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Abstract. The informal notion of constructive dynamical space, inspired by 
biochemical systems, gives the perspective from which a transformation 
semigroup can be considered as a programming language. This perspective 
complements a longer-term mathematical investigation into different 
understandings of the nature of computation that we see as fundamentally 
important for the realization of a formal framework for interaction computing 
based on algebraic concepts and inspired by cell metabolism. The interaction 
computing perspective generalizes further the individual transformation 
semigroup or automaton as a constructive dynamical space driven by 
programming language constructs, to a constructive dynamical ‘meta-space’ of 
interacting sequential machines that can be combined to realize various types of 
interaction structures. This view is motivated by the desire to map the self-
organizing abilities of biological systems to abstract computational systems by 
importing the algebraic properties of cellular processes into computer science 
formalisms. After explaining how semigroups can be seen as constructive 
dynamical spaces we show how John Rhodes’s formalism can be used to define 
an Interaction Machine and provide a conceptual discussion of its possible 
architecture based on Rhodes’s analysis of cell metabolism. We close the paper 
with preliminary results from the holonomy decomposition of the semigroups 
associated with two automata derived from the same p53-mdm2 regulatory 
pathway being investigated in other papers at this same conference, at two 
different levels of discretization. 

1   Introduction 

This expository paper has several goals and consists of three main parts. The first part 
concentrates on computer science and aims to show that transformation semigroups 
can provide a theoretical background for programming languages. The second part 
introduces the concept of interaction computing and discusses a possible architecture 
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for the Interaction Machine based on examples from cell biology. The third part 
streamlines the theory further and applies some of the algebraic results to the analysis 
of the p53-mdm2 regulatory pathway [24], as part of our on-going effort to 
understand and formalize the computation performed by the cell. 

This paper is part of a research framework that is documented in the following four 
companion papers at this same conference: 

 

– A Research Framework for Interaction Computing [7] 
– Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway [24] 
– Lie Group Analysis of a p53-mdm2 ODE Model [16] 
– Transformation Semigroups as Constructive Dynamical Spaces (this paper)  
– Towards Autopoietic Computing [4] 

1.1   The Programming Language Perspective 

In the first part of the paper (Section 2) we would like to argue that: 
 
1. Finite state automata, and thus transformation semigroups, have much wider ap-  

plicability than it is thought traditionally. 
2. A transformation semigroup is analogous to a programming language; therefore,  

whenever a piece of software can model some phenomenon, so does a semigroup. 
3. There are different ways to achieve parallel computation, and they all fit naturally  

into the algebraic framework. 
4. The presence of symmetry groups in a computational structure indicates a special  

kind of reversibility, which is not to be mistaken for the general idea of reversibility. 
 

A constructive dynamical space1 determines a set of possible processes (computations) 
and provides basic building blocks for these possible dynamics, equipped with ways of 
putting the pieces together. With these tools one can explore the space of possibilities; 
or, going in the other direction, given one particular dynamical system it is also possible 
to identify its components and their network of relations. A prime example is a 
programming language (complete with its runtime system): we build algorithmic (thus 
dynamical) structures using the language primitives in order to model or realize the 
dynamics that we are interested in. In this paper our main purpose is to show that finite 
state automata and transformation semigroups are other examples of constructive 
dynamical spaces, although they are not usually considered as such. The possible gain is 
that we can bring the algebraic results, mainly the hierarchical decomposition theories, 
into domains of applications outside mathematics. For example, currently programming 
languages do not include tools for automatic decomposition and reconstruction of the 
problem domain. 

The term is used in artificial life research for artificial chemistries (e.g. [2]), and 
this does agree with our definition. 

1.2   Interaction Computing 

The second part of the paper (Section 3) extends the perspective on an individual 
automaton to two or more interacting automata, and explores the implications of such 
                                                           
1 The term is used in artificial life research for artificial chemistries (e.g. [2]), and this does 

agree with our definition. 
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a generalization. Figure 1 shows the broader theoretical context within which this 
paper is situated. The study of semigroups as programming languages fits within the 
activity labelled as “Algebraic properties of automata structure” in the figure. The 
concept of interaction computing can be seen as an area of application that aims to 
combine interacting constructive dynamical spaces to create an environment 
analogous to the cell’s cytoplasm. In particular, Section 3 considers the following 
points: 
 
