manipulate the incoming table stored at a
downstream SAVE router. They may collude by masquerading as each other or
copying an update from an upstream space to each other, causing downstream
routers to receive the update about a source address space along a wrong in-
coming interface.

Since the original update from the source address space still travels along
the correct path1, such manipulation by attackers can only be temporary. More
importantly, such manipulation cannot cause a router to drop legitimate packets.
If a router mistakenly classifies a legitimate packet as suspicious, an on-demand
update will verify that it is in fact legitimate and fix the incoming direction
information. Note the manipulation does not give the attackers further spoofing
capabilities either, since attackers can only copy existing upstream updates.

5.3 Confidentiality, Integrity, and Replay Prevention

With a public key infrastructure, confidentiality and integrity is straightforward.
If confidentiality is needed, a SAVE router can use the recipient’s public key to
encrypt its messages; or, it can establish a secure channel with the recipient,
and use the session key associated with the channel to encrypt the messages.
If integrity is needed, a SAVE router can uses its private key to create digital
signatures for its messages.

Replay attacks must be prevented in order to ensure that a previous update
cannot be copied and resent at a later time. Downstream routers must receive
the most up-to-date incoming direction information. Replay attacks can be pre-
vented by adding a counter to SAVE updates. The counter in an update must
be greater than the counter of earlier updates.
1 SAVE security does not encompass routing-level security, as that is the job of routing

protocols—we assume routers will route a packet correctly towards its destination,
and will not maliciously forward a packet in the wrong direction, nor maliciously
drop a packet en route. Every SAVE update is encapsulated inside an UDP packet.

Realizing a Source Authentic Internet 225

An implementation note. The security issues that SAVE faces are similar to
those faced by BGP. Both need to ensure that a router can speak for an address
space (SAVE’s source address space and BGP’s destination address space), both
need to prevent conclusion of attackers, and both need to provide integrity, replay
prevention, and sometimes confidentiality. In particular, to implement SAVE’s
security, we can borrow some ideas from IRV [15], an incrementally deployable
BGP security solution. Basically, each network can contain a validation server
to be responsible for security purposes, including keeping track of certificates
and keys, performing signature creation and validation for SAVE messages, and
managing security policies. Doing so would also maintain a lighter load on SAVE
routers, allowing them to focus on its main purpose of receiving, validating, and
forwarding packets.

6 Evaluation

In this section we discuss the performance of SAVE with the new mechanisms we
introduced in this paper. First we present SAVE’s efficacy in catching spoofed
packets. We then evaluate SAVE’s false positives. Finally we show that SAVE’s
storage, network, and computational overhead are reasonable.

6.1 Efficacy

Methodology. For efficacy evaluation we use a modified static distributed
packet filtering (DPF) [10] simulator. The DPF simulator allows us to evalu-
ate the efficacy of SAVE on Internet-scale topologies by calculating efficacies
based on the Internet AS graph and SAVE router locations. It uses Internet Au-
tonomous System (AS) topologies from Route Views [16]. The efficacy metrics
are similar to those in [10]. Specifically, we report:

– Φ2(1) that represents the percentage of ASes that an attacker cannot send
spoofing packets from—any spoofed packets from those ASes would be de-
tected and filtered out;

– Φ3(1) that represents the percentage of all attacker-victim AS pairs where
the attacker cannot send spoofed packets to the victim; and

– Ψ1(τ) that represents the fraction of target ASes which can narrow down an
attacker’s location to within τ possible attack ASes.

We consider a variety of placement strategies of SAVE routers. First, we deploy
SAVE routers so they form a vertex cover (as in the original DPF work [10]).
Then, we look at random deployments, with deployment percentages between
0% and 100% in 10% increments. Finally, we deploy SAVE routers at the top
ASes by degree.

