
F.A. Basile Colugnati et al. (Eds.): OPAALS 2010, LNICST 67, pp. 245–265, 2010.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

Transformation Semigroups as Constructive
Dynamical Spaces

Attila Egri-Nagy1, Paolo Dini2, Chrystopher L. Nehaniv1, and Maria J. Schilstra1

1 Royal Society Wolfson BioComputation Research Lab
Centre for Computer Science and Informatics Research

University of Hertfordshire
Hatfield, Hertfordshire, United Kingdom

{a.egri-nagy,c.l.nehaniv,m.j.1.schilstra}@herts.ac.uk
2 Department of Media and Communications

London School of Economics and Political Science
London, United Kingdom
p.dini@lse.ac.uk

Abstract. The informal notion of constructive dynamical space, inspired by
biochemical systems, gives the perspective from which a transformation
semigroup can be considered as a programming language. This perspective
complements a longer-term mathematical investigation into different
understandings of the nature of computation that we see as fundamentally
important for the realization of a formal framework for interaction computing
based on algebraic concepts and inspired by cell metabolism. The interaction
computing perspective generalizes further the individual transformation
semigroup or automaton as a constructive dynamical space driven by
programming language constructs, to a constructive dynamical ‘meta-space’ of
interacting sequential machines that can be combined to realize various types of
interaction structures. This view is motivated by the desire to map the self-
organizing abilities of biological systems to abstract computational systems by
importing the algebraic properties of cellular processes into computer science
formalisms. After explaining how semigroups can be seen as constructive
dynamical spaces we show how John Rhodes’s formalism can be used to define
an Interaction Machine and provide a conceptual discussion of its possible
architecture based on Rhodes’s analysis of cell metabolism. We close the paper
with preliminary results from the holonomy decomposition of the semigroups
associated with two automata derived from the same p53-mdm2 regulatory
pathway being investigated in other papers at this same conference, at two
different levels of discretization.

1 Introduction

This expository paper has several goals and consists of three main parts. The first part
concentrates on computer science and aims to show that transformation semigroups
can provide a theoretical background for programming languages. The second part
introduces the concept of interaction computing and discusses a possible architecture

246 A. Egri-Nagy et al.

for the Interaction Machine based on examples from cell biology. The third part
streamlines the theory further and applies some of the algebraic results to the analysis
of the p53-mdm2 regulatory pathway [24], as part of our on-going effort to
understand and formalize the computation performed by the cell.

This paper is part of a research framework that is documented in the following four
companion papers at this same conference:

– A Research Framework for Interaction Computing [7]
– Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway [24]
– Lie Group Analysis of a p53-mdm2 ODE Model [16]
– Transformation Semigroups as Constructive Dynamical Spaces (this paper)
– Towards Autopoietic Computing [4]

1.1 The Programming Language Perspective

In the first part of the paper (Section 2) we would like to argue that:

1. Finite state automata, and thus transformation semigroups, have much wider ap-

plicability than it is thought traditionally.
2. A transformation semigroup is analogous to a programming language; therefore,

whenever a piece of software can model some phenomenon, so does a semigroup.
3. There are different ways to achieve parallel computation, and they all fit naturally

into the algebraic framework.
4. The presence of symmetry groups in a computational structure indicates a special

kind of reversibility, which is not to be mistaken for the general idea of reversibility.

A constructive dynamical space1 determines a set of possible processes (computations)
and provides basic building blocks for these possible dynamics, equipped with ways of
putting the pieces together. With these tools one can explore the space of possibilities;
or, going in the other direction, given one particular dynamical system it is also possible
to identify its components and their network of relations. A prime example is a
programming language (complete with its runtime system): we build algorithmic (thus
dynamical) structures using the language primitives in order to model or realize the
dynamics that we are interested in. In this paper our main purpose is to show that finite
state automata and transformation semigroups are other examples of constructive
dynamical spaces, although they are not usually considered as such. The possible gain is
that we can bring the algebraic results, mainly the hierarchical decomposition theories,
into domains of applications outside mathematics. For example, currently programming
languages do not include tools for automatic decomposition and reconstruction of the
problem domain.

The term is used in artificial life research for artificial chemistries (e.g. [2]), and
this does agree with our definition.

1.2 Interaction Computing

The second part of the paper (Section 3) extends the perspective on an individual
automaton to two or more interacting automata, and explores the implications of such

1 The term is used in artificial life research for artificial chemistries (e.g. [2]), and this does

agree with our definition.

 Transformation Semigroups as Constructive Dynamical Spaces 247

a generalization. Figure 1 shows the broader theoretical context within which this
paper is situated. The study of semigroups as programming languages fits within the
activity labelled as “Algebraic properties of automata structure” in the figure. The
concept of interaction computing can be seen as an area of application that aims to
combine interacting constructive dynamical spaces to create an environment
analogous to the cell’s cytoplasm. In particular, Section 3 considers the following
points:

1. Interaction computing builds on ideas that have been around since Turing’s 1936

paper [23] and that require a shift in how we think about computing.
2. The Interaction Machine can be given a formal foundation and a high-level

architecture based on Rhodes’s work [22].
3. The groups found in the hierarchical decomposition of the semigroups associated

with the automata derived from cellular pathways suggest a form of parallel
computation that relies on cyclic phenomena and on interdependent algorithms
(i.e. symbiotic cohesion, and generally opposite to loose coupling).

Biological
behaviour

Algebraic properties
of automata structure

Algebraic properties
of automata behaviour

Behaviour
specification

language

Discretisation

Category theory
transformation

Category theory
transformation

Interaction Machine
Architecture

1

2

3
2

Fig. 1. Theoretical areas of relevance to interaction computing whose exploration is discussed
in this and other papers: 1 = [24]; 2 = [8, 6, 21, 7]; 3 = future projects/papers; no superscript =
this paper.

The term ‘interaction computing’ captures the essence of a particular form of
biologically-inspired computing based on metabolic rather than evolutionary
processes. Specifically, the concept of interaction computing is based on the ob-
servation that the computation performed by biological systems always involves at
least two entities, each of which is performing a different, and often independent,
algorithm which can only be advanced to its next state by interaction itself. The aim
of the interaction computing approach is to reproduce in software the self-organizing
properties of cellular processes.