1. Interaction computing builds on ideas that have been around since Turing’s 1936 

paper [23] and that require a shift in how we think about computing. 
2. The Interaction Machine can be given a formal foundation and a high-level 

architecture based on Rhodes’s work [22]. 
3. The groups found in the hierarchical decomposition of the semigroups associated 

with the automata derived from cellular pathways suggest a form of parallel 
computation that relies on cyclic phenomena and on interdependent algorithms 
(i.e. symbiotic cohesion, and generally opposite to loose coupling). 
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Algebraic properties
of automata structure

Algebraic properties
of automata behaviour

Behaviour
specification

language

Discretisation

Category theory
transformation

Category theory
transformation

Interaction Machine
Architecture
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Fig. 1. Theoretical areas of relevance to interaction computing whose exploration is discussed 
in this and other papers: 1 = [24]; 2 = [8, 6, 21, 7]; 3 = future projects/papers; no superscript = 
this paper. 

The term ‘interaction computing’ captures the essence of a particular form of 
biologically-inspired computing based on metabolic rather than evolutionary 
processes. Specifically, the concept of interaction computing is based on the ob- 
servation that the computation performed by biological systems always involves at 
least two entities, each of which is performing a different, and often independent, 
algorithm which can only be advanced to its next state by interaction itself. The aim 
of the interaction computing approach is to reproduce in software the self-organizing 
properties of cellular processes. 

For this concept to make sense in a biological context one needs to choose an 
appropriate level of abstraction. In particular, our perspective views the stochastic 
nature of cell biochemistry mainly as a mechanism of dimensional reduction that does 
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not necessarily need to be emulated in any detail. For example, a gene expresses 
hundreds of mRNA molecules which, in turn, engage hundreds of ribosomes for no 
other reason than to maximize the probability that a particular, single genetic 
instruction will be carried out as a single step in a metabolic process, such as the 
synthesis of a particular enzyme. As a consequence of this dimensional reduction 
(hundreds to 1), a higher level of abstraction than that at which stochastic molecular 
processes operate is justified in the modelling approach – in particular, a 
formalization that retains, and builds on, the discrete properties of cell biology. 

However, even the resulting lower-dimensional system can’t plausibly be imagined 
to perform the complexity of a cell’s functions driven simply by a uniform distri- 
bution of interaction probability between its (now fewer) components. Additional 
structure and constraints must be at play, for example as provided by molecular 
selectivity. Whereas the evolutionary processes that have led to molecular selectivity 
and the underlying physical processes that ‘fold and hold’ the relevant proteins and 
molecules together are fascinating phenomena that can be recognized as the ultimate 
and the material causes of order construction in biology, respectively, this does not 
entail that it is necessary to reproduce these mechanisms to arrive at self-organizing 
formal systems. We think it is sufficient to recognize the effects of these phenomena 
as embodying the essence of the cell’s discrete behaviour as a kind of computation, 
whose ordered properties can be formalized through algebra. This is the motivation 
for our work in the development of an algebraic theory of interaction computing. A 
formal foundation for this theory has been provided by Rhodes’s work [22]. 

1.3   Analysis of the p53-mdm2 Regulatory Pathway 

The above ideas for how constructive dynamical spaces and interaction computing 
could be realized to improve the flexibility and self-* properties of software have only 
begun to be addressed. As explained in [7] and shown in Figure 1, using category 
theory we need to develop a mapping to relate the specification of behaviour to the 
algebraic structure(s) needed to realize it. But before this mapping can be developed 
we first need to understand in greater depth the algebraic structures that underpin the 
observed self-organizing properties of biological behaviour. Therefore, the third part 
of this paper (Section 4) looks in greater depth at the algebraic structure of the 
semigroup associated with the automata derived from a particular system, the p53-
mdm2 regulatory pathway [24], for two levels of resolution in its discretization. 

2   Theoretical Framework 

2.1   Finite Automata as Computational Spaces 

A finite state automaton and its algebraic counterpart, a transformation semigroup, is 
a computational object, i.e. something that computes. This is not at all surprising, 
especially from the extreme computationalist’s viewpoint (“everything, that changes, 
computes”) and from a classical source in cybernetics [1], but the statement still needs 
further explanation: In what sense does an abstract algebraic structure entail 
computation? 
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Formal definition. A finite automaton can be defined as A = (A, Q, λ) where A is the 
set of input symbols, the input alphabet; Q is the set of states, the state space ; and λ is 
the state transition function λ : Q × A → Q. Since we are talking about a finite state 
automaton, all the objects involved are finite. 
 