Results and Analysis. The efficacy of SAVE in catching spoofed packets de-
pends upon both the deployment strategy and the percentage of deployment.
With a random deployment, the efficacy increases along with the deployment
percentage. With deployment at high-degree ASes or using a vertex cover for

226 T. Ehrenkranz, J. Li, and P. McDaniel

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

ca
nn

ot
 s

en
d

sp
oo

fe
d

pa
ck

et
s

Deployment Percentage

(a) Random deployments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01% 0.1% 1%

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

ca
nn

ot
 s

en
d

sp
oo

fe
d

pa
ck

et
s

Deployment Percentage

(b) Deployments at highest-degree ASes.

Fig. 3. Φ2(1): The percentage of ASes on an Internet AS topology from which an
attacker cannot send spoofed packets

deployment, the efficacy is much higher than a random deployment, even with
a much lower percentage of deployment.

Fig. 3 shows Φ2(1), the percentage of ASes on an Internet AS topology from
which an attacker cannot send any packets that spoof a protected source address.
We can clearly see that deployment strategies are an important factor. Φ2(1)
with a vertex cover deployment is around 99% (not shown), where the vertex
cover consisted of around 14.5% of all routers. Fig. 3(a) shows Φ2(1) for random
deployments; with 15% or less deployment percentage, Φ2(1) is even no more
than 10%. Fig. 3(b) shows Φ2(1) for deployments at ASes with the highest degree
on the same topology; as a sharp contrast to random deployment, even with less
than 1% of ASes deploying SAVE, over 40% of all ASes are unable to spoof any
protected source.

Fig. 4 shows Φ3(1), the percentage of attacker-victim AS pairs where the at-
tacker cannot send spoofed packets to the victim. Deployment strategy, again,
plays an important role. A random deployment is not very effective—high effi-
cacy requires high levels of deployment. More targeted deployments, however,
can be extremely effective. With a vertex cover deployment the efficacy is over
99.9% (not shown). Even very small targeted deployments can be effective: With
deployment at only the top 0.08% of ASes by degree (21 ASes in this case), ef-
ficacy is over 90%.

Fig. 5 shows Ψ1(τ) with again the same deployments as above. Ψ1(τ) is the
percentage of destination ASes that can narrow down an attacker’s location
to within τ source ASes, when intermediate routers were unable to filter the
spoofed packet. Note that this percentage is for instantly narrowing down an
attacker’s location based on the network topology, the location of SAVE routers,
and the fact that the spoofed packet reached its destination. Vertex cover deploy-
ments (not shown) and high-degree AS deployments have excellent performance,
generally being able to narrow down an attacker’s actual location to within 5
locations or fewer. More random deployments are not able to reliably narrow
down an attacker’s location, with possible attacker locations measured in the

Realizing a Source Authentic Internet 227

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0% 20% 40% 60% 80% 100%

P
er

ce
nt

ag
e

of
 A

S
 p

ai
rs

w
he

re
 s

po
of

in
g

is
 c

au
gh

t

Deployment Percentage

(a) Random deployments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.01% 0.1% 1%

P
er

ce
nt

ag
e

of
 A

S
 p

ai
rs

w
he

re
 s

po
of

in
g

is
 c

au
gh

t

Deployment Percentage

(b) Deployments at highest-degree ASes.

Fig. 4. Φ3(1): The percentage of attacker-victim AS pairs where the attacker cannot
send spoofed packets to the victim

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 200 400 600 800 1000

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

 c
an

na
rr

ow
 a

tta
ck

er
’s

 lo
ca

tio
n

to
 τ

 A
S

es

τ

90%
80%
70%

(a) Random deployments.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

 0 1 2 3 4 5 6 7 8 9 10

P
er

ce
nt

ag
e

of
 A

S
es

 th
at

 c
an

na
rr

ow
 a

tta
ck

er
’s

 lo
ca

tio
n

to
 τ

 A
S

es

τ

 25%
 20%
 15%
 10%

 5%

(b) Deployments at highest-degree ASes.

Fig. 5. Ψ1(τ): The percentage of destination ASes that can narrow down an attacker’s
location to within τ source ASes

hundreds. (SAVE includes additional location capabilities through the use of its
pushback mechanism, which we plan to evaluate further.)

