
A Generic Construction of Dynamic Single

Sign-on with Strong Security

Jinguang Han1,3, Yi Mu1, Willy Susilo1, and Jun Yan2

1 Centre for Computer and Information Security Research
School of Computer Science and Software Engineering

2 School of Information Systems and Technology
University of Wollongong, NSW2522, Australia

3 College of Science, Hohai University, Nanjing 210098, China
{jh843,ymu,wsusilo,jyan}@uow.edu.au

Abstract. Single Sign-On (SSO) is a core component in a federated
identity management (FIM). Dynamic Single Sign-on (DSSO) is a more
flexible SSO where users can change their service requirements dynami-
cally. However, the security in the current SSO and DSSO systems remain
questionable. As an example, personal credentials could be illegally used
to allow illegal users to access the services. It is indeed a challenging task
to achieve strong security in SSO and DSSO. In this paper, we propose
a generic construction of DSSO with strong security. We propose the
formal definitions and security models for SSO and DSSO, which enable
one to achieve the security of SSO and DSSO with the underlying (stan-
dard) security assumptions. We also provide a formal security proof on
our generic DSSO scheme.

Keywords: Single Sign-on, Authentication, Security.

1 Introduction

With an increasing use of personalized/protected services, users need to maintain
more and more usernames and the corresponding passwords in order to access the
entitled services. This imposes a burden on users. Single Sign-on (SSO) provides
a good remedy to this problem, as it allows a single password to be used to
access multiple services. A traditional SSO system comprises three entities: an
identity provider (IdP), a group of users (Us) and a group of service providers
(SPs). The IdP manages the user’s personally identifiable information (PII),
authenticates network users and issues credentials to them. SPs provide services
to users once they are authenticated by the IdP. SSO is a system where a user
authenticates himself to the IdP and can access the designated SPs without
the need for further authentication [24]. SSO can shift the great administrative
burden of the numerous users profiles from SPs to the IdP. Hence, SSO plays
a core role in the federated identity management (FIM) where the exchange of
the user’s identity-related information can be optimized [5].

Unfortunately, current SSO systems have some obvious flaws. For instance,
they are fragile to resist single point of failure [16,22,23]. The main reason for this

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 181–198, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

182 J. Han et al.

is that the IdP must always be online, otherwise users cannot be granted services
from SPs. They are not well protected from illegally using a personal credential,
where a credential could be used for an illegitimate user to gain the services
which should not be accessed by him. These systems are subject to imperson-
ation attacks. When a password is compromised, the attacker can impersonate
the user and log in using the compromised account. This is mainly due to the
missing of individual participation principle provided in the thirteenth principle
of Organization for Economic CO-Operation and Development (OECD) [20] and
the missing of the user control and consent principle for the laws of identity [6].
All these flaws stem from the lack of active/dynamic control over the process
by the user, after the user has entered the correct password. In the following,
we review some existing SSO systems. Although those systems provide elegant
solutions to SSO, they suffer from various attacks.

Released 1999, Microsoft .NET Passport is one of the most widely deployed
SSO systems, where a passport server acts as the IdP [22]. It uses cookies to
store and convey user’s PII. When a user access to an SP, the SP redirects the
user to the passport server for authentication. After authentication, the passport
server creates three cookies: ticket cookie, profile cookie and visited sits cookie.
The ticket cookie contains the unique identifier and a timestamp. The profile
cookie consists of the user’s profile information. The visited sits cookie contains
the lists sites the user has accessed. All cookies created by the passport server
are encrypted with the triple DES encryption algorithm under the shared key
between the passport server and all SPs. The passport server sends these cookies
to the user. The user redirects them to the SP. The SP decrypts the cookies and
obtains the user’s authentication information. .Net Passport incurs some attacks,
such as single point of failure, key management failure, misuse of cookies, etc.
[16,22,23].

In September 2001, the Liberty Alliance Project was launched [17]. This
project was aimed to create an open, federated, SSO solution for the digital
economy via any device connected to the Internet. The Liberty project does not
use cookies to transfer information between IdPs and SPs. Instead, it transfers
information through HTTP redirects and URL encodings. In Liberty Alliance,
an SSO Service (SSOS) provides users an Identity Web Services Framework (ID-
WSF)-based means to obtain Liberty authentication assertions enabling them to
interact with SPs [18]. In this system, the user only shows his credentials to the
SP, without proving the ownership of them. Therefore, it is unable to prevent
credential transfer, namely the user can share his credentials with other illegal
users.

Proposed in 2005, OpenID is an open, decentralized standard for authenticat-
ing users. In OpenId, users are allowed to access to different services with the
same digital identity where the SPs trust the IdP. OpenID solves the problem
without relying on any centralized IdP to confirm digital identity. There are more
than one IdP in OpenID system, users can get their OpenID from any IdP in
the system. OpenID can be used as an effective mean for cross company authen-
tication as well as for SSO. OpenID has two major modes of operation: Dumb

A Generic Construction of Dynamic Single Sign-on with Strong Security 183

mode and Smart mode [21,28]. In the Dumb mode, the SP needs to compare
the authentication assertion received from the user with the initial one stored
in the IdP to prevent the malicious attackers. While in the Smart mode, the
IdP encrypts the authentication assertion under the shared key between the SP
and the IdP. Therefore, in both modes, the IdP must always be online to enable
users authentication.

In 2003, Pahalidis and Mitchell presented a taxonomy of SSO system [24].
They divided SSO systems into four categories: local pseudo-SSO systems, proxy-
based pseudo-SSO systems, local true SSO systems and proxy-based true SSO
systems. They designed two SSO systems based on trusted platforms and GSM/
UMTS, respectively [25,26]. In order to resolve the single point of failure, two
distributed SSO systems Cornell SSO (CorSSO) and Threshold Passport (Thres-
Passport) were proposed by Josephson and Chen in 2004 and 2005, respectively
[7,15]. In these systems, the authentication key is split into n different shares,
and each share is sent to an authentication server. Only authenticated by at least
t authentication servers, can the user get services from an SP. Recently, user-
centric federated identity management systems have been proposed to protect
user’s PII [30,27]. In 2009, based on a private credential mechanism, Suriadi and
Foo proposed a user-centric federated SSO system (UFed SSO), in which the
user can minimize the release of his PII [31]. Although, every system mentioned
above has its merits, they did not provide a security proof.