For this concept to make sense in a biological context one needs to choose an
appropriate level of abstraction. In particular, our perspective views the stochastic
nature of cell biochemistry mainly as a mechanism of dimensional reduction that does

248 A. Egri-Nagy et al.

not necessarily need to be emulated in any detail. For example, a gene expresses
hundreds of mRNA molecules which, in turn, engage hundreds of ribosomes for no
other reason than to maximize the probability that a particular, single genetic
instruction will be carried out as a single step in a metabolic process, such as the
synthesis of a particular enzyme. As a consequence of this dimensional reduction
(hundreds to 1), a higher level of abstraction than that at which stochastic molecular
processes operate is justified in the modelling approach – in particular, a
formalization that retains, and builds on, the discrete properties of cell biology.

However, even the resulting lower-dimensional system can’t plausibly be imagined
to perform the complexity of a cell’s functions driven simply by a uniform distri-
bution of interaction probability between its (now fewer) components. Additional
structure and constraints must be at play, for example as provided by molecular
selectivity. Whereas the evolutionary processes that have led to molecular selectivity
and the underlying physical processes that ‘fold and hold’ the relevant proteins and
molecules together are fascinating phenomena that can be recognized as the ultimate
and the material causes of order construction in biology, respectively, this does not
entail that it is necessary to reproduce these mechanisms to arrive at self-organizing
formal systems. We think it is sufficient to recognize the effects of these phenomena
as embodying the essence of the cell’s discrete behaviour as a kind of computation,
whose ordered properties can be formalized through algebra. This is the motivation
for our work in the development of an algebraic theory of interaction computing. A
formal foundation for this theory has been provided by Rhodes’s work [22].

1.3 Analysis of the p53-mdm2 Regulatory Pathway

The above ideas for how constructive dynamical spaces and interaction computing
could be realized to improve the flexibility and self-* properties of software have only
begun to be addressed. As explained in [7] and shown in Figure 1, using category
theory we need to develop a mapping to relate the specification of behaviour to the
algebraic structure(s) needed to realize it. But before this mapping can be developed
we first need to understand in greater depth the algebraic structures that underpin the
observed self-organizing properties of biological behaviour. Therefore, the third part
of this paper (Section 4) looks in greater depth at the algebraic structure of the
semigroup associated with the automata derived from a particular system, the p53-
mdm2 regulatory pathway [24], for two levels of resolution in its discretization.

2 Theoretical Framework

2.1 Finite Automata as Computational Spaces

A finite state automaton and its algebraic counterpart, a transformation semigroup, is
a computational object, i.e. something that computes. This is not at all surprising,
especially from the extreme computationalist’s viewpoint (“everything, that changes,
computes”) and from a classical source in cybernetics [1], but the statement still needs
further explanation: In what sense does an abstract algebraic structure entail
computation?

 Transformation Semigroups as Constructive Dynamical Spaces 249

Formal definition. A finite automaton can be defined as A = (A, Q, λ) where A is the
set of input symbols, the input alphabet; Q is the set of states, the state space ; and λ is
the state transition function λ : Q × A → Q. Since we are talking about a finite state
automaton, all the objects involved are finite.

Static versus dynamical view. Traditionally, finite automata appear in com-
putability and formal language theories [14]. For problems in those fields we need to
extend the definition by giving initial and accepting states. Moreover, an output
alphabet can be given together with an output function mapping a state and an input
symbol pair to an output symbol. But here our main interest is not using the
automaton for a particular purpose, e.g. recognizing certain languages, but to study
the automaton itself as a discrete dynamical system. However, by looking at the
minimalistic definition of finite automata, it is obvious that an automaton is not
dynamical, i.e. nothing moves in it. Its dynamics, rather, is potential, the automaton
creates room for possible ‘movements’. Applying input symbols to states may move
them to other states according to λ, producing a trajectory, but there is no
predescribed dynamics of the automaton. The automaton itself rather is merely the
setting for any one of an entire space of possible behaviours; therefore, we need to
supply the machine with instructions, i.e. we have to provide a starting state and a
sequence of input symbols in order to observe change, computation. We can combine
the atomic transitions by concatenating input symbols that are interpreted by λ
sequentially. This way the series of operations denoted by a sequence of symbols
becomes an algorithm, and λ gives meaning to the symbols, thus λ acts as an
interpreter. A computational problem can be formalized generally as getting to state r
from state q, or producing output r from input q (the states q and r can be arbitrarily
complex and r may not be known when starting the algorithm). An algorithmic
solution for this problem is

q · a1 · · · an = r (1)

where a1,…,an is the sequence of steps of the algorithm.2 At this point we encounter
some possible terminological confusion. So far the input of the automaton was the
input symbol, but in the above example we used the state as the input. Looking at λ,
the ‘machinery’ of the automaton reveals that indeed it has two kinds of inputs as a
state transition function: the state and the input symbol. This is very important since
this view departs from the traditional interpretation. So we can talk about states as

2 To exploit automata computational capacity further, one might also generalize (1) so

that in addition to a sequence of atomic operations, a1 ...an , one allows a sequence
of atomic operations and variables that each evaluate to some basic operation based
an additional component of input (i.e. other inputs than state q). That is, one has

q · t1 · · · tn = r (2)
 where each ti is either an input symbol a ∈ A, or a variable v, ranging over A, whose value is

determined by some ‘environmental’ input. The generalization allows one to make use of so-
called functional completeness properties of simple non-abelian groups that allow them to
compute any finitary function (similar to the two-element Boolean algebra). See [18, 15]. For
simplicity, we do not pursue this promising variant further in this particular paper.

250 A. Egri-Nagy et al.

inputs, like data fed into the algorithm. This looks quite natural if we think in terms of
a universal computer: we have to provide both the algorithm and the input data for the
algorithm to work on.

This concludes the introduction of the metaphor

finite state automaton ≡ programming language.