Finally, the high efficacy with the highest-degree ASes (as shown in Figs. 3(b),
4(b), and 5(b)) shows that such ASes—if they deploy SAVE—can filter spoofing
packets and locate attackers very effectively. They thus will have a strong incen-
tive to deploy SAVE. Moreover, doing so provides an incentive for other ASes to
follow; with the highest-degree ASes deploying SAVE, when the followers also
deploy SAVE they will protect their own address space much more effectively.

6.2 False Positives

False positives only occur when the following conditions are all met:

– A pushback path that spoofing packets travel becomes a valid path due to
a sudden underneath routing change;

228 T. Ehrenkranz, J. Li, and P. McDaniel

– Legitimate packets begin to flow along the path;
– The SAVE update from the source router of the legitimate packets has not

reached SAVE routers along the path to void the blacklist entries that cause
the legitimate packets to be dropped.

The transient time that all three conditions are met is short-lived. Assume S is
the source router and R is a SAVE router on the path. False positives will occur
at R from the time the first legitimate packet arrives along the new valid path to
the time R’s blacklist is updated. Assuming there is a steady stream of packets
from S passing through R, it will take the following amount of time to update
R’s information:

rtt +
R∑

i=next(S)

Ci +
prev(R)∑

i=S

Pi +
R∑

i=next(S)

Ui (1)

rtt is the round trip time between R and S, next(S) is the SAVE router down-
stream from S towards R, Ci is the time it takes for router i to classify a packet,
prev(R) is the SAVE router upstream from R towards S, Pi is the time it takes
for router i to process a pushback message, and Ui is the time it takes for router
i to propagate an update.

The values of these parameters vary. Assuming values of 20ms for rtt, 100μs
for Ci, Pi, Ui, and 10 SAVE hops from S to R, the transient period will be 50ms.

6.3 Overhead

Here we discuss SAVE’s storage, network, and computational overhead.

Methodology. For overhead evaluation we use the J-Sim [17] network simu-
lation framework. (Note the DPF simulator cannot calculate SAVE storage or
network overheads.) The J-Sim framework simulates all routers, links, and mes-
sages in a network topology in order to conduct detailed overhead evaluation.
This, however, limits the size of the topology to generally 5,000 nodes—even with
our fairly high-end evaluation environment. (We performed all the evaluations
on a computer with 16 GB of RAM, dual 2.6 GHz AMD dual-core Opteron 285
CPUs, running CentOS Linux 4.6.) To solve this problem, we note that SAVE
can run at two separate levels: intra-AS level and inter-AS level, and we can
evaluate the overhead at these two separate levels. At the intra-AS level, al-
though a small number of ASes may have more than 5,000 routers, most ASes
will fall into the range that the J-Sim framework can simulate. At the inter-AS
level, all border routers of an AS can act as one “virtual router” with the entire
AS as its source address space, and therefore SAVE’s overhead at the inter-AS
level can be analyzed using a topology of all virtual routers—which is equivalent
to an Internet AS topology. As the Internet has approximately 26,000 ASes, a
detailed J-Sim simulation with up to 5,000 nodes should be close enough for us
to understand SAVE’s overhead at a large scale.

The overhead analyses at intra-AS level and inter-AS level are similar, except
that different topology models probably should be used. In this paper, we focus

Realizing a Source Authentic Internet 229

on the inter-AS level where each node is an AS (or a virtual router), and use
network topologies generated by shrinking AS topologies with Orbis [18]—such
topologies are smaller than the AS topology of the real Internet but they have
similar structure patterns.

Also, we again evaluate multiple placement strategies of SAVE routers. We
evaluate vertex cover deployments, deployments at the top 1% of routers by
degree, and biased 1% deployments consisting of a random half of the top 2%
of routers by degree. They are all effective from our efficacy analysis above. We
simulate networks ranging in size from 500 to 5,000 nodes (only up to 3,000
nodes for vertex cover deployments due to computation power limitation).

Storage Overhead: In this paper, the blacklist is the only new data structure.
We now implement it as a cache of fixed size that runs the Least Recently
Used (LRU) algorithm to replace old entries. Further work is needed to evaluate
how the size affects the efficacy of the system. We do not worry about losing
old blacklist entries; neighboring routers will still filter spoofing traffic, and the
on-demand-update mechanism can recreate entries if necessary in any case.