Static versus dynamical view. Traditionally, finite automata appear in com- 
putability and formal language theories [14]. For problems in those fields we need to 
extend the definition by giving initial and accepting states. Moreover, an output 
alphabet can be given together with an output function mapping a state and an input 
symbol pair to an output symbol. But here our main interest is not using the 
automaton for a particular purpose, e.g. recognizing certain languages, but to study 
the automaton itself as a discrete dynamical system. However, by looking at the 
minimalistic definition of finite automata, it is obvious that an automaton is not 
dynamical, i.e. nothing moves in it. Its dynamics, rather, is potential, the automaton 
creates room for possible ‘movements’. Applying input symbols to states may move 
them to other states according to λ, producing a trajectory, but there is no 
predescribed dynamics of the automaton. The automaton itself rather is merely the 
setting for any one of an entire space of possible behaviours; therefore, we need to 
supply the machine with instructions, i.e. we have to provide a starting state and a 
sequence of input symbols in order to observe change, computation. We can combine 
the atomic transitions by concatenating input symbols that are interpreted by λ 
sequentially. This way the series of operations denoted by a sequence of symbols 
becomes an algorithm, and λ gives meaning to the symbols, thus λ acts as an 
interpreter. A computational problem can be formalized generally as getting to state r 
from state q, or producing output r from input q (the states q and r can be arbitrarily 
complex and r may not be known when starting the algorithm). An algorithmic 
solution for this problem is 
 

q · a1 · · · an = r                                    (1) 
 
where a1,…,an is the sequence of steps of the algorithm.2 At this point we encounter 
some possible terminological confusion. So far the input of the automaton was the 
input symbol, but in the above example we used the state as the input. Looking at λ, 
the ‘machinery’ of the automaton reveals that indeed it has two kinds of inputs as a 
state transition function: the state and the input symbol. This is very important since 
this view departs from the traditional interpretation. So we can talk about states as 

                                                           
2 To exploit automata computational capacity further, one might also generalize (1) so  

that in addition to a sequence of atomic operations, a1 ...an , one allows a sequence  
of atomic operations and variables that each evaluate to some basic operation based  
an additional component of input (i.e. other inputs than state q). That is, one has  
 

q · t1 · · · tn = r                                                             (2) 
   where each ti is either an input symbol a ∈ A, or a variable v, ranging over A, whose value is 

determined by some ‘environmental’ input. The generalization allows one to make use of so-
called functional completeness properties of simple non-abelian groups that allow them to 
compute any finitary function (similar to the two-element Boolean algebra). See [18, 15]. For 
simplicity, we do not pursue this promising variant further in this particular paper. 
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inputs, like data fed into the algorithm. This looks quite natural if we think in terms of 
a universal computer: we have to provide both the algorithm and the input data for the 
algorithm to work on. 

This concludes the introduction of the metaphor 

finite state automaton ≡ programming language. 

Before continuing, let’s summarize: Q, the set of states of the automaton A, is the 
problem domain in which we would like to solve problems. These problems include 
going from a start state to a target, a ‘desired’ state, or a solution. We can also 
consider states as bits of data and do calculations on them, so the ‘number crunching’ 
aspect of computation also appears here. A, the set of input symbols, contains the 
language primitives, i.e. the basic commands that can be combined into longer 
sequences to form programs. The transition function λ is then the machinery: the 
compiler, interpreter, runtime system with libraries, processor, etc. In short, 

 
states Q problem domain 

input symbols A basic commands 
input  strings  A+ algorithms 

w : Q → Q,  w ∈ A+ computational function 
transition function λ runtime system 

 
We need to differentiate between the automaton and the mathematical function 
(machine) that the automaton implements (realizes), since the same computational 
function (same state mapping) can be expressed by different algorithms (sequences). 
In other words, following Rhodes’s terminology, the machine is the behaviour while 
the automaton or circuit is what implements it. 

