
SAS: Semantics Aware Signature Generation for
Polymorphic Worm Detection

Deguang Kong1,3, Yoon-Chan Jhi2, Tao Gong1, Sencun Zhu2,
Peng Liu3, and Hongsheng Xi1

1 School of Information Science & Technology, University of Science & Technology of China,
Hefei, China

{kdg,jiangt}@mail.ustc.edu.cn, xihs@ustc.edu.cn
2 Dept. of Computer Sicence and Engineering, Pennsylvania State University,

University Park, PA 16802
{jhi,szhu}@cse.psu.edu

3 College of Information Sciences and Technology, Pennsylvania State University,
University Park, PA 16802
pliu@ist.psu.edu

Abstract. String extraction and matching techniques have been widely used in
generating signatures for worm detection, but how to generate effective worm
signatures in an adversarial environment still remains challenging. For example,
attackers can freely manipulate byte distributions within the attack payloads and
also can inject well-crafted noisy packets to contaminate the suspicious flow pool.
To address these attacks, we propose SAS, a novel Semantics Aware Statistical
algorithm for automatic signature generation. When SAS processes packets in a
suspicious flow pool, it uses data flow analysis techniques to remove non-critical
bytes. We then apply a Hidden Markov Model (HMM) to the refined data to gen-
erate state-transition-graph based signatures. To our best knowledge, this is the
first work combining semantic analysis with statistical analysis to automatically
generate worm signatures. Our experiments show that the proposed technique
can accurately detect worms with concise signatures. Moreover, our results indi-
cate that SAS is more robust to the byte distribution changes and noise injection
attacks comparing to Polygraph and Hamsa.

Keywords: Worm Signature Generation, Machine Learning, Semantics, Data
Flow Analysis, Hidden Markov Model.

1 Introduction

The computer worm is a great threat to modern network security despite various tech-
niques that have been proposed so far. To thwart worms spreading out over Internet,
pattern based signatures have been widely adopted in many network intrusion detection
systems; however, existing signature-based techniques are facing fundamental coun-
termeasures. Polymorphic and metamorphic worms (for brevity, hereafter, we mean
both polymorphic and metamorphic when we say polymorphic) can evade traditional
signature-based detection methods by either eliminating or reducing invariant patterns

S. Jajodia and J. Zhou (Eds.): SecureComm 2010, LNICST 50, pp. 1–19, 2010.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010



2 D. Kong et al.

in the attack payloads through attack-side obfuscation. In addition, traditional signature-
based detection methods are forced to learn worm signatures in an adversarial envi-
ronment where the attackers can intentionally inject indistinguishable noisy packets to
misled the classifier of the malicious traffic. As a result, low quality signatures would
be generated.

Although a lot of efforts have been made to detect polymorphic worms [1], existing
defenses are still limited in terms of accuracy and efficiency. To see the limitations in
detail, let us divide existing techniques against polymorphic worms into two categories.
The first type of approach is the pattern based signature generation, which uses patterns
to identify the worm traffic from the normal traffic as a signature of the invariant part
of malicious packets, such as substring and token sequence, etc. For example, systems
such as Autograph [2], Honeycomb [3], EarlyBird [4], Polygraph [5], and Hamsa [6]
extract common byte patterns from the packets collected in the suspicious flow pool.
This approach enables fast analysis on live traffic, but can be evaded by polymorphic
worms since the instances of a well-crafted polymorphic worm could share few or no
syntactic patterns in common. Moreover, such a syntactic signature generation process
can be misled by the allergy attack [7], the red herring and pool positioning attacks [8],
and also by the noisy packets injected into the suspicious flow pool [9]. The second
approach is to identify the semantics-derived characteristics of worm payloads, as in
Cover [10], TaintCheck [11], ABROR [12], Sigfree [13], Spector [14], and STILL [15].
Existing techniques in this approach perform static analysis and/or dynamic analysis
(e.g., emulation-based analysis [16]) on the packet payloads to detect the invariant char-
acteristics reflecting semantics of malicious codes (e.g., behavioral characteristics of
the decryption routine of a polymorphic worm). This approach is robust to the above
evasion attempts because it considers more about semantics. However, the semantics
analysis [17] may introduce non-trivial performance overheads, which is often intolera-
ble in network-based on-line detection. Also, the payload analysis could be hindered by
anti-static techniques [15] or anti-emulation techniques [18,19]. Our technique aims at
a novel signature that is more robust than the pattern-based signatures and lighter than
the prior behavior-based detection methods.

In this paper, we focus on the polymorphic worms can be locally or remotely injected
using the HTTP protocol. To generate high quality signatures of such worms, we pro-
pose SAS, a novel Semantics Aware Statistical algorithm that generates semantic-aware
signatures automatically. SAS introduces low overhead in signature matching process,
thus it is suitable for the network-based worm detection. When SAS processes packets
in the suspicious flow pool, it uses data flow analysis techniques to remove non-critical
bytes irrelevant to the semantics of the worm code. We then apply a Hidden Markov
Model (HMM) to the refined data to generate our state-transition-graph (STG) based
signatures. Since modern polymorphic engines can completely randomize both the en-
crypted shellcode and the decryptor, we use a probability STG signature to defeat the
absence of syntactic invariants. STG, as a probability signature, can adaptively learn to-
ken changes in different packets, correlate token distributions with states, and clearly
express the dependence among tokens in packet payloads. Besides this, after a signa-
ture is generated, the detector is free of making sophisticated semantic analysis, such
as emulating executions of instructions on the incoming packets to match attacks. Our



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 3

experiments show that our technique exhibits good performance with low false positives
and false negatives, especially when attackers can indistinguishably inject noisy bytes
to mislead the signature extractor. SAS places itself between the pattern-based signa-
tures and the semantic-derived detection methods, by balancing between security and
the signature matching speed. As a semantic-based technique, SAS is more robust than
most pattern-based signatures, sacrificing a little speed in signature matching. Based on
the statistical analysis, SAS might sacrifice subtle part of security benefits of in-depth
semantic analysis, for which SAS gains enough acceleration to be a network-based IDS.

Our contribution is in three-fold.

– To our best knowledge, our work is the first one combining semantic analysis with
statistical analysis in signature generation process. As a result, the proposed tech-
nique is robust to the (crafted) noisy packets and the noisy bytes.

– We present a state-transition-graph based method to represent different byte distri-
butions in different states. We explore semantics-derived characteristics beyond the
byte patterns in packets.

– The signature matching algorithm used in our technique introduces low overhead,
so that we can apply SAS as a network-based worm detection system.

The rest of this paper is organized as follows. In Section 2, we summarize the attacks
to prior automated signature generation techniques. We then present our semantics-
aware polymorphic worm detection technique in Section 3. In Section 4, we discuss the
advantages and limitations of SAS, before presenting the evaluation results in Section 5.
The related works are reviewed in Section 6, followed by the conclusion in Section 7.