Network Traffic Overhead: Fig. 6 shows the per-router traffic during spoof-
ing attacks. As the network size increases, network overhead decreases—because
spoofing traffic, and thus control traffic, is more spread out (Figs. 6(a) and 6(d)).
With a fixed network size (1,000 nodes) and increasing spoofing traffic, the net-
work overhead increases linearly (Figs. 6(b), 6(c), 6(e), and 6(f)). This overhead
is offset significantly as the SAVE system is also removing spoofing traffic from
the network. Instead of the spoofing traffic overloading its target at the edge
of the network, routers drop the spoofing traffic and SAVE’s traffic overhead is
spread out inside the network. Note that due to simulation limitations we cannot
simulate a larger number of attackers, but results from Fig. 6 is still indicative
about the network overhead effects from the size of the network, the number of
attackers, and the number of spoofing packets.

Computational Overhead: SAVE’s most crucial computational overhead is
the time taken for a router to classify packets, which mainly consists of table
lookup operations (using a router’s incoming table and blacklist). We do not
have actual measurements for computational overhead since the system is only
implemented as a simulation, but we expect SAVE will impose only a minimal
computational cost. Today’s routers are designed for fast, efficient table lookups
(a router’s main function is forwarding table lookup).

7 Open Issues

Several issues related to incoming-table-based IP spoofing detection warrant fur-
ther investigation. These issues include incentives for deploying SAVE, spoofing
strategies attackers can employ to avoid SAVE, and false positives.

Incentives. AsSAVEcanonly be deployed incrementally, for successful incremen-
tal deployment, domains mustwant to deploy SAVE. Theremust be incentives that

230 T. Ehrenkranz, J. Li, and P. McDaniel

 0

 5

 10

 15

 20

 25

 30

 35

 0 1000 2000 3000 4000 5000

O
n-

de
m

an
d

U
pd

at
e

T
ra

ffi
c

(K
B

)

Network Size

Vertex Cover
Top 1%

Random half of top 2%

(a) On-Demand Update Traffic

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100

O
n-

D
em

an
d

U
pd

at
e

T
ra

ffi
c

(K
B

)

Attackers

Vertex Cover
Top 1%

Random half of top 2%

(b) On-Demand Update Traffic (varying
attackers)

 0

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

O
n-

D
em

an
d

U
pd

at
e

T
ra

ffi
c

(K
B

)

Spoofing Packets per Attacker

Vertex Cover
Top 1%

Random half of top 2%

(c) On-Demand Update Traffic (varying
packets per attacker)

 0

 1

 2

 3

 4

 5

 6

 0 1000 2000 3000 4000 5000

P
us

hb
ac

k
T

ra
ffi

c
(K

B
)

Network Size

Vertex Cover
Top 1%

Random half of top 2%

(d) Pushback Traffic

 0

 1

 2

 3

 4

 5

 6

 0 20 40 60 80 100

P
us

hb
ac

k
T

ra
ffi

c
(K

B
)

Attackers

Vertex Cover
Top 1%

Random half of top 2%

(e) Pushback Traffic (varying attackers)

 0

 1

 2

 3

 4

 5

 6

 0 50 100 150 200 250

P
us

hb
ac

k
T

ra
ffi

c
(K

B
)

Spoofing Packets per Attacker

Vertex Cover
Top 1%

Random half of top 2%

(f) Pushback Traffic (varying packets per
attacker)

Fig. 6. Network traffic due to spoofing (with 95% confidence intervals)

Realizing a Source Authentic Internet 231

include a clear benefit for the deploying domain. “Early adopters” of the protocol
should be attracted when the deployment level is still low.

We already know the following incentives for deploying SAVE on a network:
Attackers are less likely to successfully spoof source addresses belonging to a
SAVE-protected domain, protecting a domain from misplaced blame and reflec-
tion style attacks. A protected domain will also allow fewer spoofing packets
to enter its network, protecting internal hosts from receiving spoofing packets.
Furthermore, SAVE routers can assign higher priorities to packets from SAVE-
protected source address spaces, giving clients with protected sources higher
quality of service.