2.2   Problems, Critique 

Problem: “Finite state automata are too constrained compared to general-
purpose programming languages”. At first sight an automaton as a programming 
language seems to be quite constrained. We show that the only constraint is finiteness, 
and this poses no practical problems. Usually programming languages are all 
considered to be Turing-complete, thus being in a completely different computational 
class than the one formed by finite automata. This is only true if we assume 
unbounded resources for the machine on which the programming language is 
implemented. But if we consider a physically existing (hence finite) computer, then 
we have a finite state automaton. Its state set may be enormous but still finite. For 
example, one state of a computer with 1 gigabyte memory can be described by 
8796093022208 bits, therefore it has 28796093022208 distinct states, so the number of 
possible state transformations on this computer is 

 
(28796093022208 )28796093022208

, 
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which is quite a big number. Of course this large collection of possible computational 
functions contains the workings of all possible operating systems, with all possible 
applications as substructures. The situation is reminiscent of the Library of Babel [3]. 

One of the great capabilities of the human mind is that it can look at things from 
different perspectives, ignoring the view in which they normally appear. This is really 
needed here as we usually meet finite automata only of moderate size and usually in 
textbooks (probably the largest ones in natural language processing), but still not in 
the magnitude mentioned above. Thus, finiteness is the only constraint, and that also 
applies to programming languages implemented on computers. 

“Finite state automata-based programming is a specialized technique mainly for 
implementing lexical and syntactic analysers”. Our approach is not about one 
particular technique that can be applied in a programming situation (like using state 
transition tables in an algorithm), but a more general conceptual framework to enable 
us to see the applications of automata in more general settings, in dynamical systems. 

2.3   A More Comprehensive View: Transformation Semigroups 

A+ forms a semigroup under the operation of concatenation, and its elements can be 
interpreted, using λ recursively, as different mappings of the state set to itself. The 
finite set of these mappings is called the semigroup S(A) corresponding to the 
automaton A and these mappings can be combined by function composition (i.e. 
following one by another). In (1), a computation was just one run of the algorithm on 
a particular input x (in (1) this input is the state q). The same algorithm can be applied 
to other inputs (states) as well. Therefore, each a ∈ A is an (atomic) algorithm which 

yields a (single) mapping Q → Q; the latter is a (generating) element of the 
corresponding transformation semigroup S(A). So semigroup elements realize 
algorithms defined for all possible inputs; therefore, a semigroup is a “constructive 
space of total algorithms”, which is basically a programming language. 

Built-in primitives ≡ generator sets. Programming languages are equipped with 
different sets of built-in basic tools; thus the same algorithm requires longer code in a 
low-level language than in a high-level one. Analogously, a transformation semigroup 
with a smaller set of generators will have longer words to express the same semigroup 
element. Different semigroups can have common elements, just like different 
programming languages can share the same tools and techniques. The extreme case is 
the automaton where we have a symbol for each semigroup element, corresponding to 
a language in which there is a language primitive for each expressible algorithm. 

Self-modifying algorithms. This powerful idea is incorporated in some languages 
(e.g. LISP), but it is not a mainstream property. In the algebraic settings it is natural as 
semigroup elements can be multiplied by each other, thus algorithms can act on each 
other (algorithms as inputs and outputs of other algorithms), thereby modifying 
themselves. This is just a consequence of the generalization of Cayley’s theorem to 
semigroups. 
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2.4   Going Parallel: The Role of Permutation Groups 

Once we start talking about transformation semigroups, the special class of 
permutation groups naturally comes into the picture. As a consequence, we need to 
give an account of symmetries in a computational context.3  
 
Reversibility. A permutation of the state set (or a subset of it) as a totally defined 
algorithm has the peculiar property that, when applied to the whole set in parallel, it 
gives back the whole set: no two states/inputs are collapsed into the same output. This 
is like maintaining the set of possible future states, not losing any possibility. This 
prompts us to believe that algebraic groups of algorithms coincide with the notion of 
reversibility. This is certainly true if we consider the parallel movement of all states, 
but it becomes subtle if we study individual inputs: permutations are not the only way 
to achieve reversibility. The following examples will show the different kinds of 
reversibility. 
 

Example: Reversibility by resets. Let’s consider state 1 of the state set {1, 2} and two 
transformations t1 = ( 1 2

1 1 ), t2 = ( 1 2
2 2 ). t2 takes 1 to 2, and we can reverse this 

movement since we can go back to 1 by t1 . t1 , t2 are called constant maps, or resets. 
 
Example: Cyclic reversibility. Similarly, by applying the permutation (1, 2) (or p =  
( 1 2
2 1 )) we can go from 1 to 2: 1 · p = 2, but we can get back to 1 by applying p again: 

1 · pp = 1. So we achieve reversibility by ‘going forward’, by a kind of “cyclic 
reversibility”. This can be achieved only by permutations. 