In 2006, Bhargav-Spantzel and Camenisch [30] proposed a taxonomy and
raised some open issues on user centric federated identity management systems.
They classified the existing systems into two predominant variants: credential-
focused systems and relation-focused systems. In credential-focused systems,
the IdPs must be offline and issue long-term credentials. While in relationship-
focused systems, users need to maintain the relationship with the online IdPs
that create short-term credentials for them during transactions. They defined an
universal user centric FIM which should have long-term as well as short-term cre-
dentials, online and offline IdP. However, this scheme has not been investigated
thoroughly.

Our Contribution
In this paper, we propose a novel dynamic SSO scheme, which resists against
all the previously described attacks. We formalize the definitions and the secu-
rity models for SSO and DSSO. It is the first time that the formal definitions
and security models for SSO and DSSO are formally defined. We give a generic
construction of DSSO systems based on three building blocks: (1) CCA-secure
broadcast encryption, (2) strongly existentially unforgeable signature, and (3)
zero knowledge proof. We provide a formal security proof for our generic con-
struction.

Paper Organization
The rest of this paper is organized as follows. In Section 2, we propose the formal
definitions and security models for SSO and DSSO. We review the three building
blocks which are used to construct DSSO in Section 3. In Section 4, a generic

184 J. Han et al.

construction for DSSO is described. In Section 5, we reduce the security of our
construction to the underlying assumptions. Section 6 concludes this paper.

2 Formal Definitions and Security Models

In this section, we provide a formal definition and a security model for SSO and
DSSO.

2.1 Single Sign-on

In SSO systems, a user needs to authenticate himself to the IdP once for access
to multiple SPs without the need to re-authentication. In order to protect the
PII of the user, an ideal SSO system should satisfy the basic requirement that
only the intended SPs can check the user’s PII. Now we formalise the definition
of SSO as follows:

Definition 1. A Single Sign-on system consists of five algorithms: system setup
algorithm Setup(·), enrollment algorithm Enrol(·), credential generation algo-
rithm CreGen(·), credential verification algorithm CreVer(·), and proof of knowl-
edge algorithm PK(·).
– Setup(λ): Taking as input a security parameter λ ∈ N, it returns public pa-

rameters PP and a public-secret key pair (KIP , KIS)← G(1λ) for the IdP.
– Enrol(PP, RI): Taking as input public parameters PP, SPi’s registration infor-

mation RISPi or U ’s registration information RIU , it returns (IDSPi , KSPi) to
SPi, and (IDU , AU) to U , where IDSPi and IDU are the identifiers of SPi

and U in the circle of trust (CoT)1, KSPi is SPi’s verification key and AU

is U ’s access right which is a set consisting of the identifiers of the service
providers that the user has selected. U generates his public-secret key pair
(KUP , KUS)← G(1λ).

– CreGen(KIS , MU , IDU , TU , KUP , PP): Taking as input the IdP’s secret key
KIS, an authentication assertion MU , user’s identifier IDU , user’s public
key KUP , a timestamp TU and public parameters PP, it returns a credential
CreU .

– CreVer(KSPi , CreU , MU , IDU , KUP , TU , KIP , PP): Taking as input the ser-
vice provider SPi’s verification key KSPi, the user’s credential CreU , the
authentication assertion MU , the user’s identifier IDU , user’s public key
KUP , IdP’s public key KIP , the timestamp TU and public parameters PP ,
it returns True if and only if the service provider IDSPi ∈ AU and the
credential CreU is created by the IdP. Otherwise it returns False.

– PK((KUS , KUP), γ): Taking as input the user’s public-secret key pair (KUP ,
KUS) and a random number γ, it returns a number s such that Accept ←
PKV er(s, KUP , γ) if and only if KUS is the user’s secret key corresponding
to the public key KUP , where PKV er(·) is the verification algorithm in the
proof of knowledge. Otherwise it returns Reject.

1 A circle of trust consists of the identity provider and service providers, where each
service provider trusts the identity provider.

A Generic Construction of Dynamic Single Sign-on with Strong Security 185

2.2 The Security of Single Sign-on

In SSO systems, three types of attacks should be considered: collusion credential
forging attacks, collusion impersonation attacks and coalition credential forging
attacks. In the collusion credential forging attacks, malicious users can collabo-
ratively forge a credential for the target user. They can impersonate the target
one to get services from the service providers whose identifiers are listed in the
forged credential. In the collusion impersonation attacks, we assume that the
malicious service providers have checked the credentials of a user and therefore
obtained the corresponding proof information on the user. Hence, malicious ser-
vice providers can collaboratively mimic the owner of the credentials. In the
coalition credential forging attacks, malicious users and service providers can
collaboratively forge a credential for the target user, in which the identifiers of
the malicious service providers are not included.

In order to formalise our notions of security for SSO systems, we define a
series of games between two Turing machines: Challenger and Adversary A.

Game 1: Collusion Credential Forging Attacks.

Init. Let A be all malicious users. A begins by outputting the target user U∗ for
whom it wants to forge a credential.

Setup. The challenger runs Setup(λ) to generate the public parameter PP and
the public-private key pair (KIP , KIS). It sends A the public parameter PP
and the public key KIP .