What needs to be further studied is how highest-degree ASes can become
incentivized to deploy SAVE. From Section 6.1 we know that deployments at
highest-degree ASes will be mostly effective while random deployments will be
least. One driving force here could be that knowing the correct source of traffic
may help large ISPs monitor and manage their traffic more reliably according
to contractual agreements with their customers.

Spoofing Strategies. Attackers may employ peculiar spoofing strategies to
evade SAVE’s filtering. One such spoofing is random source spoofing in which
the attacker stamps a random source address on every packet it sends out. When
a SAVE router receives any such packet, it will locate the incoming table entry
that matches the inscribed source of the packet. Since for each such packet the
SAVE router probably has not seen its inscribed source before (i.e., no blacklist
entry established), it will treat everyone of them as suspicious, and still forward
them. The router will request on-demand updates, but only to confirm that its
incoming table is up-to-date.

Fortunately, the damage an attacker could cause with random spoofing is
limited. Random spoofing could hide the attacker’s true identity, but random
spoofing cannot be used in attacks such as DNS amplification [1,2], DNS cache
poisoning [4], in-window TCP resets [3], and spam filter circumvention [5,6]. Any
type of reflection attack cannot succeed, since traffic triggered by the spoofing
packets will spread out through the network instead of becoming concentrated
in one area. Similarly, the effect on the SAVE infrastructure is manageable since
any requests for on-demand updates will also be spread throughout the network.

We are investigating the most cost-effective way of addressing this spoofing
strategy. Our concern with random spoofing is the effect it might have on SAVE
itself, so our solution focuses on minimizing the overhead it could generate. In
our current solution, described only briefly for space considerations, a router
does not request an on-demand update for every suspicious packet. Instead,
routers use a truncated binary exponential back off strategy. Initially, a router
will request an on-demand update after it sees n = 1 suspicious packet. If the
requested update shows the incoming table was in fact correct, the router will not
request another on-demand update until it sees n = 2 more suspicious packets.
Every time a requested update arrives, if it agrees with the incoming table, the
router subsequently waits for n = 2n more suspicious packets before requesting
another on-demand update. We do not allow n to increase over 1024. On the

232 T. Ehrenkranz, J. Li, and P. McDaniel

other hand, if the requested update shows the incoming table was incorrect, the
router decreases the wait to n = 1 suspicious packet. In this manner, random
spoofing by attackers cannot cause too much network overhead nor fill up a
router’s blacklist; at the same time, SAVE can continue to quickly update its
incoming table.

False Positives. As discussed in Section 6.2, our pushback mechanism is subject
to false positives when certain conditions are met. Although the transient period
for false positives to occur is very short, further minimizing them is important
and we plan to study this issue further.

8 Related Work

Source address validation is comprised of end-host methods and router-based
methods. To validate the source address of newly received packets, an end-host
can either actively probe supposed sources, or passively observe the pattern of
packets from them [19]. However, although end-host-based detection is easier
to deploy, it cannot prevent spoofing packets from reaching their destinations.
Router-based solutions can be classified as preventive approaches (e.g., filtering)
or reactive approaches (e.g., traceback). Since SAVE is a router-based, filtering-
oriented solution, we focus on these below.

Filtering approaches attempt to identify invalid packets by examining certain
attributes of incoming packets at a router. Many approaches have been proposed.
Network ingress filtering [7] can stop a spoofing attack at its source, but is useless
against spoofing attacks once they enter the Internet. With unicast reverse path
forwarding (uRPF) [8], a router drops any packet from an address that does
not arrive on the interface that the router uses to reach that address. However,
Internet routing is frequently asymmetric: the path from a given address is not
necessarily the same as the path to that address [20].

SPM [21] proposes that packets from a source AS to a destination AS carry a
key bound with that AS pair, but losing the key to an attacker will enable the
attacker to successfully deliver spoofed packets from anywhere. As opposed to
SAVE, SPM is also specific to BGP and cannot help intermediate routers gain
source validity knowledge.