Before continuing, let’s summarize: Q, the set of states of the automaton A, is the
problem domain in which we would like to solve problems. These problems include
going from a start state to a target, a ‘desired’ state, or a solution. We can also
consider states as bits of data and do calculations on them, so the ‘number crunching’
aspect of computation also appears here. A, the set of input symbols, contains the
language primitives, i.e. the basic commands that can be combined into longer
sequences to form programs. The transition function λ is then the machinery: the
compiler, interpreter, runtime system with libraries, processor, etc. In short,

states Q problem domain

input symbols A basic commands
input strings A+ algorithms

w : Q → Q, w ∈ A+ computational function
transition function λ runtime system

We need to differentiate between the automaton and the mathematical function
(machine) that the automaton implements (realizes), since the same computational
function (same state mapping) can be expressed by different algorithms (sequences).
In other words, following Rhodes’s terminology, the machine is the behaviour while
the automaton or circuit is what implements it.

2.2 Problems, Critique

Problem: “Finite state automata are too constrained compared to general-
purpose programming languages”. At first sight an automaton as a programming
language seems to be quite constrained. We show that the only constraint is finiteness,
and this poses no practical problems. Usually programming languages are all
considered to be Turing-complete, thus being in a completely different computational
class than the one formed by finite automata. This is only true if we assume
unbounded resources for the machine on which the programming language is
implemented. But if we consider a physically existing (hence finite) computer, then
we have a finite state automaton. Its state set may be enormous but still finite. For
example, one state of a computer with 1 gigabyte memory can be described by
8796093022208 bits, therefore it has 28796093022208 distinct states, so the number of
possible state transformations on this computer is

(28796093022208)28796093022208

,

 Transformation Semigroups as Constructive Dynamical Spaces 251

which is quite a big number. Of course this large collection of possible computational
functions contains the workings of all possible operating systems, with all possible
applications as substructures. The situation is reminiscent of the Library of Babel [3].

One of the great capabilities of the human mind is that it can look at things from
different perspectives, ignoring the view in which they normally appear. This is really
needed here as we usually meet finite automata only of moderate size and usually in
textbooks (probably the largest ones in natural language processing), but still not in
the magnitude mentioned above. Thus, finiteness is the only constraint, and that also
applies to programming languages implemented on computers.

“Finite state automata-based programming is a specialized technique mainly for
implementing lexical and syntactic analysers”. Our approach is not about one
particular technique that can be applied in a programming situation (like using state
transition tables in an algorithm), but a more general conceptual framework to enable
us to see the applications of automata in more general settings, in dynamical systems.

2.3 A More Comprehensive View: Transformation Semigroups

A+ forms a semigroup under the operation of concatenation, and its elements can be
interpreted, using λ recursively, as different mappings of the state set to itself. The
finite set of these mappings is called the semigroup S(A) corresponding to the
automaton A and these mappings can be combined by function composition (i.e.
following one by another). In (1), a computation was just one run of the algorithm on
a particular input x (in (1) this input is the state q). The same algorithm can be applied
to other inputs (states) as well. Therefore, each a ∈ A is an (atomic) algorithm which

yields a (single) mapping Q → Q; the latter is a (generating) element of the
corresponding transformation semigroup S(A). So semigroup elements realize
algorithms defined for all possible inputs; therefore, a semigroup is a “constructive
space of total algorithms”, which is basically a programming language.

Built-in primitives ≡ generator sets. Programming languages are equipped with
different sets of built-in basic tools; thus the same algorithm requires longer code in a
low-level language than in a high-level one. Analogously, a transformation semigroup
with a smaller set of generators will have longer words to express the same semigroup
element. Different semigroups can have common elements, just like different
programming languages can share the same tools and techniques. The extreme case is
the automaton where we have a symbol for each semigroup element, corresponding to
a language in which there is a language primitive for each expressible algorithm.

Self-modifying algorithms. This powerful idea is incorporated in some languages
(e.g. LISP), but it is not a mainstream property. In the algebraic settings it is natural as
semigroup elements can be multiplied by each other, thus algorithms can act on each
other (algorithms as inputs and outputs of other algorithms), thereby modifying
themselves. This is just a consequence of the generalization of Cayley’s theorem to
semigroups.

252 A. Egri-Nagy et al.

2.4 Going Parallel: The Role of Permutation Groups

Once we start talking about transformation semigroups, the special class of
permutation groups naturally comes into the picture. As a consequence, we need to
give an account of symmetries in a computational context.3

Reversibility. A permutation of the state set (or a subset of it) as a totally defined
algorithm has the peculiar property that, when applied to the whole set in parallel, it
gives back the whole set: no two states/inputs are collapsed into the same output. This
is like maintaining the set of possible future states, not losing any possibility. This
prompts us to believe that algebraic groups of algorithms coincide with the notion of
reversibility. This is certainly true if we consider the parallel movement of all states,
but it becomes subtle if we study individual inputs: permutations are not the only way
to achieve reversibility. The following examples will show the different kinds of
reversibility.

Example: Reversibility by resets. Let’s consider state 1 of the state set {1, 2} and two
transformations t1 = (1 2

1 1), t2 = (1 2
2 2). t2 takes 1 to 2, and we can reverse this

movement since we can go back to 1 by t1 . t1 , t2 are called constant maps, or resets.

Example: Cyclic reversibility. Similarly, by applying the permutation (1, 2) (or p =
(1 2
2 1)) we can go from 1 to 2: 1 · p = 2, but we can get back to 1 by applying p again:

1 · pp = 1. So we achieve reversibility by ‘going forward’, by a kind of “cyclic
reversibility”. This can be achieved only by permutations.

Cycles. Another interpretation of the symmetries that algebraic groups symptomize is
the presence of periodic cycles of reactions in the metabolic systems from which the
automata are derived, the invariant feature being the existence of a stable cycle that is
preserved by the elements of the group. This too is compatible with the parallel
interpretation of the algorithm arising from a group. In fact, conceptually, a group
element can be conceived to act on all the states at once, and this can be implemented
as a set of parallel automata (as many as there are states), all transitioning
simultaneously and in parallel. Such a model is entirely consistent with periodic
pathways such as the Krebs cycle, whose equilibrium operation is characterized by all
the reactions taking place in parallel, at the same average rate. In such a case a group
element can be considered as realizing a parallel algorithm on several inputs. This can
be viewed on different levels:

1. acting on the whole Q
2. acting on the subsets of Q
3. acting on multisets of elements of Q

More generally, there are other natural possibilities too (for any positive integer n): n-
tuples of elements of Q, n-tuples of subsets of Q, or n-tuples multisets of elements of

3 This is because of two facts: (1) a symmetry of an object is a transformation that leaves some

aspect of that object invariant; and, (2) the set of invertible transforma- tions that leave some
aspect of a mathematical object invariant form a group with the operation of functional
composition.