Enrollment queries. A can adaptively issue enrollment queries {RIU1 , RIU2 , · · · ,
RIUqe}, where RIUi �= RI∗U , qe ≤ (|U| − 1), U is the set consists of all users
in the CoT. The challenger returns {(IDU1 , AU1), (IDU2 , AU2), · · · , (IDUqe ,
AUqe)}.

Credential generation queries. A can adaptively issue credential generation queries
{(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}, where (IDUi , KUPi) �=

(ID∗
U , K∗

UP). The challenger returns {CreU1 , CreU2 , · · · , CreUqc1
}.

Credential verification queries.A can adaptively issue credential verification queries
{(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2),· · · , (IDUqc2

, KUPqc2
, CreUqc2

)}.
Upon receiving a query, the challenger returns True or False.

Output. A outputs a credential Cre∗U for U∗. A wins the game if

1. True← CreVer (KSPi , Cre∗U , ID∗
U , K∗

UP , T ∗
U , KIP , PP) and

2. (ID∗
U , Cre∗U) /∈ {(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}.

Definition 2. A Single Sign-on system is (t, qe, qc1, qc2, ε)-secure against col-
lusion credential forging attacks if no t-time adversary, who makes at most qe
enrollment queries, qc1 credential generation queries and qc2 credential verifica-
tion queries, has advantage at least ε in Game 1.

Game 2. Collusion Impersonate Attacks.

186 J. Han et al.

Init. Let A be all malicious service providers in the CoT. A begins by outputting
a user U∗ whom it wants to impersonate.

Setup. The challenger runs Setup(λ) to obtain the public parameters PP and
the public-secret key pair (KIP , KIS). It sends A the public parameter PP
and the public key KIP .

Proof of Knowledge queries. A can adaptively issues proof of knowledge queries
{(KUP1 , γ1), (KUP2 , γ2), · · · , (KUPqp , γqp)}, where KUPi �= K∗

UP . The chal-
lenger returns {s1, s2, · · · , sqp}.

Challenge. The challenger sends a challenge (K∗
UP , γ∗) to A.

Output. A outputs s∗. A wins the game if

1. Accept← PKV er(s∗, K∗
UP , γ∗) and

2. K∗
UP /∈ {KUP1 , KUP2 , · · · , KUPqp}.

Definition 3. A Single Sign-on system is (t, qp, ε)-secure against collusion im-
personation attacks if no t-time adversary, who makes at most qp proof of knowl-
edge queries, has advantage at least ε in Game 2.

Game 3: Coalition Credential Forging Attacks.

Init. Let A be the coalition, which consists of all malicious users and service
providers. A begins by outputting a user U∗ that it wants to impersonate and
a service provider SP ∗ that it wants to attack.

Setup. The challenger runs Setup(λ) to generate the public parameters PP and
the public-secret key pair (KIP , KIS). It sends A the public parameter PP
and the public key KIP .

Enrollment queries. A can adaptively issue enrollment queries {RIU1 , RIU2 , · · · ,
RIUqe1

} and {RISP1 , RISP2 , · · · , RISPqe2
}, where RIUi �= RI∗U , RISPi �=

RI∗SP , qe1 ≤ (|U| − 1), qe2 ≤ (|SP| − 1), SP is the set consists of all service
providers in the CoT, and qe1+qe2 = qe. The challenger returns {(IDU1 , AU1),
(IDU2 , AU2) · · · , (IDUqe1

, AUqe1
)} and {(IDSP1 , KSP1), (IDSP2 , KSP2), · · · ,

(IDSPqe2
, KSPqe2

)}.
Credential generation queries. A can adaptively issue credential generation queries
{(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}, where (IDUi , KUPi) �=

(ID∗
U , K∗

UP). The challenger returns {CreU1 , CreU2 , · · · , CreUqc1
}.

Credential verification queries. A can adaptively issue credential verification queries
{(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2),· · · , (IDUqc2

, KUPqc2
, CreUqc2

)}.
The challenger returns True or False.

Output. A outputs a credential Cre∗U . A wins the game if

1. True← CreV er(K∗
SP , Cre∗U , M∗

U , ID∗
U , K∗

UP , T ∗
U , KIP , PP).

A Generic Construction of Dynamic Single Sign-on with Strong Security 187

2. (ID∗
U , Cre∗U) /∈ {(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}.

3. ID∗
SP ∈ A∗

U and IDSP /∈ A∗
U if SP ∈ A.

Definition 4. A Single Sign-on system is (t, qe, qc1, qc2, ε)-secure against coali-
tion credential forging attacks if no t-time adversary, who makes at most qe
enrollment queries, qc1 credential generation queries, and qc2 credential verifi-
cation queries, has advantage at least ε in the Game 3.

2.3 Dynamic Single Sign-on

DSSO is an SSO system in which the user can change his choice dynamically.
We formalise the definition of DSSO as follows:

Definition 5. A dynamic single sign-on system (DSSO) consists of seven al-
gorithms: Setup(·), Enrol(·), CreGen(·), CreVer(·), PK(·), an addition algorithm
A(·) and a deletion algorithm D(·). Where Setup(·), Enrol(·), CreGen(·), CreVer(·)
and PK(·) are the same as in definition 1.

– A (IDSP) : Taking as input the service provider SP ’s identifier IDSP , it
returns AU ← AU

⋃{IDSP }.
– D (IDSP) : Taking as input the service provider SP ’s identifier IDSP , it

returns AU ← AU\{IDSP}.

2.4 The Security of Dynamic Single Sign-on

In multiple parties communication and dynamic schemes, because the partic-
ipants can join or leave frequently, two special attacks should be addressed,
namely forward security and backward security. In DSSO, users can be added
to or revoked from a service dynamically; therefore a secure DSSO system can
resist these attacks. By forward security, we mean that the SP can not validate
the credentials, which were issued before he is added to the user’s access right
AU . By backward security, we mean that the service providers can not validate
the credentials, which are issued after he has been removed from the the user’s
access right AU . We formalise these two attacks by the following games.