2 Attacks on Signature Generation

2.1 Techniques to Evade Detection

Metamorphism and polymorphism are two typical techniques to obfuscate the mali-
cious payload to evade the detection. Metamorphism [20] uses instruction replacement,
equivalent semantics, instruction reordering, garbage (e.g., NOP) insertion, and/or reg-
ister renaming to evade signature based detectors. Polymorphism [20] usually uses a
built-in encoder to encrypt original shellcode, and stores the encrypted shellcode and
a decryption routine in the payload. The encrypted shellcode will be decrypted dur-
ing its execution time at a victim site. The decryption routine can be further obfus-
cated by metamorphic techniques; the attack code generated by polymorphic engine
TAPION [21] is such an example. We note that traditional signature based detection
algorithm is easily to be misled by applying byte substitution or reordering. We also
doubt if the invariants always exist in all the malicious traffic flows. In fact, we found
that for the instances of the polymorphic worm Slammer [22] mutated by the CLET
polymorphic engine, the only invariant token (byte) in all of its mutations is “\x04”,
which is commonly found in all SQL name resolution requests.

2.2 Techniques to Mislead Signature Generation

Besides the obfuscation techniques which aim to cause false negatives in signature
matching, there are also techniques attempting to introduce false positives and false



4 D. Kong et al.

t11 t12 t13

tat22 t23 t21

t11 t12 t13

t22 t23 t21

N1

N2

W1

W2

True invariant t1j t2j Fake invariant

ta

ta

tb

tb

tb

Fig. 1. Suspicious packet flow pool

signatures. For example, the allergy attack [7] is a denial of service (DoS) attack that
misleads automatic signature generation systems to generate signatures matching nor-
mal traffic flows. Signature generation systems such as Polygraph [5] and Hamsa [6]
include a flow classifier module and a signature generation module. The flow classifier
module separates the network traffic flows during training period into two pools, the
innocuous pool and the suspicious pool. The signature generation module extracts sig-
natures from the suspicious flow pool. A signature consists of tokens, where each token
is a byte sequence found across all the malicious packets that the signature is target-
ing. The goal of a signature generation algorithm is to generate signatures which match
the maximum fraction of network flows in the suspicious flow pool while matching the
minimum fraction of network flows in the innocuous pool. Generally, existing signature
generation systems have two limitations. First, the flow classifier module is not perfect;
thus, noise can be introduced into the suspicious flow pool. Second, in reality, the suspi-
cious flow pool often contains more than one type of worms, thus a clustering algorithm
is needed to first cluster the flows that contain the same type of worm. Polygraph [5]
uses a hierarchical clustering algorithm to merge flows to generate a signature which
introduces the lowest false positive rate at every step of clustering process. Hasma [6]
uses a model-based greedy signature generation algorithm to select those tokens as a
signature which has the highest coverage over the suspicious flow pool.

Let us illustrate the vulnerability of signature generators such as Polygraph and
Hamsa when crafted noises are injected in the training traffic as shown in Figure 1.
Here Ni denotes normal packets and Wi (1 ≤ i ≤ 2) denotes the true worm packets.
Let us assume the malicious invariant (i.e., the true signature) in the worm packets con-
sists of two independent tokens ta and tb, and each of them has the same false positive
rate p (0 < p < 1) if taken as a signature. Let the worm packets also include the tokens
tij (1 ≤ j ≤ 3), each of which has the same false positive rate p as a token in a true
signature, thus an attacker can craft normal packets Nis to contain tij (1 ≤ j ≤ 3).
If all these four flows end up being included in a suspicious flow pool, the signature
generation process would be misled.

Setting 1: Let the ratio of the four flows (W1, W2, N1, N2) in the suspicious flow pool
be (99:99:1:1). That is, there is only 1% noise in the suspicious flow pool. According
to the clustering algorithm in Polygraph, it will choose to merge the flows that will
generate a signature which has the lowest false positive rate. In this example shown
in Figure 1, the false positive rate of using signature (ti1, ti2, ti3) by merging flows
(Wi, Ni) is p3 and that of signature (ta, tb) by merging flows (W1, W2) is p2. The



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 5

Payload 
Extraction

Disassemble

Useful 
instruction 
distilling

Signature 
generation

New Traffic 
Flow  

Useful 
instructions 

Useful 
instructions 

Useful 
instructions 

Useful 
instructions 

Suspicious 
Flow  Pool
Suspicious 
Flow  Pool

State-transition-
graph signature

BLOCK 
or PASS

Clustering 

Signature 
matching

State-transition-
graph signature

State-transition-
graph signature

New Traffic 
Flow  

New Traffic 
Flow  

Suspicious 
Flow  Pool

Suspicious 
Flow  Pool

S0:
 Control Flow 

Change

S3:
GetPC 

S2:
Iteration 

S1: 
Decryption 

Fig. 2. (a) System architecture. (b) State-transition-graph (STG) model.

former is smaller and thus the hierarchical clustering algorithm will merge the flows of
Wi with Ni, and it will terminate with two signatures (ti1, ti2, ti3).

Setting 2: Let the ratio of the flows (W1, W2, N1, N2) in the suspicious flow pool be
(99:99:100:100). According to Hasma’s model-based greedy signature generation algo-
rithm, Hamsa selects the tokens with the highest coverage in the suspicious flow pool. In
our example, the coverages for signature (ti1, ti2, ti3) and (ta, tb) are 50% and 49.7%,
respectively. Thus, Hamsa first selects token (ti1), then (ti1, ti2), and (ti1, ti2, ti3) as a
signature as long as the false positive rate of signature (ti1, ti2, ti3) is below a threshold.

From the above two cases, we can clearly see that if an attacker injects noises into
the suspicious flow pool, the wrong signatures will be generated.

3 Our Approach

3.1 Why STG Based Signature Can Help?

The fake blending packets mixed in a suspicious flow pool usually do not have many
useful instruction code embedded in the packet unless they are truly worms. It is found
that byte sequences that look like code sequences are highly likely to be dummies (or
data) if the containing packet has no code implying function calls [13]. We use se-
mantic analysis to filter those “noisy” padding and substitution bytes and thus improve
the signature quality. Under some conditions, the suspicious flow pool can contain no
invariants if we compute the frequency of each token by simply counting them. We
find the distributions of different tokens are influenced by the positions of the tokens in
packets, which are instruction-level exhibitions of semantics and syntax of the packets.
In order to capture such semantics, we use different states to express different token
distributions in different positions in the packets. It is more robust to the token changes
in different positions of the packets, which correlates the tokens’ distributions with a



6 D. Kong et al.

state, making token dependency relationships clear. One issue we want to emphasize
here is that different from but not contrary to the claim in [23], our model is based on
the remaining code extracted from the whole packets instead of on the whole worm
packets.