 
Cycles. Another interpretation of the symmetries that algebraic groups symptomize is 
the presence of periodic cycles of reactions in the metabolic systems from which the 
automata are derived, the invariant feature being the existence of a stable cycle that is 
preserved by the elements of the group. This too is compatible with the parallel 
interpretation of the algorithm arising from a group. In fact, conceptually, a group 
element can be conceived to act on all the states at once, and this can be implemented 
as a set of parallel automata (as many as there are states), all transitioning 
simultaneously and in parallel. Such a model is entirely consistent with periodic 
pathways such as the Krebs cycle, whose equilibrium operation is characterized by all 
the reactions taking place in parallel, at the same average rate. In such a case a group 
element can be considered as realizing a parallel algorithm on several inputs. This can 
be viewed on different levels: 

 

1. acting on the whole Q 
2. acting on the subsets of Q 
3. acting on multisets of elements of Q 
 

More generally, there are other natural possibilities too (for any positive integer n): n-
tuples of elements of Q, n-tuples of subsets of Q, or n-tuples multisets of elements of 

                                                           
3 This is because of two facts: (1) a symmetry of an object is a transformation that leaves some 

aspect of that object invariant; and, (2) the set of invertible transforma- tions that leave some 
aspect of a mathematical object invariant form a group with the operation of functional 
composition. 
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Q, not to mention coproduct structures, etc. As transformations are the computational 
functions realized by totally defined algorithms, the definitions of these actions can be 
derived in a natural way from the action of transitions symbols of the automaton. 

2.5   The Gain: Algebraic Results 

After we presented the analogy, finally we can show the benefits of thinking about the 
automata in a different way. 
 
Hierarchical coordinatization. When dealing with huge automata we need some 
tools for organizing their structure. Just as, when analysing software, we find modules 
and subroutines that are combined in a hierarchical way, so too we can decompose 
semigroups with hierarchical coordinates [20]. 
 
The disappearance of memory–processor duality. The algebraic theory of 
machines gives us a level of abstraction at which we can consider both processing and 
memory units having the same nature, namely they are semigroups. For storing single 
bits of information the semigroup of the flip-flop automaton can be used and for 
calculations the permutation groups can be used. In the hierarchical construction of 
automata this allows us to dynamically change the ratio of computational power and 
storing capacity on demand, as in real computational problems either the power of the 
processor or the insufficient amount of memory is the bottleneck. For exploiting this 
idea in practical computing we would need some physical implementation, e.g. 
reconfigurable hardware that is capable of dynamically allocating automata structures. 

3   The Interaction Machine Concept 

The above discussion provides a theoretical backdrop against which we can now 
propose some novel ideas about computing, in particular interaction computing. The 
concept of interaction computing was originally inspired by a physics perspective on 
biological systems ([5, 7] and references therein); in other words, in looking for 
general principles that appear to govern self-organizing behaviour in cell biology, the 
role of interactions appeared to be such a fundamental feature that it seemed 
indispensable to replicate it in computational systems in order to develop an 
‘architecture of self-organization’ in software along analogous principles. 

The addition of an algebraic automata theory perspective to the above stream of 
work has opened the possibility to develop a formalism that can express the behaviour 
of biological systems seen as dynamical systems in a manner that is consistent with 
the mathematical foundations of computer science. We now discuss a few examples 
that are helping us understand how the algebraic properties of automata discussed so 
far can be interpreted in the context of ‘biological computation’, and how this 
mapping between algebra and biology is helping us imagine the architectural 
requirements of the ‘Interaction Machine’. 

3.1   Sequential Machines and Their Realizations 

In this section we now consider not only computations inside individual trans- 
formation semigroups (as in Section 2), but also (1) their behaviours (abstracting 
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away states) as formalized by sequential machines, which is closely related to 
software specification, and (2) a higher-level constructive dynamical ‘meta- space’, 
one in which sequential machines are basic entities that may interact and combine in 
various ways to create new kinds of computational structures; in particular, they 
extend to interacting machines, whose deployment together can create complex 
interaction structures. 

Many years after proving the prime decomposition theorem for semigroups and 
machines [19], John Rhodes published a book that he had started working on in the 
1960s and that has come to be known as the ‘Wild Book’ [22]. In this book he 
provides a very clear discussion of an alternative to Turing machines, which we 
believe to be a very promising starting point for a model of interaction computing. 