Game 4: Forward Security.

Setup. LetA be malicious service providers. The challenger runs Setup(λ) to gen-
erate the public parameters PP and the public-secret key pair (KIP , KIS). It
sends A the public parameter PP and the public key KIP .

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc , KUPqc ,
CreUqc)}, which were issued after A has been joined to AU . The challenger
returns True or False.

Challenge. The challenger sends to A an old credential CreO
U , which was issued

before he is joined to AU .

188 J. Han et al.

Output. A outputs True or False. A wins the game if his answer on CreO
U is

correct.

Definition 6. A Dynamic Single Sign-on system is (t, qc, ε)-forward secure if
no t-time adversary, who makes at most qc credential verification queries, has
advantage at least ε in the Game 4.

Game 5: Backward Security.

Setup. LetA be malicious service providers. The challenger runs Setup(λ) to gen-
erate the public parameters PP and the public-secret key pair (KIP , KIS). It
sends A the public parameter PP and the public key KIP .

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc , KUPqc ,
CreUqc)}, which were issued before A is deleted from AU . The challenger
returns True or False.

Challenge. The challenger sends A a new credential CreN
U which was issued

after he has been deleted from AU .

Output. A outputs True or False. A wins the game if his answer on CreN
U is

correct.

Definition 7. A Dynamic Single Sign-on system is (t, qc, ε)-backward secure if
no t-time adversary, who makes at most qc credential verification queries, has
advantage at least ε in the Game 5.

3 Building Blocks

In this section, we provide three building blocks, which are used to construct
DSSO systems.

3.1 Broadcast Encryption System

The notion of broadcast encryption was proposed by Fiat and Naor in 1993 [10].
A broadcast encryption system consists of three randomized algorithms:

– Setup(n, λ): Taking as input the number of receivers n and security param-
eter λ, it outputs n secret keys KR1, KR2, · · · , KRn and public parameters
PPB.

– Encrypt(S, PPB): Taking as input a subset S ⊆ {ID1, ID2, · · · , IDn} and
public parameters PPB, it outputs a pair (Hdr, K), where Hdr is called the
header and K ∈ K is a message encryption key. (S, Hdr) is often called the
full header.

– Decrypt(Hdr, KRi, PPB): Taking as input the header Hdr, the secret key
KRi for the receiver IDi ∈ S and the public parameter PPB, it outputs the
message encryption key K ∈ K.

A Generic Construction of Dynamic Single Sign-on with Strong Security 189

3.2 Chosen Ciphertext Security of Broadcast Encryption System

The chosen ciphertext security of broadcast encryption system is defined using
the following game between a challenger and an adversary A [1,9].

Init. The adversary A outputs a receivers set S∗ ⊆ {ID1, ID2, · · · , IDn} which
he wants to attack.

Setup. The challenger runs Setup(n, λ) to generate secret keys KR1, KR2, · · · ,
KRn and public parameters PPB. It sends A all secret key KRi for IDi /∈ S∗.

Query phase 1. A issues decryption queries q1, q2, · · · , qt, where qi = (Hdr, IDl),
IDl ∈ S∗. The challenger responds with Decrypt(Hdr, KRl

, PPB).

Challenge. The challenger runs algorithmEncrypt(S∗, PPB) to obtain (Hdr∗, K),
where K ∈ K. The challenger chooses a random b ∈ {0, 1}. It sets Kb = K
and chooses a random K1−b ∈ K. It sends (Hdr∗, K0, K1) to A.

Query phase 2.A can adaptively issue decryption queries qt+1, qt+2, · · · qd, where
qj = (Hdr, IDl), IDl ∈ S∗. The only constraint is that Hdr �= Hdr∗. The
challenger returns Decrypt(Hdr, KRl

, PPB).

Guess. A outputs its guess b′ ∈ {0, 1} for b. A wins the game if b = b′.

Definition 8. A broadcast encryption system is (t, n, qd, ε) CCA-secure if no
t-time adversary A, who makes at most qd decryption queries, has advantage at
least ε in the above game.

3.3 Signature Scheme

Digital signature scheme was proposed by Diffie and Hellman [8]. A signature
scheme consists of four algorithms:

– Setup(γ): Taking as input the security parameter γ, it outputs the public
parameters PPS .

– KeyGen(γ, PPS): Taking as input the security parameter γ and the public
parameters PPS , it outputs a public-secret key pair (KS , KP).

– Sign(KS, m, PPS): Taking as input the secret key KS , a message m and the
public parameters PPS , it outputs a publicly verifiable signature σ.

– Ver(m, σ, KP , PPS): Taking as input the message m, the signature σ, the
public key KP and the public parameters PPS , it outputs True if the sig-
nature is correct. Otherwise it outputs False.

3.4 Strong Unforgeability of Signature

A digital signature system is said to be secure if it is existentially unforgeable
under a chosen-message attack [2,13]. The strong unforgeability of signature is
defined using the following game between a challenger and an adversary A.

190 J. Han et al.

Setup. The challenger runs Setup(γ) and KeyGen(γ, PPS) to generate the pub-
lic parameters PPS and a public-secret key pair (KP , KS). It sends public
parameters PPS and public key KP to A.

Signature queries.A can adaptively issue up to qs signature queries {m1, m2, · · · ,
mqs}. To each query mi, the challenger runs algorithm Sign(KS, mi, PPS)
to produce the corresponding signature σi. The challenger responds with
message-signature pairs {(m1, σ1), (m2, σ2), · · · , (mqs, σqs)}.

Output. A outputs a message-signature pair (m∗, σ∗). A wins the game if
1. True← V er(m∗, σ∗, KP , PPS) and

2. (m∗, σ∗) /∈ {(m1, σ1), (m2, σ2), · · · , (mqs, σqs)}.
Definition 9. A signature is (t, qs, ε)-strongly existentially unforgeable under
adaptive chosen-message attacks if no t-time adversary, who makes at most qs
signature queries, has advantage at least ε in the above game.