 Transformation Semigroups as Constructive Dynamical Spaces 253

Q, not to mention coproduct structures, etc. As transformations are the computational
functions realized by totally defined algorithms, the definitions of these actions can be
derived in a natural way from the action of transitions symbols of the automaton.

2.5 The Gain: Algebraic Results

After we presented the analogy, finally we can show the benefits of thinking about the
automata in a different way.

Hierarchical coordinatization. When dealing with huge automata we need some
tools for organizing their structure. Just as, when analysing software, we find modules
and subroutines that are combined in a hierarchical way, so too we can decompose
semigroups with hierarchical coordinates [20].

The disappearance of memory–processor duality. The algebraic theory of
machines gives us a level of abstraction at which we can consider both processing and
memory units having the same nature, namely they are semigroups. For storing single
bits of information the semigroup of the flip-flop automaton can be used and for
calculations the permutation groups can be used. In the hierarchical construction of
automata this allows us to dynamically change the ratio of computational power and
storing capacity on demand, as in real computational problems either the power of the
processor or the insufficient amount of memory is the bottleneck. For exploiting this
idea in practical computing we would need some physical implementation, e.g.
reconfigurable hardware that is capable of dynamically allocating automata structures.

3 The Interaction Machine Concept

The above discussion provides a theoretical backdrop against which we can now
propose some novel ideas about computing, in particular interaction computing. The
concept of interaction computing was originally inspired by a physics perspective on
biological systems ([5, 7] and references therein); in other words, in looking for
general principles that appear to govern self-organizing behaviour in cell biology, the
role of interactions appeared to be such a fundamental feature that it seemed
indispensable to replicate it in computational systems in order to develop an
‘architecture of self-organization’ in software along analogous principles.

The addition of an algebraic automata theory perspective to the above stream of
work has opened the possibility to develop a formalism that can express the behaviour
of biological systems seen as dynamical systems in a manner that is consistent with
the mathematical foundations of computer science. We now discuss a few examples
that are helping us understand how the algebraic properties of automata discussed so
far can be interpreted in the context of ‘biological computation’, and how this
mapping between algebra and biology is helping us imagine the architectural
requirements of the ‘Interaction Machine’.

3.1 Sequential Machines and Their Realizations

In this section we now consider not only computations inside individual trans-
formation semigroups (as in Section 2), but also (1) their behaviours (abstracting

254 A. Egri-Nagy et al.

away states) as formalized by sequential machines, which is closely related to
software specification, and (2) a higher-level constructive dynamical ‘meta- space’,
one in which sequential machines are basic entities that may interact and combine in
various ways to create new kinds of computational structures; in particular, they
extend to interacting machines, whose deployment together can create complex
interaction structures.

Many years after proving the prime decomposition theorem for semigroups and
machines [19], John Rhodes published a book that he had started working on in the
1960s and that has come to be known as the ‘Wild Book’ [22]. In this book he
provides a very clear discussion of an alternative to Turing machines, which we
believe to be a very promising starting point for a model of interaction computing.

As we know, an algorithm implementable with a Turing machine is equivalent to
the evaluation of a mathematical function. As Wegner and co-workers argued in a
series of papers over the last 20 years ([13] and references therein), the evaluation of a
mathematical function can afford to take place by following an ‘internal clock’, i.e.
the Turing machine is isolated from its environment while it evaluates the algorithm.
Biological systems, on the other hand, are continually interrupted by external inputs
and perturbations. As an example of this class of computations Golding and Wegner
used ‘driving home from work’, which they described as a non-Turing-computable
problem. Turing himself had foreseen this possibility in his original 1936 paper as the
‘choice machine’ [23], although he did not pursue it further.

Similarly, Rhodes starts from the familiar definition of a sequential machine. The
sequential machine accepts an input at each discrete point in time and generates an
output once all the inputs have been received:

Let A be a non-empty set. Then A+ = {(a1 , ..., an) : n ≥ 1 and aj ∈ A}. A
sequential machine is by definition a function f : A+ → B, where A is the
basic input set, B is the basic output set, and f (a1 , ..., an) = bn is the output
at time n if aj is the input at time j for 1 ≤ j ≤ n.

This is clearly related to the formal definition of the finite automaton given at the
beginning of Section 2, but there is a twist: Rhodes prefers to make a sharp distinction
between a machine, which he equates to a mathematical function, and the realization
of that machine, which he calls a circuit and that is essentially an automaton:

Mathematical concept and its realization

Machine or
mathematical function

Circuit or
automaton

Automata behaviour Automata structure

Due to the need to maintain the development of a theory of interaction computing on
firm mathematical grounds, we follow his approach. More specifically, the separation
between a machine and its realization matches well the distinction between the
description (formalization) of behaviour and the automaton structure necessary to
achieve it. It is essential for us to maintain this distinction in light of a parallel thread
of research [7, 6] which applies categorical morphisms to automata behaviour in order
to derive a specification language. To understand better what we might be aiming to
specify, let’s develop the idea further.

 Transformation Semigroups as Constructive Dynamical Spaces 255

We are going to use a generalization of the sequential machine, also by Rhodes,
which produces an output for each input it receives and not just in correspondence of
the most recent input. We are going to call this generalization an interacting machine:

Let f : A+
→ B be a sequential machine. Then an interacting machine f + :

A+
→ B+ is defined by f + (a1 , ..., an) = (f (a1), f (a1 , a2), ..., f (a1 , ..., an)).