3.2 System Overview

In Figure 2, we describe the framework of our approach. Our framework consists of
two phases, semantic-aware signature extraction phase and semantic-aware signature
matching phase. The signature extraction phase consists of five modules: payload ex-
traction, payload disassembly, useful instruction distilling, clustering, and signature
generation. The signature matching phase is comprised of two modules: payload extrac-
tion and signature matching module. Payload extraction module extracts the payload
which possibly implements the malicious intent, from a a flow which is a set of packets
forming a message. For example, in a HTTP request message, a malicious payload only
exists in Request-URI and Request-Body of the whole flow. We extract these two parts
from the HTTP flows for further semantics analysis. Disassembly module disassem-
bles an input byte sequence. If it finds consecutive instructions in the input sequence,
it generates a disassembled instruction sequence as output. An instruction sequence is
a sequence of CPU instructions which has only one entry point. A valid instruction
sequence should have at least one execution path from the entry point to another in-
struction within the sequence. Since we do not know the entry point of the code when
the code is present in the byte sequences, we exploit an improved recursive traversal
disassembly algorithm introduced by Wang et al. [13] to disassemble the input. For an
N -byte sequence, the time complexity of this algorithm is O(N). Useful instruction
distilling module extracts useful instructions from the instruction sequences. Useless
instructions are identified and pruned by control flow and data flow analysis. Payload
clustering module clusters the payloads containing similar set of useful instructions
together. Signature generation module computes STG based signatures from the pay-
load clusters. Upon completion of training, Signature matching module starts detect-
ing worm packets by matching STG signatures against input packets. Shortly we will
discuss these four modules in detail.

3.3 Useful Instruction Extraction

The disassembly module generates zero, one, or multiple instruction sequences, which
do not necessarily correspond to real code. From the output of the disassembly mod-
ule, we distill useful instructions by pruning useless instructions. Useless instruc-
tions are those illegal and redundant byte sequences using the technique introduced in
SigFree [13]. Basically, the pruned useless byte sequences correspond to three kinds of
dataflow anomalies: define-define, define-undefine, and undefine-reference. When there
is an undefine-reference anomaly (i.e., a variable is referenced before it is ever assigned
with a value) in an execution path, the instruction which causes the “reference” is a
useless instruction. When there is a define-define anomaly (i.e., a variable is assigned
a value twice) or define-undefine anomaly (i.e., a defined variable is later set by an un-
defined variable), the instruction that caused the former “define” is also considered as



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 7

Useful instructions (assembly code)……….        
300: jmp short 00000357
306: mov esi,[ss:esp]
310: xor ecx,ecx
319: push 8B4973EE
31E:pop ebx
325: xchg eax,ebx
326: xor [ds:esi],eax
328: xchg eax,ebx
32E:add esi,1
33B:xchg eax,esi
33C:inc eax
33D:xchg eax,esi
342:inc esi
346:xchg eax,esi
347:inc eax
348:xchg eax,esi
34E:loopd short 00000325
357:call 00000306
………..  

……….  
49  91 9C  46 4A  96 50 98  5D 91 99 44  55 4A  4F  5D
EB 55 8C  E0 8C E0 8B 34  24 83 EC 04 92  9E  8C C0
31 C9 B0 C3 90 40 C1 C0  6D 68 EE 73 49  8B 5B 8C
EB 3F B1  23 27 93 31 06  93 27  8C C0 85  C0 83  C6
01  F5 C1 C0 49 8C E0 B0 D8 9F  F8 96  40  96 37 83
E0 77 46 B0 97 9B 96 40  96 37 C1 C8 13 98 E2 D5
47 83  E0  AA 47 EB 06 E8 AA FF FF FF 7E  FA AC BA

………..  

Origin packet contents
……….        
EB 55
8B3424
31C9
68 EE73498B
5B
93
3106
93
83C6 01
96
40
96
46
96
40
96
E2 D5
E8 AAFFFFFF  
……….        

350: inc edi
351: add  eax,-56
354: inc edi
355: jmp 0000035D

………..  

35C: jle 0000011C
35E: lods [esi]
35F: mov edx,22FC13C

………..  

Useful instructions (binary code)

Pruned instructions

(a) (b) (c)

Fig. 3. (a) Original packet contents. (b) Useful instructions (assembly code). (c) Useful instruc-
tions (binary code).

a useless instruction. Since normal packets and crafted noisy packets typically do not
contain useful instructions, such packets injected in the suspicious flow pool are filtered
out after the useful instruction extraction phase. The remaining instructions are likely
to be related to the semantics of the code contained in the suspicious packets. An ex-
ample of polymorphic payload analysis is shown in Figure 3. Here the leftmost part
is the original packet content in binary, the middle one is the disassembly code of the
useful instructions after removing the useless one, and the rightmost part is its corre-
sponding binaries. For example, in Figure 3, the disassembly code inc edi appeared in
address 350 is pruned because edi is referenced without being defined to produce an
undefine-reference anomaly.

3.4 Payload Clustering

The useful instruction sequences extracted from polymorphic worms normally contain
the following features: (F1) GetPC: Code to get the current program counter. GetPC
code should contain opcode “call” or “fstenv.” We explain the rationale shortly; (F2)
Iteration: Obviously, a polymorphic worm needs to perform iterations over encrypted
shellcode. The instructions that can characterize this feature include loop, rep and the
variants of such instructions (e.g., loopz, loope, loopnz); (F3) Jump: A polymorphic
code highly likely to contain conditional/unconditional branches (e.g., jmp, jnz, je);
(F4) Decryption: Since the shellcode of a polymorphic worm is encrypted when it is
sent to a victim, a polymorphic worm should decrypt the shellcode during or before ex-
ecution. We note that certain machine instructions (e.g., or, xor) are more often found
in decryption routine. The reason why we use these four features is that from our ob-
servations, nearly all self-modifying polymorphic worm packets contain such features
even after complicated obfuscations.

A decryption routine needs to read and write the encrypted code in the payload, there-
fore, a polymorphic worm needs to know where the payload is loaded in the memory.
To our best knowledge, the only way for a shellcode to get the absolute address of the
payload is to read the PC (Program Counter) register [15]. Since the IA-32 architecture



8 D. Kong et al.

does not provide any instructions to directly access PC, attackers have to play a trick
to obtain the value in the PC register. As far as we know, currently three methods are
known in the attacker community: one method uses fstenv, and the other two use relative
calls to figure out the values in PC.

In a suspicious flow pool, there are normally multiple types of worm packets. For
a given packet, we first extract the instructions indicating each of the four features
of polymorphic worms. However, simply counting such instructions is not sufficient
to characterize a polymorphic shellcode. In reality, some feature may appear multiple
times in a specific worm instance, while some others may not appear at all. This makes
it complicated for us to match a worm signature to a polymorphic shellcode. If we mea-
sure the similarity between a signature and a shellcode based on the bare sequence of
the feature identifying instructions, an attacker may evade our detection by distributing
dummy features in different byte positions within the payload or by reordering instruc-
tions in the execution path. On the other hand, if we ignore the structural (or sequent)
order of the feature-identifying instructions and consider them as a histogram, it might
result in an inaccurate detection. So in this work we consider both of the structural
and statistical informations in packet classification, and use a parameter δ to balance
between them.