3.5 Zero Knowledge Proof

Zero knowledge proof (ZKP) was introduced by Goldwasser, Micali and Rackoff
in 1985 [14]. It is an interactive protocol by which a prover P (Peggy) can
convince a verifier V (Victor) that he knows a secret without revealing any
information about it to V . The formal definition of zero knowledge proof is as
follows:

Definition 10. Let (P, V) be a pair of Turing machines and V is polynomially
bounded. P and V share the same input and can interact with each other. Let
L be a language. We say that a pair (P, V) is zero knowledge proof system, if P
and V satisfy the following properties:

– Completeness: For any input x ∈ L to (P, V), Pr[s ← (P, V)(x), V (x, s) =
1] ≥ 1 − 1

nk , for each k and sufficiently large n which denotes the length of
the input.

– Soundness: For any x /∈ L, and any prover P ′, Pr[s← (P ′, V)(x), V (x, s) =
1] < 1

nk .

– Zero-knowledge: For any x ∈ L, and any verifier V ′, there exists a simula-
tor S such that two distribution SV ′(x) and VewV ′(x) are computationally
indistinguishable.

Any language in NP has an interactive zero knowledge proof system [11,12]. Let
(P, V) be an interactive zero knowledge proof system. By (P, V)(x) we denote
that the prover P executes an interactive zero knowledge proof protocol with
the verifier V to prove that he knows the secret corresponding to x.

4 Generic Construction for Dynamic Single Sign-on

Our generic construction for DSSO consists of three building blocks: a CCA-
secure broadcast encryption scheme BroEnc(·), a strongly unforgeable signature

A Generic Construction of Dynamic Single Sign-on with Strong Security 191

scheme Sign(·) and a zero knowledge proof scheme (P,V)(·). In our construction,
users can change their choices dynamically, while other participants (users and
SPs) in the system do not need to change their credentials. When the user logs
in, the IdP creates a credential for him. The user can then use this credential
to access all designated SPs, instead of sending different credentials to different
SPs. For each logging request, the IdP creates a new credential for the user. At
this point of time, a user can also be revoked due to expiry of his membership, for
instance. Our construction can prevent illegal credential sharing, which is defined
as all-or-nothing non-transferability. By all-or-nothing non-transferability, we
mean that all the credentials of a user are shared, once he shares one of them
with others [30,3,4,19]. Figure 1 provides the architecture of our construction.

2SP

1. Log in

3. Service Request

4. Verification

Request

5. Credential

6. Check

Credential

8. Service Grant

1SP
2. Credential

|| UASP

7. Owner

Identification

9. Request

10. New

Credential

IdP

User

Fig. 1. DSSO Architecture

1. System Set-up. Runs the Setup(λ) to generate the public parameters PP ,
which includes all public parameters in the three underlying building blocks,
and a public-secret key pair (KIP , KIS)← G(1λ) for the IdP, where λ is the
security parameter.

2. Enrollment.

(a) Service providers enrollment. SPi submits his necessary registration infor-
mation RISPi to the IdP. The IdP issues an identifier IDSPi for SPi,
sends a verification key KSPi to him, which is regarded as the receiver
key in the broadcast encryption scheme, and stores (SPi, IDSPi, KSPi)
for him.

(b) User enrollment. U sends his necessary registration information RIU to
the IdP. The IdP issues an identifier IDU for him. The user generates
his public-secret key pair (KUP , KUS)← G(1λ) and sends the public key
KUP to the IdP. The IdP decides the user’s access right AU , which is a
set that consists of the identifiers of the service providers that the user
can access, and stores (IDU , KUP , AU) for the user. Note that AU will
be regarded as the receiver set S in broadcast encryption.

192 J. Han et al.

3. Single Sign-on.
(a) Log in. U uses his username and corresponding password to log in the

system.

(b) Credential generation. The IdP runs BroEnc(|AU |) to generate the broad-
cast encryption key K which can only be computed by the service
providers whose identifiers are listed in AU , and encapsulates it in (AU ,
Hdr). IdP generates a signature δU = Sign(KIS , MU , IDU , KUP , TU),
where KIS is the secret key of IdP, MU is an authentication assertion,
IDU is the user’s identifier, KUP is the user’s public key and TU is a
timestamp. Then, IdP encrypts the signature δU under K. The credential
for the user is

CreU = (AU , Hdr, D), where D = EK(δU , MU , IDU , KUP , TU).

(c) Service request. U sends a service request to the service provider SPi

(IDSPi ∈ AU).

(d) Verification request. SPi asks U to show his credential to him.

(e) Credential verification. U sends CreU to SPi. SPi computes the broad-
cast encryption key K from (AU , Hdr) using his verification key KSPi,
decrypts D = EK(δU , MU , IDU , KUP , TU) and verifies the signature δU .
If δU is a valid signature on (MU , IDU , KUP , TU), SPi executes the next
step. Otherwise SPi aborts.

(f) Owner identification. U executes zero knowledge proof protocol (U, SPi)
(KUP) with SPi to prove that he knows the secret key KUS correspond-
ing the public key KUP included in CreU .

(g) Service grant. If the zero knowledge proof is successful, SPi grants the
services to the user. Otherwise, SPi rejects the services.

If the user wants to access to other SP s whose identifiers are listed in AU ,
he can send CreU to them directly, without having to request the IdP to
issue a new credential for him, namely step (a) and (b) can be omitted.

4. Dynamic Change.

If the user needs to change his access right, when he logs in, he must submit
a request to the IdP. After checking it, the IdP creates a new credential for
the user, according to his current status.
(a) Request. U must submit a request for changing AU to the IdP. After

checking the request, the IdP does the following two changes on AU .