Thus, an Interaction Machine (IM) can be built by joining two or more interacting
machines. Such an IM will still accept inputs from outside itself (“the environment”)
and will produce outputs for the environment. The realization of either machine is
achieved through a finite-state automaton that Rhodes calls a “circuit”, C , but that in
the literature is more commonly called a Mealy automaton:

C = (A, B, Q, λ, δ) is an automaton with basic input A, basic output B, states
Q, next-state function λ, and output function δ iff A and B are finite non-
empty sets, Q is a non-empty set, λ : Q × A → Q, and δ : Q × A → B.

Having established then that the problem of computation is posed in two parts, a
mathematical function and its realization, we continue to rely on Rhodes to define a
few more concepts related to the latter, in order to develop a relatively concrete
working terminology. The next concept we need is the realization of an algorithm, as
follows. Let C = (A, B, Q, λ, δ) be an automaton. Let q ∈ Q. Then Cq : A+ → B is the
state trajectory associated with state q and it is defined inductively by

Cq (a1) = δ(q, a1)

Cq (a1 , ..., an) = Cλ(q,a1) (a2 , ..., an), for n ≥ 2.

We say that C realizes the machine f : A+ → B iff ∃q ∈ Q : Cq = f . By a simple
extension of the above definitions it is fairly easy to see that the output of an
algorithm can be associated with a sequential machine when the output corresponds to
the result after the last input, whereas it is associated with an interacting machine
when there are as many outputs as there are inputs:

Cq (a1 , ..., ak) = bk , for k = 1, ..., n

C + q (a1 , ..., an) = (b1 , ..., bn).

Rhodes then introduces more formalism to define precisely a particular automaton
that realizes a function f as C (f), and goes on to prove that C (f) is the unique minimal
automaton that realizes f. He goes on to say

The reason why Turing machine programs to realize a computable f are not
unique and the circuit which realizes the (sequential) machine f (namely C (f))
is unique is not hard to fathom. In the sequential machine model we are given
much more information. It is ‘on-line’ computing; we are told what is to happen
at each unit of time. The Turing machine program is ‘off-line’ computing; it
just has to get the correct answer – there is no time restraint, no space restraint,
etc. ([22]: 58)

256 A. Egri-Nagy et al.

Rather than constructing dynamical behaviour through a sequential algorithm
expressed in a programming language, which can be realized by a single automaton or
Turing machine, we are talking about constructing dynamical behaviour through the
interaction of two or more finite-state automata. This is because, if the possibility that
Q be infinite is left open as the above definition does, “then the output function could
be a badly non-computable function, with all the interesting things taking place in the
output map δ, and we are back to recursive function theory” ([22]: 59). Therefore, we
note the interesting conclusion that, for a tractable approach, Q must be finite and that
the realization of an Interaction Machine must be made up of interacting finite-state
automata. Thus, from the mathematical or behavioural perspective, we will build the
Interaction Machine by using sequential (or interacting) machines as basic units and
by combining them in various ways.

The mathematical and computer science challenge, therefore, is to develop a
formalism that is able to capture the non-linear character of the dynamics of an
arbitrary number of coupled metabolic systems, so that when this mathematical
structure is mapped to our yet-to-be-developed specification language we will be able
to specify software environments capable of supporting self-organizing behaviour
through interaction computing, driven by external stimuli from users or other
applications.

In the next subsection we switch the perspective from synthetic, i.e. constructing
automata and models of computation, to analytical, i.e. analysing cellular pathways
and interpreting the role and function of the algebraic structures they harbour.

3.2 Permutation Groups from the Biological Point of View

The presence of permutation groups in the hierarchical decomposition of the
semigroups associated with automata derived from cellular pathways presents a
difficult puzzle. This is because a permutation group can be interpreted in different
ways: the fact that groups are defined up to isomorphism means that different
‘implementations’ could be derived from the same abstract group. In this subsection
we explore some of the possibilities. Ultimately, if we are not able to resolve this
puzzle theoretically, ex ante, it will be resolved ex post by building different kinds of
interaction machines, based on different interpretations of these groups, and by seeing
which kind behaves in the most convincingly ‘biological’ way.

Based on the analysis of the Krebs metabolic cycle and the p53-mdm2 regulatory
pathway, it appears that the permutation groups may be associated with cyclic
phenomena in biochemical processes. The challenge is to relate such cyclic or
oscillatory behaviour to the computational properties of its mathematical
discretization.

It is helpful, first, to clarify the connection between cycles and oscillations by
resorting to an idealized system in the form of the simple harmonic oscillator of
elementary physics. As shown in Figure 2, for a simple harmonic oscillator periodic
cycles (in some parameter space, which could include also Euclidean space) are
mathematically indistinguishable from oscillations (in time, at a fixed point in space).
It is possible, therefore, that the same kind of algebraic structure, i.e. non-trivial
permutation groups, could result from different kinds of cyclic biochemical
phenomena. For example, the discrete algebraic analysis discussed in the next section

 Transformation Semigroups as Constructive Dynamical Spaces 257

indicates that biochemical processes such as the Krebs cycle, the concentration levels
of whose metabolites can be assumed to remain constant over time, have similar
‘algebraic signature’ (i.e. permutation groups) to processes such as the p53-mdm2
pathway [24, 16], in which the concentrations of the compounds can oscillate (for
some parameter values) as a function of time.4

t

Fig. 2. Periodic behaviour of the simple harmonic oscillator

The reason may be found in the fact that the models that give rise to these
signatures describe what will happen (or what could happen, if there is a choice) to
individual instances of classes of molecules or molecular complexes, but do not
distinguish between instances of the same class. In simulations of the synchronized
Krebs cycle and the p53-mdm2 pathway under conditions that promote sustained
oscillations, indistinguishable instances of particular classes, such as citrate and active
p53, appear and disappear periodically.

What could be the computational significance of such periodic structures? We see
at least two possibilities.