Specifically, we define two types of distances: (D1) the feature distance; and (D2) the
histogram distance. We keep the sequent order of the features appearing in an instruc-
tion sequence, in a feature vector. Let D1(v1, v2) denote the feature distance between
two feature vectors v1, v2. When v1 and v2 are of the same length, we define D1(v1, v2)
as the Hamming distance of v1 and v2. For example, the feature vector of the instruc-
tion sequence shown in Figure 3 is S = {F3, F4, F2, F1}. Given another feature vector
S′ = {F3, F4, F1, F1}, the distance between S and S′ is computed as D1(S, S′) = 1.
When two feature vectors are of different lengths, we define the distance of the
two feature vectors as D1(v1, v2) = max(length(v1), length(v2)) − LLCS(v1, v2),
where LLCS(v1, v2) denotes the length of the longest common subsequence of v1

and v2 and length(v1) denotes the length of v1. For example, if we are given S′′ =
{F3, F4, F1, F3, F1}, distance D1(S, S′′) = 1. We also measure the histogram dis-
tance, the similarity based on the histograms of two feature vectors. Let D2(v1, v2)
denotes the histogram distance between two feature vectors v1, v2. For example, the
histogram of S above is (1, 1, 1, 1) because every feature appears exactly once. Let us
assume that the histogram of feature vector S′ is given as (1, 2, 0, 1). Then, we define
D2(S, S′) as the Hamming distance of S and S′, which is 2.

Given two useful instruction sequences, we use both D1 and D2 to determine their
similarity. We define the distance between two useful instruction sequences as D =
δD1 +(1− δ)D2, where δ is a value minimizing the clustering error. Suppose there are
M clusters in total. Let Lm be the number of packets in cluster m, where m (1 ≤ m ≤
M) denotes the index of each cluster. When a new packet in a suspicious flow pool is
being clustered, we determine whether to merge the packet into an existing cluster or to
create a new cluster to contain the packet. We start by calculating the distance between
the new packet and every packet in existing clusters. If we find one or more clusters
with average distance below threshold θ, we add the new packet to the cluster with the



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 9

Algorithm 1. State-Transition-Graph Model Learning Algorithm
Input: A cluster of the useful instructions of the payload O[1..T ]
Output: STG Signature λ = {π, A, B} for the input cluster
Procedure:
1: map tokens Ot ∈ X(1 ≤ t ≤ T ) to the corresponding states Si ∈ {S0, S1, S2, S3}(0 ≤ i ≤ N − 1)
2: calculate initial probability distribution π based on the probabilities of the first token O1 being on each state Si ∈
{S0, S1, S2, S3} // get π

3: generate the frequent token set for each state Si ∈ {S0, S1, S2, S3} and calculate bi(k)(1 ≤ k ≤ |X|) // get B
4: for i = 0 to N − 1 do
5: for j = 0 to N − 1 do

6: aij ← number(Ot∈Si∧Ot+1∈Sj)
number(Ot∈Si)

// get A, here predicate number denotes the frequency of a token

minimum distance among them. Otherwise, we create a new cluster for the new packet.
We repeat this process until all packets in the suspicious flow are clustered.

3.5 STG Based Signature Generation

After clustering all the packets in the suspicious pool, we build a signature from each of
the clusters. Unlike prior techniques, our signature is based on a state transition graph
in which each state is mapped to each of the four features introduced above (Figure 2).
In our approach, the tokens (either opcode or operands in a useful instruction sequence)
are directly visible. The tokens can be the output of any state, which means each state
has a probability distribution over the possible output tokens. For example, in Figure 3,
“EB” and “55” are tokens observed in different states. This matches exactly with the
definition of Hidden Markov Model (HMM) [24], thus we use HMM to represent the
state transition graph for our signature.

More formally, our STG model consists of four states (N = 4), which forms state
space S = {S0, S1, S2, S3}. Let λ = {π, A, B} denote this model, where A is the
state transition matrix, B is a probability distribution matrix, and π is the initial state
distribution. When a STG model is constructed from a polymorphic worm, we use the
model as our STG-based signature. Our STG model is defined as follows:

– State space S = {S0, S1, S2, S3}, where state S0 is the control flow change state,
which correspond to the feature F3. State S1 is the decryption state, which corre-
sponds to the feature F4. State S2 is the iteration state, which corresponds to the
feature F2. State S3 is the GetPC state, corresponding to F1.

– Transition matrix A = (aij)N×N =

⎛
⎜⎜⎝

a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33

⎞
⎟⎟⎠where aij =

P (next state is Sj |
current state is Si), aij ∈ {S × S → [0, 1]}, and aij satisfies

∑
j

aij = 1 (0 ≤
i, j ≤ N − 1).

– Let Y be the set of a single byte and Y i denote the set of i-byte sequences.
X = {Y, Y 2, Y 3, Y 4} is the token set in our system because a token in a useful
instruction contains at most four bytes (e.g., “AAFFFFFF”), which corresponds to
the word size of a 32-bit system. Let Ot (1 ≤ t ≤ |X |) be a token that is visible



10 D. Kong et al.

S0:
Execution 
Changing

S1: 
Decryption S2:

Iteration 
S3:

GetPC 

92EC 048324348BE08C55EB5D4F4A55 9E44 8CIncoming packet

STG model

Signature 
matching

symbol probability

match
?

match?match
?

match?

EB 0.5
55 0.01065
58 0.00814
...

pos

symbol probability
09D8 0.01393

01 0.03234
09 0.00006
...

symbol probability
E2 0.49020
E7 0.01593
D9 0.01961
...

symbol probability
057A10B9 0.00407

E8 0.03253
EB 0.06311
...

44
44 55

44 55 4A
44 55 4A 4F

55
55 4A

55 4A 4F
55 4A 4F 5D

Fig. 4. STG signature matching process

at a certain state, and O = {Ot|Ot ∈ X} be the visible token set at the state. For
a real instruction sequence with T tokens in the useful instruction sequence, the t-
length visible output sequence is defined as O[1..t] = {O1, O2, ..., Ot} (t ≤ T ).
Then, we can define the probability set B as B = {bi(k)}, where bi(k) =
P (visible token is Ok|current state is Si). bi(k) is the probability of
Xk on state Si, thus satisfying

∑
1≤k≤|X|

bi(k) = 1.

– Initial state distribution π={π0, π1, π2, π3}, where πi =P (the first state is Si) .