(b) Add. The IdP adds a service provider SPj to the user’s access right AU

by setting AU ← AU

⋃{IDSPj}, and updates the broadcast encryption
key K.

(c) Delete. The IdP deletes a service provider SPj from AU by setting AU ←
AU\{IDSPj}, and updates the broadcast encryption key K.

(d) New credential generation. The IdP uses the updated broadcast encryp-
tion key K to generate a new credential for U .

A Generic Construction of Dynamic Single Sign-on with Strong Security 193

5 Security Analysis

In this section, we prove that our construction for DSSO is secure against col-
lusion credential forging attacks, collusion impersonate attacks and coalition
credential forging attacks, and provides forward security and backward security.

Theorem 1. Our generic construction for DSSO is (t, qe, qc1, qc2, ε) -secure
against collusion credential forging attacks if the broadcast encryption scheme
is (t, n, qc1, ε1) CCA-secure and the signature scheme is (t, qc2, ε.(1 − ε1)qc2)-
strongly existentially unforgeable.

Proof. Suppose there exists t-time malicious users A that (t, qe, qc1, qc2, ε) breaks
the collusion credential unforgeability of our generic construction for DSSO. We
will show that there exists an algorithm B who can (t, qc2, ε.(1 − ε1)qc2) breaks
the strongly existential unforgeability of the underlying signature scheme.

Init. Algorithm B runs A and receives a user U∗ for whom A wants to forge a
credential.

Setup. B sends the public parameters PP and the IdP’s public key KIP to A.

Enrollment queries. A can adaptively issues at most qe enrollment queries {RIU1 ,
RIU2 , · · · , RIUqe}, where RIUi �= RI∗U , qe ≤ (|U|−1). B returns {(IDU1 , AU1),
(IDU2 , AU2), · · · , (IDUqe, AUqe)}.

Credential generation queries.A can adaptively issue credential generation queries
{(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}, where (IDUi , KUPi) �=

(ID∗
U , K∗

UP). B redirects these queries to the challenger. The challenger re-
turns {CreU1 , CreU2 , · · · , CreUqc1

}, where CreUi = (AUi , Hdri, Di), Di =
EKi(δi, MUi , IDUi , KUPi , TUi) and δi = Sign(KIS , MUi , IDUi , KUPi , TUi).

Credential verification queries.A canadaptively issue credential verificationqueries
{(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc2

, KUPqc2
,

CreUqc2
)}. B redirects these queries to the challenger. The challenger returns

True or False.

Output. A outputs a credential Cre∗U = (A∗
U , Hdr∗, D∗), where (ID∗

U , Cre∗U) /∈
{(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}

B sends Cre∗U to SPl (IDSPl
∈ A∗

U). SPl returns the corresponding plaintext
(M∗

U , ID∗
U , K∗

UP , T ∗
U) or ⊥ for meaningless ciphertext.

1. If ⊥ is responded, namely D∗ is not the corresponding ciphertext of (M∗
U ,

ID∗
U , K∗

UP , T ∗
U) under the encryption key K∗ encapsulated in Hdr∗, B

aborts. The simulation fails.

2. If the corresponding plaintext (M∗
U , ID∗

U , K∗
UP , T ∗

U) is responded, namely A
can get the broadcast encryption key K∗ from Hdr∗, B will abort. B can use
A to break the broadcast encryption scheme. Due to the broadcast encryp-
tion is (t, n, qc1, ε1) CCA-secure, the probability that (M∗

U , ID∗
U , K∗

UP , T ∗
U)

is received is at most ε1.

194 J. Han et al.

3. If B does not abort, he can obtain a valid signature δ∗ on (M∗
U , ID∗

U , K∗
UP ,

T ∗) at the same advantage ε.

Now we compute the probability that B does not abort. If the broadcast encryp-
tion scheme is (t, n, qc1, ε1) CCA-secure, then B can abort at most ε1. Therefore,
the probability that B dose not abort during the qc2 credential verification queries
is at least (1− ε1)qc2 . Thus, the advantage that B can break the strongly existen-
tial unforgeability of the underlying signature scheme is at least ε.(1−ε1)qc2 which
contradicts the assumption that the underlying signature is (t, qc2, ε.(1− ε1)qc2)-
strongly existentially unforgeable.

Theorem 2. Our generic construction for DSSO is secure against collusion
impersonation attacks if the zero knowledge proofs scheme is secure.

Proof. Let A be malicious service providers to whom U has showed credentials
and proved the ownership of these credentials. If A can impersonate U , we
will show that there exists an algorithm B (knowledge extractor) can break the
security of the underlying zero knowledge scheme.

If A can impersonate U to prove that he is the owner of the credentials which
U has showed to him, he must execute the ZKP protocol with some service
providers to prove that he knows the secret key KUS corresponding to the public
key KUP . If A can do this, B (knowledge extractor) can use the rewinding
techniques to obtain the user’s secret key KUS from two different challenges
sent to U and A. So, B can use A to break the security of the underlying zero
knowledge proofs scheme.

Note that, in our generic construction, the user can not share his creden-
tials with others. Because, if he wants to share one credential with others, he
must reveal his secret key KUS to them and all credentials of the user will be
shared with others. This is the so-called all-or-nothing non-transferability prop-
erty mentioned at section 4.

Theorem 3. Our generic construction for DSSO is (t, qe, qc1, qc2, ε) -secure
against coalition credential forging attacks if the broadcast encryption scheme is
(t, n, qc1, ε1) CCA-secure, the signature scheme is (t, qc2, ε.(1 − ε1)qc2)-strongly
existentially unforgeable.

Proof. Suppose there exists t-time coalition A that (t, qe, qc1, qc2, ε) can forge
a credential for the target user, in which the identifiers of the malicious ser-
vice providers are not included. We will show that there exists an algorithm B
who can (t, qc2, ε.(1− ε1)qc2)- break the strongly existential unforgeability of the
underlying signature scheme.