Cyclic interpretation. If a element g of a permutation group G is interpreted as a
function g : X → X from a subset X of the state set Q to itself, then if g is non-trivial,
then some element x ∈ X is actually moved by g, so when the system reaches state x
∈ X and is acted upon by g it will transition to state y ∈ X , i.e. xg = y (where the
group action is taken as multiplication on the right). Now, if g is applied again, this
time to y, another state z ∈ X will be reached. This process could be repeated such
that

x → xg → xg2 → xg3 → · · · → xg(n−1) → x, (3)

4 We hasten to add that the permutation groups found in these two systems are not of the same

kind. Therefore, the two systems are different in some important way. However, our first goal
is to find a plausible explanation for the presence of permutation groups in the first place, and
it is only in this specific sense that we mean that these two systems have the same algebraic
signature.

258 A. Egri-Nagy et al.

where the arrow “→” means “multiply on the right by g”, for some n > 1, where n
divides the order of g.5 This is periodic behaviour, or a cycle of the system’s states,
that the system can potentially exhibit.

Parallel interpretation. Although we are still far from pinpointing the characteristics
of ‘cellular computation’, as discussed in [6] and consistently with the discussion in
Section 2 there is one aspect that is hard to overlook: parallelism. It is obvious that
biochemical events take place in parallel in solution. We also know that a group
element acting on a set can be conceived of as permuting all the elements of that set,
at once. In the language of automata, this corresponds to the parallel transition of
every state of the automaton to its next state as determined by the transition function,
in parallel. This is not a single machine, clearly. We are talking about an ensemble of
machines that are computing in parallel, each of which is at a different location along
the same algorithm.

Fig. 3. Schematic of the Krebs or citric acid cycle [17]

A specific example could help elucidate the above point. Take, for instance, the
Krebs or citric acid cycle, shown in Figure 3. It is clear that all the reactions around
the cycle can be happening simultaneously and in parallel. But if we assume that the
average concentrations of the metabolites in each stage around the cycle are constant
then, strictly speaking, this system is always in the same state. Thus, in this case the
discretization of this system into a finite-state automaton must be based on the history
of an individual molecule as it travels around the circle. Such a molecule will indeed
experience different ‘states’ as it is transformed at each stage. The hierarchical

5 For example, g = (123)(45) has order 6, and g acting repeatedly on the state 4 is 4 → 4g =

5 → 5g = 4g2 = 4, i.e. n = 2 in this case and 2 divides 6.

 Transformation Semigroups as Constructive Dynamical Spaces 259

decomposition of the semigroup associated with such an automaton contains non-
trivial permutation groups, e.g. C2 and C3 [9, 22]. This could indicate the parallel
transition of 2 and 3 (abstracted or ‘macro-’) states, respectively under the same
metabolic program (sequence of atomic transition operations). Once the concept of
parallel transitions has been accepted as a possibility the generalization of the same
mechanism to the simultaneous transition of all the states and macro-states permuted
by a given subgroup, as we are proposing here, is equally possible and worth
investigating further.

3.3 A Conceptual Architecture for the IM

Building on the above discussion, let us now simplify the system such that it is closed
and let us neglect the irreversible (semigroup) components for the moment. Rather
than performing an isolated algorithm to evaluate a mathematical function, as a
Turing machine does, we are talking about an ‘open’ or ‘permeable’ algorithm, which
can be coupled to other algorithms at each of its steps. A non-trivial question concerns
the form such a coupling could or should take.

As we saw in Section 2 an algorithm is realized by one or more generating
semigroup elements concatenated in a sequence or string of symbols. Because each
semigroup element is a mapping Q → Q, knowledge of the algorithm and of the state
space implies knowledge of the state transition function λ. Therefore, an algorithm is
a part of the realization of a sequential machine or mathematical function in the sense
of Rhodes. It may therefore be more useful and appropriate to talk about the coupling
between automata rather than between algorithms.

Automata can be coupled in different ways, for example by overlapping on one or
more states. Such a case seems important for modelling symbiosis but presents some
difficulties, since a common state for two automata would seem to imply that the two
automata are actually associated with the same physical system and simply drawing
on different sets of its states, with one in common. Alternatively, the output alphabet
of an automaton could have some symbols in common with the input alphabet of
another automaton, and vice versa. In this way, each automaton reaching certain states
would trigger inputs to the other, causing it to transition. The same arrangement could
be generalized to 3 or more automata coupled in different ways. Thus, state transitions
taking place in one automaton could trickle through the system, causing other
automata to advance their own algorithms.

What remains to be seen is whether such an architecture of computation will yield
more powerful qualities (in the sense of non-functional requirements), e.g. greater
efficiency, where efficiency could be defined as

number of functional requirements satisfied

number of state transitions required (4)

This is in fact what the map of metabolic pathways looks like: a complex network of
automata intersecting or communicating at several steps, which therefore means that
the chemical reactions taking place at each of these intersection points are ‘serving’
multiple algorithms at the same time. This is one of the points of inspiration of the
concepts of interaction computing, symbiotic computing, and multifunctionality [7].

260 A. Egri-Nagy et al.

From an evolutionary point of view, the emergence of an architecture that seems to
violate just about all the accepted principles of software engineering (modularization,
separation of concerns, loose coupling, encapsulation, well-defined interfaces, etc)
might be explainable simply in terms of efficiency. In the presence of finite energy
resources and multiple survival requirements, the organisms and the systems that
survived were those that could optimize the fulfilment of such requirements for the
most economical use of materials and energy; hence the overloading, the
multifunctionality, and so forth. This in fact is not an unfamiliar concept in software
engineering: where resources are constrained, for example in specialized drivers for
real-time systems, it is common to code directly in assembly language and to develop
code that is incredibly intricate and practically impossible for anyone but the engineer
who wrote it to understand. Evolution has achieved the same effect with biological
systems, but to an immensely greater extent.

Whether or not the above concepts will withstand closer scrutiny as we continue to
develop the theory, it is interesting to show a visualization of the interaction machine
according to Rhodes, in Figure 4 ([22]: 198). Rhodes does not use this term, but he
does talk about the DNA and the cytoplasmic processes as interacting automata. His
description of the cell as a system of interacting automata comes after the formal
development of the sequential machine and its realization (that we presented above)
all the way to the Krohn-Rhodes prime decomposition theorem ([22]: 62), and after a
lengthy analysis and discussion of the Krebs cycle. Therefore, we expect Rhodes’s
work to continue to provide valuable inputs to our emerging theory of interaction
computing.