Algorithm 1 is adopted from the segment K-means algorithm [24] to learn the structure
of Hidden Markov Model. As the same token can appear at different states with different
probabilities, we manage our model to satisfy Ot ∈ Si if bi(Ot) > bj(Ot) for all j �= i
(step 2 and step 3). We also remove noises by setting a threshold to discard less-frequent
tokens. For example, if max

i
bi(Ot) is below the threshold (e.g.,θ0), we ignore this token

Ot while constructing a STG model.

3.6 Semantics Aware Signature Matching Process

After we extract STG-based signatures from the suspicious flow pool, we can use them
to match live network packets. Given a new packet to test, our detector first retrieves
the payload of the packet. Assuming that the payload length is m bytes, the detector
checks whether this m-byte payload matches any of the existing signatures. If it does
not match any signature (i.e., their deviation distance is above a threshold θ2), it is
considered as a benign packet. If it matches a single signature of certain type of a
worm, it will be classified as the type of worm associated with the signature. If the
packet matches multiple signatures, the detector classifies the packet as the one with
the smallest distance among the matching signatures. An advantage of our approach is
that we need not make complicated analysis on the live packets but match the packets
byte after byte.

To measure the distance between an m-byte (input) payload and a signature, we try
to identify the first token, starting from the first byte of the payload. We form four
candidate tokens of length i (i=1, 2, 3, 4), where the i-th candidate token consists of



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 11

Table 1. Comparison of SAS with Polygraph and Hamsa

Comparison Polygraph Hamsa SAS
Content (behavior) detection content content content

Semantic related semantic free semantic free semantic related
On-line detection speed fast fast fast
(Crafted) noise tolerance some medium good
Token-fit attack resilience nearly no medium good

Coincidental attack resilience nearly no medium good
Allergy attack resilience some some good

Signature simplicity simple simple complicated

the first i bytes of the payload. As is shown in Figure 4, we first select (44), (44,55),
(44,55,4A), (44,55,4A,4F) as the candidate tokens. Then, for each candidate token Ot,
we calculate its probability to appear in each of the four states in our STG model, and
assign it to the state which gives the largest probability bi(Ot). Let max(Pi) denotes
the maximum of the four bi(Ot). If max(Pi) is above a threshold θ1, we choose the
candidate token yielding max(Pi) as the real token, and ignore the others. Otherwise,
all of the four candidate tokens are ignored. In either case, we move to the next four
bytes of the payload. As for the case in Figure 4, we will start to check the next four
tokens (55), (55,4A), (55,4A,4F), (55,4A,4F,5D). We will repeat the above process until
all m bytes are processed. Finally, we sum up the max(Pi) and calculate its distance
from the signature. The deviation distance D is defined as D = || log P [O[1...m]|λ] −
mean|| where log P [O[1...m]|λ] is the matching probability value for a m-byte packet,
mean is an average matching value for a certain type of training packets. Assuming that
there are l packets in a cluster of the same type, and the byte length for each packet is

Ti (1 ≤ i ≤ l), we have mean = 1
l

l∑
k=1

log P [O[1...Tk]|λ]. We do not show the detailed

algorithm here due to the limited space.

4 Security Analysis

4.1 Strength

Our semantic based signatures can filter the noises in the suspicious flow pool and
prune the useless instructions which are otherwise possibly learned as signature, thus
it has good noise tolerance. As the STG signature is more complicated than previous
signatures (e.g., token-sequence signature), it is much harder for attackers to ruin our
automatic signature generation by crafting packets bearing both the tokens of normal
and attack packets compared with previous signatures. Moreover, even if the hackers
change the contents of the attack packets a lot, they can hardly evade our detection
since our signature is not based on syntactic patterns but based on semantic patterns. In
addition, the STG signature can match unknown polymorphic worms (which our detec-
tor has not been trained with) since it has learned certain semantics of the decryption
routine from existing polymorphic worms. Our STG signature matching algorithm in-
troduces low overhead (analysis throughput is more than 10Mbps), thus our detector
is fast enough to match live packets. Some anti-disassemble techniques like junk byte



12 D. Kong et al.

………. 
sub cl,2
dec ecx
dec ecx
je short 00000261
jmp short 00000206
call 00000201
………..  

………. 
80E9 02
49
49
74 07
EB AA
E8 
A0FFFFFF
………..  

Useful instruction (assembly code) Bianry code

Fig. 5. STG signature example. The bytes used by the signature are marked in red color.

insertion, opaque predicate, and code overlap all aim to immobilize linear sweep dis-
assembly algorithms. The disassembler of the STG signature generation approach is a
recursive traversal algorithm, which makes our approach robust to such types of anti-
disassemble techniques. In Table 1, we summarize our benefit in comparison with other
signature generation approaches. For STG, it is robust to the attacks filling crafted bytes
in the wildcard bytes of the packets (e.g., coincidental-pattern attack [5] and the token-
fit attack [6]) since these packets usually fail to pass our semantic analysis process. It
is robust to the innocuous pool poisoning [5] attack and allergy attack [7] because our
technique can filter the normal packets out for signature generation. As it is a prob-
ability based algorithm, the long-tail attack [5] will not thwart our matching process.
Finally, by discovering meanings of each token (i.e., which token is exhibiting which
feature), our approach explores beyond traditional signatures which leverage only the
syntactic patterns to match worm packets.

4.2 Limitations

Here we discuss about the limitations of the proposed technique and possible meth-
ods to mitigate these limitations. First, based on static analysis which can not handle
some state-of-the-art code obfuscation techniques (e.g., branch-function obfuscation,
memory access obfuscation), we can not generate appropriate signatures if the seman-
tic analysis fails to analyze the suspicious flow pool. This can be solved through more
sophisticated semantic analysis such as symbolic execution and abstract interpretation
techniques. Second, our technique can be evaded if smart attackers use more sophisti-
cated encryption and obfuscation techniques such as doubly encrypted shellcode with
invariant substitution. Also, for the non self-contained code [16], there may be absence
of features for clustering to generate the signatures. To address these issues, emulation-
based payload analysis techniques can be used in the signature extractor and the attack
detector, however, state-of-the-art emulation-based techniques are still lack of perfor-
mance to be used in a live packet analysis. Although one may doubt the utility of byte-
level signatures (e.g., it could not handle the packed code), its performance is good for
practical deployment compared with the emulation based approaches.

5 Evaluation

We test our system offline on massive polymorphic packets generated by real poly-
morphic engines used by attackers (i.e., CLET, ADMmutate, PexFnstenvMov) and on



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 13

normal HTTP request/reply traces collected at out lab PCs. Both CLET and ADM-
mutate are advanced polymorphic engines which obfuscate the decryption routines by
metamorphism such as instruction replacement and garbage insertion. CLET also uses
spectrum analysis to counterattack the byte distribution analysis. PexFnstenvMov is a
polymorphic engine included in Metaspoit [25] framework. Opcode of the “xor” in-
struction is frequently found in the decryption routine of PexFnstenvMov. PexFnstenv-
Mov also uses the “fnstenv” instruction for the GetPC code.