Passport [22] is also BGP specific and uses keys based on AS pairs. It uses
multiple keys based on the packet’s source AS and each AS along the path to
its destination. This allows intermediate ASes to perform validation, in addi-
tion to the destination AS. Passport has problems with packets fragmented in
the middle of the network; the fragmentation invalidates the Passport header.
Routers therefore forward fragmented packets, both legitimate and spoofed, all
the way to their destination. More importantly, intermediate ASes never drop
invalid packets, only lower their priority. An attacker’s spoofing packets will still
reach the destination AS.

The authors of the route-based distributed packet filtering (DPF) [10] studied
the benefits of DPF for attack prevention and traceback, as well as its partial
deployment strategies. Unfortunately, the work did not specify how routers can

Realizing a Source Authentic Internet 233

learn the incoming direction for different source addresses. IDPF [23] attempts
to address this gap. It relies on specific BGP forwarding policies and AS peering
relationships, but only to learn feasible paths, instead of actual paths, from a
given source. BASE [24] is another similar work that relies on BGP, and has yet
to effectively address commonly seen AS-level routing asymmetry.

Pi [25] and StackPi [26] provide a hybrid approach: routers mark each packet
with an identifier for the path that the packet travels, and end hosts examine
packets and classify which paths are attack paths and which are not. Pi/StackPi
cannot handle fragmented packets correctly, and a spoofing packet must reach
its destination before Pi/StackPi can detect it.

9 Conclusion

Research has shown that if a small percentage of routers throughout the Inter-
net deploy a filtering table to discard packets with a forged source address, a
synergistic filtering effect can be achieved to stop a large fraction of spoofed IP
packets. Such an approach to IP spoofing has also been found to be the most
effective. However, in building such a filtering table, specifically an incoming
table, we have found that the previously designed SAVE protocol is susceptible
to obsolete incoming table entries as it is incrementally deployed.

We introduce new mechanisms in this paper to address this deficiency. We
introduce blacklists at SAVE routers and use both the blacklist and the incoming
table to classify and filter incoming packets. Our on-demand mechanism enables
a SAVE router to deal with suspicious packets and update its incoming table, and
the pushback mechanism further pushes the filtering of spoofing packets toward
the SAVE router that is the closest to spoofers. With these new mechanisms, and
with both security and performance issues considered, we show that incoming-
table-based IP spoofing detection is a viable approach to addressing the critical
problem of IP spoofing, and that ASes (beginning with high-degree ASes) will
have incentives to deploy such a solution. Simulations show that, for example,
with deployment at only the top 0.08% of ASes by degree, the efficacy of catching
spoofing packets is over 90%.

References

1. Paxson, V.: An analysis of using reflectors for distributed denial-of-service attacks.
ACM Computer Communications Review (CCR) 31(3), 38–47 (2001)

2. Jackson, D.: DNS amplification variation used in recent DDoS attacks (February
2009), http://www.secureworks.com/research/threats/dns-amplification/

3. Touch, J.: Defending TCP against spoofing attacks. RFC 4953 (July 2007)
4. US-CERT: Multiple DNS implementations vulnerable to cache poisoning, Vulner-

ability Note VU 800113 (July 2008)
5. Morrow, C.: BLS FastAccess internal tech needed (January 2006),

http://www.merit.edu/mail.archives/nanog/2006-01/msg00220.html

6. Beverly, R., Berger, A., Hyun, Y., Claffy, K.: Understanding the efficacy of deployed
Internet source address validation filtering. In: Proceedings of the ACM Internet
Measurement Conference (November 2009)

http://www.secureworks.com/research/threats/dns-amplification/
http://www.merit.edu/mail.archives/nanog/2006-01/msg00220.html

234 T. Ehrenkranz, J. Li, and P. McDaniel

7. Ferguson, P., Senie, D.: Network ingress filtering: Defeating denial of service attacks
which employ IP source address spoofing. RFC 2827 (2000)