...

Outputs of G = Inputs of M
(Enzymes)

G

M

Outputs of M = Inputs of G
(Substrates, etc)

External

inputs

and

outputs

Other inputs: inducers, co-repressors

Outputs: substrates, inducers, co-repressors, coenzymes

The states of M are its outputs: they are the products of
the biochemical reactions and therefore act as input to
the DNA (G automaton).

Possible pathway

Rhodes models the DNA as a
single-state automaton with many
inputs and many outputs.

Fig. 4. Conceptual architecture of the biological realization of the Interaction Machine, based
on Rhodes ([22]: 198)

 Transformation Semigroups as Constructive Dynamical Spaces 261

4 Some Results from the Algebraic Analysis of the p53-mdm2
Regulatory Pathway

By using the now available SgpDec computer algebra software package [12] we can
start applying these algebraic methods to real-world biological problems.

4.1 Petri Net of p53-mdm2 System

Here we briefly study the algebraic structure of the p53-mdm2 system. The p53
protein is linked to many other proteins and processes in the cell, but its coupling to
the mdm2 protein appears to be particularly important for understanding cancer.
Depending on the concentration level of p53, the cell can (in order of increasing
concentration): (1) operate normally; (2) stop all functions to allow DNA repair to
take place; (3) induce reproductive senescence (disable cellular reproduction); and (4)
induce apoptosis instantly (cell ‘suicide’). Therefore, p53 is a very powerful and
potentially very dangerous chemical that humans (and most other animals) carry
around in each cell, whose control must be tuned very finely indeed. Roughly 50% of
all cancers result from the malfunction of the p53- mdm2 regulatory pathway in
damaged cells that should have killed themselves.

P53 levels are controlled by a fast feedback mechanism in the form of the mdm2
protein. P53 is synthesized all the time, at a fairly fast rate; but the presence of p53
induces the synthesis of mdm2, which binds to p53 and causes it to be disintegrated.
When the DNA is damaged (for instance by radiation in radiotherapy) the cell
responds by binding an ATP molecule to each p53, bringing it to a higher energy
level that prevents its destruction and causes its concentration to rise. Thus in the
simplest possible model there are in all 4 biochemical species: p53 (P), mdm2 (M),
p53-mdm2 (C), and p53* (R), whose concentrations are modelled by 4 coupled and
non-linear ordinary differential equations (ODEs) [24]. Whereas [16] analyzes the
algebraic structure of this pathway from the point of view of the Lie group analysis of
the ODEs, in this paper we look at the algebraic structure of the same pathway from
the point of view of the discrete finite-state automata that can be derived from it.

4.2 Algebraic Decomposition

It is now a common practice to model biological networks as Petri nets. Petri nets can
easily be transformed into finite automata, though this operation should be carried out
with some care (for a detailed explanation see [11]). Depending on the capacity
allowed in the places of the Petri net, the automaton’s state set can be different in size,
thus we can get different resolutions during discretization.

When we distinguish only between the presence and absence (in sufficient
concentration) of the molecules, the derived automaton has only 16 states (see
Fig. 5).6 This may be considered as a very rough approximation of the original
process, but still group components do appear in this simple model: S3 , the symmetric
group on 3 points is among the components. The existence of these group components
is clearly connected to oscillatory behaviours, however the exact nature of this
relation still needs to be investigated.

6 4 places each taking on 2 possible values (0 or 1) makes 24 = 16 states.

262 A. Egri-Nagy et al.

M

P

R

C r
8

r
7

r
6

r
3

r
5

r
1

r
2

r
9

Ionising

radiation

Degraded

p53

r
4

Fig. 5. Petri net for the p53-mdm2 regulatory pathway [10]. P = p53, M = mdm2, C = p53-
mdm2, R = p53*.

Fig. 6. Automaton derived from 2-level Petri net of the p53 system (16 states). The labels on
the nodes encode the possible configurations for M, C, P and R (in this order). 0 denotes the
absence, 1 the presence of the given molecule. For instance, 0101 means that C and R are
present.

 Transformation Semigroups as Constructive Dynamical Spaces 263

If we in addition distinguish two levels of significant concentration, i.e. absence (or
very low, sub-threshold concentration), low, and high levels concentrations, then the
corresponding automaton has 81 states (34 = 81) and the algebraic decomposition
reveals that it contains S5 among its components. The appearance of S5 is
particularly interesting as it contains A5 , the alternating group on 5 points,
which is the smallest SNAG (simple non-abelian group). The SNAGs are considered
to be related to error-correction [22] and functional completeness [18, 15, 7]. The
latter property of SNAGs makes them a natural candidate for realizing an analogue of
‘universal computation’ within the finite realm. The presence of a SNAG in the
decompostion of the p53-mdm2 path- way suggests that the cell could potentially be
performing arbitrarily complex finitary computation using this pathway. Moreover,
how the activity of the rest of the cell interacts with the p53-mdm2 pathway to
achieve such fine regulatory control could depend on other components (interacting
machines) in the interaction architecture of the cell harbouring similar group
structures.

5 Conclusions

In this paper we have tried to paint a broad-brush picture of the possibilities for the
roles of algebraic structures in enabling open-ended constructive computational
systems, based on recent work and on our current results. The most immediate
example is to regard a transformation semigroup as a constructive dynamical space in
which computation can be carried out, analogous to programming languages on
present-day computers. Although practical implementations of automata in real
computers cannot help being finite, the size of the state space of a modern computer is
well beyond our human ability to count without losing all sense of scale (many times
the number of molecules in the known universe) and so ‘approximates’ the infinite
size of a Turing machine reasonably well for practical purposes.

The work of Rhodes suggests, however, a much stronger claim, that sequential and
interacting machines inspired by biological systems must be finite in a much more
limiting sense, and that algebraic structure is the key to finitary computation and to
understanding how computation can proceed via interaction. This leads us to a meta-
space of constructive dynamical systems in which the interacting parts that
synergetically conspire to achieve complex computation are individual machines or
transformation semigroups themselves. We are combining this insight with the results of
the algebraic analysis of the semigroups derived from cellular pathways and with more
synthetic tentative arguments about the architecture of an Interaction Machine that could
replicate biological computation. We have not yet reached actionable conclusions, but
we feel we are uncovering interesting mathematical and computational properties of
cellular pathways and are finding intriguing correspondences between biochemical
systems, dynamical systems, algebraic systems, and computational systems.