In evaluation, we also use 100,000 non-attack HTTP requests/responses for two pur-
poses: to compute false positive rate and to derive noisy flows to attack signature extrac-
tion. The normal HTTP traffic contains 100,000 messages collected for three weeks at
seven workstations owned by seven different individuals. To collect the traffic, a client-
side proxy monitoring incoming and outgoing HTTP traffic is deployed underneath the
web server. Those 100,000 messages contain various types of non-attack data including
JavaScript, HTML, XML, PDF, Flash, and multimedia data, which render diverse and
realistic traffic typically found in the wild. The total size of the traces is over 1.77GB.
We run our experiments on a 2.4GHz Intel Quad-Core machine with 2GB RAM, run-
ning Windows XP SP2.

5.1 Comparison with Polygraph and Hamsa

In this section, we evaluate the accuracy (in terms of false positives and false negatives)
of our algorithm in comparison with Polygraph and Hamsa. We compare the three sys-
tems in two cases: without noise injection attack, with noise injection attack.

Parameter Settings. The parameters of Polygraph are set as follows. The minimum
token length α is set to 2, the minimum cluster size is set to 2, and the maximum ac-
ceptable false positive rate during the signature generation process is set to 1%. Hamsa
in our experiments is built from the source that we downloaded from the Hamsa hom-
page. The minimum acceptable false positive rate of Hamsa is set to u = 0.01 during the
signature generation process. In our approach, the parameters θ0,θ1 are used to prune
the tokens which have little probability to match with the STG signature; and parameter
θ2 is used to label the deviation distance during the packet matching process. These
parameters are configured as follows: θ0 = 0.016, θ1 = 0.016, θ2 = 12.000.

Polymorphic Engine. In this experiment, we use CLET because it implements spec-
trum analysis to attack the byte distribution analysis performed by existing signature
extractors. We generate 1,000 worm instances from CLET, among which 400 instances
are used as the training data to generate signatures, and 600 instances are used to com-
pute the false negative rate. We also use 100,000 non-attack HTTP requests/responses
to compute false positive rate.

Comparison Without Noise Injection. We compare our method with Polygraph and
Hamsa, without considering noise injection. Fed with the same 400 attack messages, the
signatures generated by Hamsa and the conjunction signature generated by Polygraph
are all ‘\x8b’:1,‘\xff\xff\xff’:1,‘\x07\xeb’:1.The state transition path of our signature
is (S0 → S1 → S0 → S3). Token sequences ‘\xff\xff\xff’ and ‘\x07\xeb’ are the
only invariant tokens appearing in the useful instruction sequences (Figure 5).



14 D. Kong et al.

0 20 40 600

0.2

0.4

0.6

0.8

1

False negative(%)

Fa
ls

e 
po

si
tiv

e(
%

)

 

 

Polygraph without noise
SAS 
Polygraph with noise

0 20 40 600

0.2

0.4

0.6

0.8

1

False negative(%)

Fa
ls

e 
po

si
tiv

e(
%

)
 

 

Hamsa without noise
SAS 
Hamsa with noise

0 0.2 0.4 0.6 0.80.06

0.08

0.1

0.12

0.14

0.16

0.18

False negative(%)

Fa
ls

e 
po

si
tiv

e(
%

)

 

 

PexFnstenvMov
CLet
Admutate

Fig. 6. (a) Comparison of SAS and Polygraph (b) Comparison of SAS and Hamsa (c) Impact of
parameters

Comparison Under Noise Injection. We compare SAS, Polygraph, and Hamsa, as-
suming 1:1 attack-to-noise ratio in the suspicious flow pool. To add the crafted noise
to the suspicious flow pool, we adopt the method used by Perdisci et. al. [9]. For each
malicious packet wi, we create the associated fake anomalous packet fi by modifying
the corresponding packet wi. The way to make crafted noisy packet fi is divided into
the following six steps. (Step 1) f0

i : create a copy of wi. (Step 2) f1
i : permute bytes f0

i

randomly. (Step 3) a[ ]: copy k substrings of length l from wi to array a, but do not copy
the true invariant. (Step 4) f2

i : copy the fake invariant substring into f1
i . (Step 5) f3

i :
inject m-length substring of string v into (f2

i ), we generate n (n > m) bytes of string
v = {v1, v2, ..., vn} by selecting the contiguous bytes in the innocuous packet which
satisfy 0.05 < P(v|innocuous packets) < 0.20. (Step 6) f4

i : obfuscate the true in-
variant by substituting the true invariant bytes in the packet.

To craft non-attack derived noises, we use our 10,000 normal HTTP messages. The
suspicious flow pool are composed of 400 CLET-mutated instances and 400 crafted
noises. We configure the parameters of noise generator as k = 3, l = 5, n = 6, and
m = 3. The parameters for SAS, Polygraph, and Hamsa are set as the same as in
Case-1.

When we compare SAS with Polygraph, we ignore “true invariants” in Step 3 and
6 because we do not know the true invariants until the signature is generated. Instead,
we permute the bytes more randomly to separate and distribute contiguous bytes before
copying substrings of wi in Step 3. Atop this, we use even more sophisticated noise
injection when we compare SAS with Hamsa. Specifically, in Step 5, we choose a
string v which satisfies P(v|innocuous packets) < u (u is parameter). Since we set
u as described above, Hamsa’s false positive rate will not exceed u even if the injected
noises are taken as signatures.

Comparison Results. Figure 6(a) and Figure 6(b) show the false positive and false
negative rates of SAS, Polygraph, and Hamsa in both experiment cases. In Case-1 ex-
periment (i.e., without noise injection), all the three systems show similar accuracy.
Although SAS shows slightly higher false positive rate than Polygraph and Hamsa, the



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 15

false positive rates of all three systems are already very low (< 0.0008). In Case-2
experiment (i.e., with noise injection), the false positive and the false negative rates of
SAS has not been affected by the crafted noise injected to the suspicious flow pool.
In contrast, the signature generation process of Polygraph and Hamsa has been greatly
misled to add fake invariants taken from the crafted noises, which results in extremely
high false negative rate. As a result, the signatures generated by Polygraph and Hamsa
miss more than 20% of attack messages. The false positive and false negative rates of
Polygraph and Hamsa are still lower than 1%, which is because they have a threshold
of maximum false positive rate (say 1%).

5.2 Per-polymorphic Engine Evaluation

In this experiment, we evaluate the impact of different parameter settings on our ap-
proach. We use 3,000 worm instances generated by CLET, Admutate, and PexFnstenv-
Mov. We feed our signature extractor with 1,200 out of the 3,000 worm instances
(400 instances from each type of worm) to generate STG-based signatures. Then, we
use the remaining worm instances to evaluate the extracted signatures. We also inject
10,000 normal packets into the suspicious flow pool to make the packet clustering more
difficult.