8. Baker, F., Savola, P.: Ingress Filtering for Multihomed Networks. RFC 3704 (2004)
9. Ehrenkranz, T., Li, J.: On the state of IP spoofing defense. ACM Transactions on

Internet Technology 9(2), 1–29 (2009)
10. Park, K., Lee, H.: On the effectiveness of route-based packet filtering for distributed

DoS attack prevention in power-law internets. In: Proceedings of ACM SIGCOMM
(2001)

11. Mirkovic, J., Kissel, E.: Comparative evaluation of spoofing defenses. IEEE Trans-
actions on Dependable and Secure Computing 99 (2009) (PrePrints)

12. Li, J., Mirkovic, J., Ehrenkranz, T., Wang, M., Reiher, P., Zhang, L.: Learning the
valid incoming direction of IP packets. Computer Networks 52(2), 399–417 (2008)

13. Li, J., Mirkovic, J., Wang, M., Reiher, P.L., Zhang, L.: SAVE: Source address
validity enforcement protocol. In: Proceedings of IEEE INFOCOM (June 2002)

14. Kent, S., Lynn, C., Mikkelson, J., Seo, K.: Secure border gateway protocol (S-BGP)
— real world performance and deployment issues. In: Proceedings of the Network
and Distributed System Security Symposium (2000)

15. Goodell, G., Aiello, W., Griffin, T., Ioannidis, J., McDaniel, P., Rubin, A.: Work-
ing around BGP: An incremental approach to improving security and accuracy
of interdomain routing. In: Proceedings of the Network and Distributed System
Security Symposium (February 2003)

16. University of Oregon: Route Views Project, http://www.routeviews.org/
17. Tyan, H.Y., Sobeih, A., Hou, J.C.: Towards composable and extensible network

simulation. In: Proceedings of the International Parallel and Distributed Processing
Symposium (2005)

18. Mahadevan, P., Hubble, C., Krioukov, D.V., Huffaker, B., Vahdat, A.: Orbis: rescal-
ing degree correlations to generate annotated Internet topologies. In: Proceedings
of ACM SIGCOMM (2007)

19. Templeton, S.J., Levitt, K.E.: Detecting spoofed packets. In: Proceedings of the
DARPA Information Survivability Conference and Exposition, vol. 1 (2003)

20. Paxson, V.: End-to-end routing behavior in the Internet. In: Proceedings of ACM
SIGCOMM (1996)

21. Bremler-Barr, A., Levy, H.: Spoofing prevention method. In: Proceedings of IEEE
INFOCOM (2005)

22. Liu, X., Li, A., Yang, X., Wetherall, D.: Passport: Secure and adoptable source
authentication. In: Proceedings of USENIX Symposium on Networked Systems
Design and Implementation (2008)

23. Duan, Z., Yuan, X., Chandrashekar, J.: Constructing inter-domain packet filters to
control IP spoofing based on BGP updates. In: Proceedings of IEEE INFOCOM
(2006)

24. Lee, H., Kwon, M., Hasker, G., Perrig, A.: BASE: An incrementally deployable
mechanism for viable IP spoofing prevention. In: Proceedings of the ACM Sympo-
sium on Information, Computer, and Communication Security (2007)

25. Yaar, A., Perrig, A., Song, D.: Pi: A path identification mechanism to defend
against DDoS attack. In: Proceedings of the IEEE Symposium on Security and
Privacy (2003)

26. Yaar, A., Perrig, A., Song, D.: StackPi: New packet marking and filtering mech-
anisms for DDoS and IP spoofing defense. IEEE Journal of Selected Areas in
Communications 24(10), 1853–1863 (2006)

http://www.routeviews.org/

	Realizing a Source Authentic Internet
	Introduction
	Incoming Table, Blacklist, and Packet Classification
	Blacklist
	Packet Classification

	On-demand Update
	Pushback of Spoofed Packets
	Security Considerations
	Origin Authentication
	Collusion Prevention
	Confidentiality, Integrity, and Replay Prevention

	Evaluation
	Efficacy
	False Positives
	Overhead

	Open Issues
	Related Work
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