Acknowledgments

Partial support for this work by the OPAALS (FP6-034824) and the BIONETS (FP6-
027748) EU projects is gratefully acknowledged.

264 A. Egri-Nagy et al.

References

1. Ashby, W.R.: An Introduction to Cybernetics. Chapman & Hall Ltd., London (1956),
http://pespmci.vub.ac.be/books/IntroCyb.pdf

2. Banzhaf, W.: Artificial chemistries towards constructive dynamical systems. Solid State
Phenomena, 97–98, 43–50 (2004)

3. Borges, J.L.: La biblioteca de Babel (The Library of Babel). El Jardin de senderos que se
bifurcan. Editorial Sur. (1941)

4. Briscoe, G., Dini, P.: Towards Autopoietic Computing. In: Proceedings of the 3rd
OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

5. Dini, P., Briscoe, G., Van Leeuwen, I., Munro, A.J., Lain, S.: D1.3: Biological Design
Patterns of Autopoietic Behaviour in Digital Ecosystems. OPAALS Deliverable, European
Commission (2009),

 http://files.opaals.org/OPAALS/Year_3_Deliverables/WP01/
6. Dini, P., Horvath, G., Schreckling, D., Pfeffer, H.: D2.2.9: Mathematical Framework for

Interaction Computing with Applications to Security and Service Choreography.
BIONETS Deliverable, European Commission (2009), http://www.bionets.eu

7. Dini, P., Schreckling, D.: A Research Framework for Interaction Computing. In:
Proceedings of the 3rd OPAALS International Conference, Aracaju, Sergipe, Brazil,
March 22-23 (2010)

8. Dini, P., Schreckling, D., Yamamoto, L.: D2.2.4: Evolution and Gene Expression in
BIONETS: A Mathematical and Experimental Framework. BIONETS Deliverable,
European Commission (2008), http://www.bionets.eu

9. Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic Analysis of
Computation in BioChemical Reactions. BioSystems 94(1-2), 126–134 (2008)

10. Egri-Nagy, A., Nehaniv, C.L., Schilstra, M.J.: Symmetry groups in biological networks.
In: Information Processing in Cells and Tissues, IPCAT’09 Conference, April 5-9 (2009)
(Journal preprint)

11. Egri-Nagy, A., Nehaniv, C.L.: Algebraic properties of automata associated to petri nets
and applications to computation in biological systems. BioSystems 94(1-2), 135–144
(2008)

12. Egri-Nagy, A., Nehaniv, C.L.: SgpDec - software package for hierarchical coordi-
natization of groups and semigroups, implemented in the GAP computer algebra system
(2008), http://sgpdec.sf.net

13. Golding, D., Wegner, P.: The Church-Turing thesis: Breaking the myth. In: Computability
in Europe (CiE) conference series (2005)

14. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages,
and Computation, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Amsterdam
(2001)

15. Horvath, G.: Functions and Polynomials over Finite Groups from the Computational
Perspective. The University of Hertfordshire, PhD Dissertation (2008)

16. Horvath, G., Dini, P.: Lie Group Analysis of p53-mdm3 Pathway. In: Proceedings of the
3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

17. ICT4US, http://ict4us.com/mnemonics/en_krebs.htm
18. Krohn, K., Maurer, W.D., Rhodes, J.: Realizing complex boolean functions with simple

groups. Information and Control 9(2), 190–195 (1966)
19. Krohn, K., Rhodes, J.: Algebraic theory of machines. I. Prime decomposition theorem for

finite semigroups and machines. Transactions of the American Mathematical Society 116,
450–464 (1965)

 Transformation Semigroups as Constructive Dynamical Spaces 265

20. Krohn, K., Rhodes, J.L., Tilson, B.R.: The prime decomposition theorem of the algebraic
theory of machines. In: Arbib, M.A. (ed.) Algebraic Theory of Machines, Languages, and
Semigroups, ch. 5, pp. 81–125. Academic Press, London (1968)

21. Lahti, J., Huusko, J., Miorandi, D., Bassbouss, L., Pfeffer, H., Dini, P., Horvath, G.,
Elaluf-Calderwood, S., Schreckling, D., Yamamoto, L.: D3.2.7: Autonomic Services
within the BIONETS SerWorks Architecture. BIONETS Deliverable, European
Commission (2009), http://www.bionets.eu

22. Rhodes, J.L.: Applications of Automata Theory and Algebra via the Mathematical Theory
of Complexity to Biology, Physics, Psychology, Philosophy, and Games. World Scientific
Press, Singapore (2009); foreword by Hirsch, M.W. edited by Nehaniv, C.L. (Original
version: University of California at Berkeley, Mathematics Library, 1971)

23. Turing, A.: On Computable Numbers, with an Application to the Entschei-dungsproblem.
Proceedings of the London Mathematical Society 42(2), 230–265 (1936); a correction. ibid
43, 544–546 (1937)

24. Van Leeuwen, I., Munro, A.J., Sanders, I., Staples, O., Lain, S.: Numerical and
Experimental Analysis of the p53-mdm2 Regulatory Pathway. In: Proceedings of the 3rd
OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

	Transformation Semigroups as Constructive Dynamical Spaces
	Introduction
	The Programming Language Perspective
	Interaction Computing
	Analysis of the p53-mdm2 Regulatory Pathway

	Theoretical Framework
	Finite Automata as Computational Spaces
	Problems, Critique
	A More Comprehensive View: Transformation Semigroups
	Going Parallel: The Role of Permutation Groups
	The Gain: Algebraic Results

	The Interaction Machine Concept
	Sequential Machines and Their Realizations
	Permutation Groups from the Biological Point of View
	A Conceptual Architecture for the IM

	Some Results from the Algebraic Analysis of the p53-mdm2 Regulatory Pathway
	Petri Net of p53-mdm2 System
	Algebraic Decomposition

	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