The parameter δ is first set to an initial value, and then adjusted until all the packets
are clustered correctly. In our setting, we find the structural information is more impor-
tant than statistical information. When we set parameter δ = 0.8, all the packets in the
suspicious pool are grouped in the right cluster. We aim to find an appropriate δ for the
right clustering. The δ can be tuned based on the feedback of clustering result. We test
the false negative and false positive rates using the remaining 1,800 attack instances
and the 100,000 normal HTTP messages respectively (Table 2). We also evaluate the
influence of parameter changes on signature matching as shown in Figure 6(c), where
each data point stands for one group of parameter settings. We change the value of
θ1, θ2 to see how false positive rate and false negative rate vary. In our experiment,
we observe the lowest false positve rate when we set the parameters as θ1 = 0.018,
θ2 = 12.000. Altough we do not present entire results due to page limit, our experiment
results show that the false negative rate decreases as θ1 increases. Also, the false pos-
itive rate increases as θ2 increases. These observations are confirmed from the design
of our Algorithm, as higher θ1 would filter more noises while a higher θ2 would block
more normal packets. The parameters, in practice, can be tuned based on the feedback
from training and testing datasets, so that we get a locally optimized false positive rate.
Table 2 shows the best configurations obtained by the above method.

Table 2. Accuracy of the STG-based signatures generated by SAS

Polymorphic engine False positive False negative State transition path of STG-based signature
PexFnstenvMov 0.075% 0.40% (S3 → S1 → S2)

CLet 0.072% 0.42% (S0 → S1 → S0 → S3)

Admutate 0.062% 0.55% (S0 → S1 → S2 → S3)



16 D. Kong et al.

Table 3. Performance evaluation

Polymorphic engine Training time(sec) Matching time(sec) Analysis throughput(Mbps)
PexFnstenvMov 22.901 1.783 10.534

CLet 31.237 2.879 13.655
Admutate 24.833 1.275 12.901

5.3 Performance Evaluation

The time complexity of the signature learning algorithm is O(N2TP ), where T is the
length of token sequence, P is the number of the suspicious packets in a clustering, and
N is the number of states. The time complexity of our signature matching algorithm is
O(N2S · L), where L is the average length of token sequences in a signature, S is the
total length of input packets to match, N is the number of states. The signature matching
algorithm can be easily adapted to satisfy the requirements of online detection. The
training time, matching time, and analysis throughput for each polymorphic engine are
shown in Table 3. The training time includes the time to extract useful instructions from
packets. The matching time is the total elapsed time to match 600 mutations generated
by each polymorphic engine.

6 Related Work

Pattern Extraction Signature Generation. There are a lot of work on pattern based
signature generation, including honeycomb [3], earlybird [4], and autograph [2], which
had been shown not to be able to handle polymorphic worms. Polygraph [5] and
Hamsa [6] are pattern based signature generation algorithms, and they are more capa-
ble of detecting polymorphic worms, but vulnerable to different kinds of noise injection
attacks. There are also rich researches on attacks against pattern-extraction algorithms.
Perdisci et al. [9] present an attack which adds crafted noises into the suspicious flow to
confuse the signature generation process. Paragraph [8] demonstrates that Polygraph
and Hamsa are vulnerable to attacks as long as attackers can construct the labeled
samples randomly to mislead the training classifier, and this attack can also prevent
or severely delay generation of an accurate classifier. Allergy attacks [7] force the sig-
nature generation algorithm to generate signatures that could match the normal traffic,
thus introducing high false positive rate. Gundy et al. [26] present a class of feature
omission attacks on signature generation process that are poorly addressed by Auto-
graph and Hamsa. Polymorphic blending attacks [27] are presented by matching the
byte frequency statistics with normal traffic to evade detection. Theoretical analysis of
limits of different signature generation algorithms are given in [28]. Gundy et al. [29]
show that web based polymorphic worms do not necessarily have invariant bytes. A
game-theoretical analysis on how a detection algorithm and an adversary could adapt to
each other in an adversarial environment is introduced in [30]. Song et al. [23] studied
the possibility of deriving a model for representing the general class of code that corre-
sponds to all possible decryption routines, and concludes that it is infeasible. Our work
combines the semantic analysis with the signature generation process, making it robust
to many noise-injection attacks (e.g., allergy attack, red herring attack).



SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 17

Semantic Analysis. Researches have presented semantic based techniques by making
static and dynamic analysis on the binary code. Polychronakis et al. [16] have presented
emulation-based approach to detect polymorphic payloads by emulating the code and
detecting decryption routines through dynamic analysis. Libemu [17] is another attempt
to achieve shellcode analysis through code emulations. Compared with their works,
our approach has higher throughput and can not be attacked by anti-emulation tech-
niques. Brumley et al. [31] propose to automatically create vulnerability signatures for
software. Cover [10] exploits the post-crash symptom diagnosis and address space ran-
domization techniques to extract signatures. TaintCheck [11] exploits dynamic dataflow
and taint analysis techniques to help find the malicious input and infer the properties
of worms. ABROR [12] automatically generates vulnerability-oriented signatures by
identifying typical characteristics of attacks in different program contexts. Sigfree [13]
detects the malicious code embedded in HTTP packets by disassembling and extracting
useful code from the packets. Spector [14] is a shellcode analysis system that uses sym-
bolic execution to extract the sequence of library calls and low-level execution traces
generated by shellcode. Christodorescu et al. [32] present a malware detection algo-
rithm by incorporating instruction semantics to detect malicious program traits. Our
motivation is similar, but our work is specific to network packet analysis instead of for
file virus. STIIL [15] uses static taint and initialization analysis to detect exploit code
embedded in data streams/requests targeting at web services. Kruegel et al. [33] present
a technique based on the control flow structural information to identify the structural
similarities between different worm mutations. Contrast to their work, our work is to
generate signatures based on semantic and statistic analysis.

7 Conclusion

In this paper, we have proposed a novel semantic-aware probability algorithm to address
the threat of anti-signature techniques including polymorphism and metamorphism. Our
technique distills useful instructions to generate state transition graph based signatures.
Since our signature reflects certain semantics of polymorphic worms, the proposed sig-
nature is resilient to the noise injection attacks to thwart prior techniques. Our experi-
ment have shown that our approach is both effective and scalable.

Acknowledgments. The authors would like to thank Dinghao Wu for his help in revis-
ing the paper. The work of Zhu was supported by CAREER NSF-0643906. The work of
Jhi and Liu was supported by ARO W911NF-09-1-0525 (MURI), NSF CNS-0905131,
AFOSR FA 9550-07-1-0527 (MURI), NSF CNS-0916469, and AFRL FA8750-08-C-
0137. The work of Kong, Xi was supported by Chinese High-tech R&D (863)Program
2006AA01Z449, China NSF-60774038.