Init. Algorithm B runs A and receives a target user U∗ for whom A wants to
forge a credential and a target service provider SP ∗ that A wants to attack.

Setup. B sends the public parameters PP and IdP’s public key KIP to A.

A Generic Construction of Dynamic Single Sign-on with Strong Security 195

Enrollment queries. A can adaptively issue enrollment queries {RIU1 , RIU2 , · · · ,
RIUqe1

}, where RIUi �= RI∗U , qe1 ≤ (|U| − 1), and {RISP1 , RISP2 , · · · ,
RISPqe2

}, where RISPi �= RI∗SP , qe2 ≤ (|SP| − 1), and qe1 +
qe2 = qe. B redirects these queries to the challenger. The
challenger returns {(IDU1 , AU1), (IDU2 , AU2) · · · , (IDUqe1

, AUqe1
)} and

{(IDSP1 , KSP1), (IDSP2 , KSP2), · · · , (IDSPqe2
, KSPqe2

)} respectively.

Credential generation queries. A can adaptively issue credential generation
queries {(IDU1 , KUP1), (IDU2 , KUP2), · · · , (IDUqc1

, KUPqc1
)}. B redirects

these queries to the challenger. The challenger returns {CreU1 , CreU2 , · · · ,
CreUqc1

}, where CreUi = (AUi , Hdri, Di), Di = EK(δi, MUi, IDUi , KUPi ,
Ti) and δi = Sign(KIS , MUi , IDUi , KUPi , TUi).

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc2

, KUPqc2
,

CreUqc2
)}. B redirects these queries to the challenger. The challenger returns

True or False by decrypting Di and verifying δi.

Output. A outputs a credential Cre∗U = (A∗
U , Hdr∗, D∗), where (ID∗

U , Cre∗U) /∈
{(IDU1 , CreU1), (IDU2 , CreU2), · · · , (IDUqc1

, CreUqc1
)}, ID∗

SP ∈ A∗
U and

IDSP /∈ A∗
U if SP ∈ A.

B sends Cre∗U to SP ∗. SP ∗ returns the corresponding plaintext (M∗
U , ID∗

U ,
K∗

UP , T ∗) or ⊥ for meaningless ciphertext.

1. If ⊥ is responded, namely D∗ is not the corresponding ciphertext of (δ∗, M∗
U ,

ID∗
U , K∗

UP , T ∗) under encryption key K∗ encapsulated in Hdr∗, B aborts.
The simulation fails.

2. If the corresponding plaintext (M∗
U , ID∗

U , K∗
UP , T ∗

U) is responded, namely A
can compute the broadcast encryption key K∗ from Hdr∗, B will abort. B
can use A to break the broadcast encryption scheme. Due to the assumption
that broadcast encryption is (t, n, qc1, ε1)CCA-secure, the advantage that
(M∗

U , ID∗
U , K∗

UP , T ∗
U) is responded is at most ε1.

3. If B does not abort, he can obtain a valid signature δ∗ on (M∗
U , ID∗

U , K∗
UP , T ∗

U)
at the same advantage ε.

Now, we compute the probability that B does not abort at the qc2 credential
verification queries. Due to the broadcast encryption scheme is (t, n, qc1, ε1)CCA-
secure, the probability of B aborts when he gets the corresponding ciphertext
is at most ε1 for each decryption query. Therefore the probability of B dose not
abort at the qc2 decryption queries is at least (1−ε1)qc2 . So, the probability that
B can break the strongly existential unforgeability of the underlying signature
scheme is at least ε.(1− ε1)qc2 which contradicts the assumption that the under-
lying signature scheme is (t, qc2, ε.(1− ε1)qc2)-strongly existentially unforgeable.

Theorem 4. Our generic construction for DSSO is (t, qc, ε)-forward secure if
the broadcast encryption scheme is (t, n, qc, ε)CCA-secure.

196 J. Han et al.

Proof. Suppose there exists a t-time malicious service provider A that (t, qc, ε)
breaks the forward security of our generic construction for DSSO. We will show
there exists an algorithm B who can (t, n, qc, ε) breaks the CCA security of the
broadcast encryption scheme. By AO

U , we denote the access right of U before A’s
identifier is listed in it.

Setup. B sends public parameter PP , and the IdP’s public key KIP to A.

Credential verification queries. A can adaptively issue credential verification
queries {(IDU1 , KUP1 , CreU1), (IDU2 , KUP2 , CreU2), · · · , (IDUqc , KUPqc ,
CreUqc), which are issued after his identifier has been added to AU . B redi-
rects these quires to the challenger. The challenger returns True or False.

Challenge. B sends A an old credential CreO
U , where CreO

U = (AO
U , HdrO, DO),

DO = EKO(δO, mU , IDU , KUP , TO) and IDA /∈ AO
U .

Output. A outputs a correct verification result True or Fals on credential CreO
U

at least ε.

If it is, A can decrypt DO = EKO(δO, mU , IDU , KUP , TO) at least ε. Namely,
A is not a receiver in the broadcast encryption scheme, but can compute the
broadcast encryption key KO from HdrO at least ε. So, B can use A to break
the CCA security of the broadcast encryption scheme at least ε.

Theorem 5. Our generic construction for DSSO is (t, qc, ε)-backward secure if
the broadcast encryption scheme is (t, n, qc, ε)CCA-secure.

The proof is similar to that of theorem 4. We omit the proof due to the page
constraint.

6 Conclusion

The current SSO systems suffer from various security issues such as illegally shar-
ing credentials and difficulties in user revocation. In this paper, we formalised
the definitions and security models for SSO and DSSO, and proposed a generic
scheme of DSSO. Our generic scheme provides a sound solution to these prob-
lems. We also provided a formal security proof of our scheme.

Acknowledgement

The first author was supported by PhD scholarships of Smart Services Cooper-
ative Research Centre (CRC) and University of Wollongong.