References

1. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: Pro-
ceedings of the 23rd Annual Computer Security Applications Conference (2007)

2. Kim, H.A., Karp, B.: Autograph: Toward automated, distributed worm signature detection.
In: Proceedings of the 13th Usenix Security Symposium (2004)



18 D. Kong et al.

3. Kreibich, C., Crowcroft., J.: Honeycomb: creating intrusion detection signatures using hon-
eypots. In: Proceedings of the Workshop on Hot Topics in Networks, HotNets (2003)

4. Singh, S., Estan, C., Varghese, G., Savage, S.: Earlybird system for real-time detection of
unknown worms. Technical report, Univ. of California, San Diego (2003)

5. Newsome, J., Karp, B., Song, D.: Polygraph: Automatic signature generation for polymor-
phic worms. In: IEEE Symposium on Security and Privacy (2005)

6. Li, Z., Sanghi, M., Chen, Y., Kao, M.Y., Chavez, B.: Hamsa: Fast signature generation for
zero-day polymorphic worms with provable attack resilience. In: IEEE Symposium on Se-
curity and Privacy (2006)

7. Chung, S.P., Mok, A.K.: Advanced allergy attacks: Does a corpus really help. In: Kruegel,
C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 236–255. Springer,
Heidelberg (2007)

8. Newsome, J., Karp, B., Song, D.: Paragraph: Thwarting signature learning by training ma-
liciously. In: Zamboni, D., Krügel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 81–105.
Springer, Heidelberg (2006)

9. Perdisci, R., Dagon, D., Lee, W.: Misleading worm signature generators using deliberate
noise injection. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy (2006)

10. Liang, Z., Sekar., R.: Fast and automated generation of attack signatures: A basis for build-
ing self-protecting servers. In: Proceedings of the 12th ACM Conference on Computer and
Communications Security (2005)

11. Newsome, J., Song, D.: Dynamic taint analysis for automatic detection, analysis, and sig-
nature generation of exploits on commodity software. In: Proceedings of Network and Dis-
tributed System Security Symposium (2005)

12. Liang, Z., Sekar., R.: Automatic generation of buffer overflow attack signatures: An approach
based on program behavior models. In: Proceedings of the Annual Computer Security Ap-
plications Conference (2005)

13. Wang, X., Pan, C.C., Liu, P., Zhu, S.: Sigfree: A signature-free buffer overflow attack blocker.
In: 15th Usenix Security Symposium (2006)

14. Borders, K., Prakash, A., Zielinski., M.: Spector:automatically analyzing shell code. In:
Proceedings of the 23rd Annual Computer Security Applications Conference, pp. 501–514
(2007)

15. Wang, X., Jhi, Y.C., Zhu, S., Liu, P.: Still: Exploit code detection via static taint and ini-
tialization analyses. In: Proceedings of Anual Computer Security Applications Conference,
ACSAC (2008)

16. Krügel, C., Lippmann, R., Clark, A.: Emulation-based detection of non-self-contained poly-
morphic shellcode. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS,
vol. 4637, pp. 87–106. Springer, Heidelberg (2007)

17. Baecher, P., Koetter, M.: Getting around non-executable stack (and fix),
http://libemu.carnivore.it/

18. Szor, P.: The Art of Computer Virus Research and Defense, pp. 112–134. Addison-Wesley,
Reading (2005)

19. Bania, P.: Evading network-level emulation,
http://www.packetstormsecurity.org/papers/bypass/
pbania-evading-nemu2009.pdf

20. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations. Tech-
nical Report 148, University of Auckland (1997)

21. Detristan, T., Ulenspiegel, T., Malcom, Y., Superbus, M., Underduk, V.: Polymorphic shell-
code engine using spectrum analysis,
http://www.phrack.org/show.php?p=61&a=9

22. Ray, E.: Ms-sql worm,
http://www.sans.org/resources/malwarefaq/ms-sql-exploit.php

http://libemu.carnivore.it/
http://www.packetstormsecurity.org/papers/bypass/pbania-evading-nemu2009.pdf
http://www.packetstormsecurity.org/papers/bypass/pbania-evading-nemu2009.pdf
http://www.phrack.org/show.php?p=61&a=9
http://www.sans.org/resources/malwarefaq/ms-sql-exploit.php


SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection 19

23. Song, Y., Locasto, M.E., Stavrou, A., Keromytis, A.D., Stolfo., S.J.: On the infeasibility of
modeling polymorphic shellcode. In: Proceedings of the 14th ACM conference on Computer
and communications security (CCS), pp. 541–551 (2007)

24. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recog-
nition. Proceedings of the IEEE 77(2), 257–286 (1999)

25. Moore, H.: The metasploit project, http://www.metasploit.com
26. Gundy, M.V., Chen, H., Su, Z., Vigna, G.: Feature omission vulnerabilities: Thwarting sig-

nature generation for polymorphic worms. In: Proceeding of Annual Computer Security Ap-
plications Conference, ACSAC (2007)

27. Fogla, P., Sharif, M., Perdisci, R., Kolesnikov, O., Lee, W.: Polymorphic blending attacks.
In: Proceedings of the 15th USENIX Security Symposium (2006)

28. Venkataraman, S., Blum, A., Song., D.: Limits of learning-based signature generation with
adversaries. In: Proceedings of the 15th Annual Network and Distributed System Security
Symposium (2008)

29. Gundy, M.V., Balzarotti, D., Vigna, G.: Catch me, if you can: Evading network signatures
with web-based polymorphic worms. In: Proceedings of the First USENIX Workshop on
Offensive Technologies (WOOT), Boston, MA (2007)

30. Pedro, N.D., Domingos, P., Sumit, M., Verma, S.D.: Adversarial classification. In: 10th ACM
SIGKDD Conference On Knowledge Discovery and Data mining, pp. 99–108 (2004)

31. Brumley, D., Caballero, J., Liang, Z., Newsome, J., Song, D.: Towards automatic discovery
of deviations in binary implementations with applications to error detection and fingerprint
generation. In: Proceedings of the 16th USENIX Security (2007)

32. Christodorescu, M., Jha, S., Seshia, S., Song, D., Bryant, R.: Semantics-aware malware de-
tection. In: 2005 IEEE Symposium on Security and Privacy (2005)

33. Krugel, C., Kirda, E.: Polymorphic worm detection using structural information of executa-
bles. In: 2005 International Symposium on Recent Advances in Intrusion Detecion (2005)

http://www.metasploit.com

	SAS: Semantics Aware Signature Generation for Polymorphic Worm Detection
	Introduction
	Attacks on Signature Generation
	Techniques to Evade Detection
	Techniques to Mislead Signature Generation

	Our Approach
	Why STG Based Signature Can Help?
	System Overview
	Useful Instruction Extraction
	Payload Clustering
	STG Based Signature Generation
	Semantics Aware Signature Matching Process

	Security Analysis
	Strength
	Limitations

	Evaluation
	Comparison with Polygraph and Hamsa
	Per-polymorphic Engine Evaluation
	Performance Evaluation

	Related Work
	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