References

1. Boneh, D., Gentry, C., Waters, B.: Collusion resistant broadcast ecryption with
short ciphertexts and private keys. In: Shoup, V. (ed.) CRYPTO 2005. LNCS,
vol. 3621, pp. 258–275. Springer, Heidelberg (2005)

A Generic Construction of Dynamic Single Sign-on with Strong Security 197

2. Boneh, D., Shen, E., Waters, B.: Strongly unforgeable signatures based on compu-
tational diffie-hellman. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.)
PKC 2006. LNCS, vol. 3958, pp. 229–240. Springer, Heidelberg (2006)

3. Camenisch, J., Herreweghen, E.V.: Design and Implementation of the idemix
Anonymous Credential System. In: Atluri, V. (ed.) ACM CCS 2001, pp. 93–118.
ACM, Innsbruck (2001)

4. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.)
EUROCRYPT 2001. LNCS, vol. 2045, pp. 93–118. Springer, Heidelberg (2001)

5. Camenisch, J. and Pfitzmann, B.: Federated identity management. In: Petkovic,
M. and Jonker, W. (eds.), Preceedings: Security, Privacy, and Trust in Modern
Data Management. Data-Centric Systems and Applications, vol. 2851, pp 213–
238. Springer, Heidelberg (2007)

6. Cameron, K.: The laws of identity. Architect of Identity. Microsoft Corporation
(2005)

7. Chen, T., Zhu, B.B., Li, S., Cheng, X.: Threspassport-A distributed single sign-on
service. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS,
vol. 3645, pp. 772–780. Springer, Heidelberg (2005)

8. Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Transactions on
Information Theory 22(6), 644–654 (1976)

9. Dodis, Y., Fazio, N.: Public key trace and revoke scheme secure against adaptive
chosen ciphertext attack. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
100–115. Springer, Heidelberg (2002)

10. Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993.
LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)

11. Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: ACM STOC
1987, pp. 210–217. ACM, New York (1987)

12. Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their va-
lidity or all languages in NP have zero-knowledge proof systems. Journal of the
Association for Comptuing Machinery 38(1), 691–729 (1991)

13. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281–308
(1988)

14. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof-systems. In: ACM STOC 1985, pp. 291–304. ACM, Providence (1985)

15. Josephson, W.K., Sirer, E.G., Schneider, F.B.: Peer-to-peer authentication with
a distributed single sign-on service. In: Voelker, G.M., Shenker, S. (eds.) IPTPS
2004. LNCS, vol. 3279, pp. 250–258. Springer, Heidelberg (2005)

16. Kormann, D.P., Rubin, A.D.: Risks of the passport single signon protocol. Com-
puter Networks 33(1), 51–58 (2000)

17. Liberty Alliance, http://www.projectliberty.org
18. Liberty Alliance. Liberty ID-WSF Authentication Service and Single Sign-On

Service Specification Version: v2.0,
http://www.projectliberty.org/liberty/content/download/871/6189/file/

liberty-idwsf-authn-svc-v2.0.pdf

19. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In: Heys,
H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer,
Heidelberg (2000)

20. OECD. OECD Guidelines on the Protection of Privacy and Transborder Flows of
Personal Datal (1980), http://it.ojp.gov/documents/OECD-FIPs.pdf

http://www.projectliberty.org
http://www.projectliberty.org/liberty/content/download/871/6189/file/liberty-idwsf-authn-svc-v2.0.pdf
http://www.projectliberty.org/liberty/content/download/871/6189/file/liberty-idwsf-authn-svc-v2.0.pdf
http://it.ojp.gov/documents/OECD-FIPs.pdf

198 J. Han et al.

21. OpenID, http://openid.net
22. Oppliger, R.: Microsoft .Net passport: a security analysis. Computer 36(7), 29–35

(2003)
23. Oppliger, R.: Microsoft. Net passport and identity managemen. Information Secu-

rity Technical Report 9(1), 26–34 (2004)
24. Pashalidis, A., Mitchell, C.J.: A taxonomy of single sign-on systems. In:

Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 249–265.
Springer, Heidelberg (2003)

25. Pashalidis, A., Mitchell, C.J.: Single sign-on using trusted platforms. In:
Safavi-Naini, R., Seberry, J. (eds.) ISC 2003. LNCS, vol. 2851, pp. 54–68. Springer,
Heidelberg (2003)

26. Pashalidis, A., Mitchell, C.J.: Using GSM/UMTS for single sign-on. In: IEEE Sym-
poTIC 2003, pp. 138–145. IEEE, Bratislava (2003)

27. Perlman, R., Kaufman, C.: User-centric PKI. In: Seamons, K., McBurnett, N.,
Polk, T. (eds.) IDtrust 2008, pp. 59–71. ACM, Gaithersburg (2008)

28. Rehmant, R.U.: Get Ready for OpenID. Conformix Technologies Inc. (2008)
29. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.)

EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)
30. Spantzely, A.B., Camenisch, J., Gross, T., Dieter Sommer, D.: User centricity: a

taxonomy and open issues. In: ACM DIM 2006, pp. 1–10. ACM, Alexandria (2006)
31. Suriadi, S., Foo, E., Jsang, A.: A user-centric federated single sign-on system.

Journal of Network and Computer Applications 32(2), 388–401 (2009)

http://openid.net

	A Generic Construction of Dynamic Single Sign-on with Strong Security
	Introduction
	Formal Definitions and Security Models
	Single Sign-on
	The Security of Single Sign-on
	Dynamic Single Sign-on
	The Security of Dynamic Single Sign-on

	Building Blocks
	Broadcast Encryption System
	Chosen Ciphertext Security of Broadcast Encryption System
	Signature Scheme
	Strong Unforgeability of Signature
	Zero Knowledge Proof

	Generic Construction for Dynamic Single Sign-on
	Security Analysis
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