As we know, an algorithm implementable with a Turing machine is equivalent to 
the evaluation of a mathematical function. As Wegner and co-workers argued in a 
series of papers over the last 20 years ([13] and references therein), the evaluation of a 
mathematical function can afford to take place by following an ‘internal clock’, i.e. 
the Turing machine is isolated from its environment while it evaluates the algorithm. 
Biological systems, on the other hand, are continually interrupted by external inputs 
and perturbations. As an example of this class of computations Golding and Wegner 
used ‘driving home from work’, which they described as a non-Turing-computable 
problem. Turing himself had foreseen this possibility in his original 1936 paper as the 
‘choice machine’ [23], although he did not pursue it further. 

Similarly, Rhodes starts from the familiar definition of a sequential machine. The 
sequential machine accepts an input at each discrete point in time and generates an 
output once all the inputs have been received: 

 
Let A be a non-empty set. Then A+ = {(a1 , ..., an ) : n ≥ 1 and aj ∈ A}. A 
sequential machine is by definition a function f : A+ → B, where A is the  
basic input set, B is the basic output set, and f (a1 , ..., an ) = bn is the output  
at time n if aj is the input at time j for 1 ≤ j ≤ n. 

 
This is clearly related to the formal definition of the finite automaton given at the 
beginning of Section 2, but there is a twist: Rhodes prefers to make a sharp distinction 
between a machine, which he equates to a mathematical function, and the realization 
of that machine, which he calls a circuit and that is essentially an automaton: 

 
Mathematical concept . . . . . . and its realization 

Machine or 
mathematical function 

Circuit or 
automaton 

Automata behaviour Automata structure 
 

Due to the need to maintain the development of a theory of interaction computing on 
firm mathematical grounds, we follow his approach. More specifically, the separation 
between a machine and its realization matches well the distinction between the 
description (formalization) of behaviour and the automaton structure necessary to 
achieve it. It is essential for us to maintain this distinction in light of a parallel thread 
of research [7, 6] which applies categorical morphisms to automata behaviour in order 
to derive a specification language. To understand better what we might be aiming to 
specify, let’s develop the idea further. 
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We are going to use a generalization of the sequential machine, also by Rhodes, 
which produces an output for each input it receives and not just in correspondence of 
the most recent input. We are going to call this generalization an interacting machine: 

Let f : A+ 
→ B be a sequential machine. Then an interacting machine f + : 

A+ 
→ B+ is defined by f + (a1 , ..., an ) = (f (a1 ), f (a1 , a2 ), ..., f (a1 , ..., an )). 

Thus, an Interaction Machine (IM) can be built by joining two or more interacting 
machines. Such an IM will still accept inputs from outside itself (“the environment”) 
and will produce outputs for the environment. The realization of either machine is 
achieved through a finite-state automaton that Rhodes calls a “circuit”, C , but that in 
the literature is more commonly called a Mealy automaton: 

 
C = (A, B, Q, λ, δ) is an automaton with basic input A, basic output B, states 
Q, next-state function λ, and output function δ iff A and B are finite non-  
empty sets, Q is a non-empty set, λ : Q × A → Q, and δ : Q × A → B.  

 
Having established then that the problem of computation is posed in two parts, a 
mathematical function and its realization, we continue to rely on Rhodes to define a 
few more concepts related to the latter, in order to develop a relatively concrete 
working terminology. The next concept we need is the realization of an algorithm, as 
follows. Let C = (A, B, Q, λ, δ) be an automaton. Let q ∈ Q. Then Cq : A+ → B is the 
state trajectory associated with state q and it is defined inductively by 

 
Cq (a1 ) = δ(q, a1 ) 

Cq (a1 , ..., an ) = Cλ(q,a1 ) (a2 , ..., an ), for n ≥ 2. 
 
We say that C realizes the machine f : A+ → B iff ∃q ∈ Q : Cq = f . By a simple 
extension of the above definitions it is fairly easy to see that the output of an 
algorithm can be associated with a sequential machine when the output corresponds to 
the result after the last input, whereas it is associated with an interacting machine 
when there are as many outputs as there are inputs: 

 
Cq (a1 , ..., ak ) = bk ,                for k = 1, ..., n 

C + q (a1 , ..., an ) = (b1 , ..., bn ). 
 

Rhodes then introduces more formalism to define precisely a particular automaton 
that realizes a function f as C (f), and goes on to prove that C (f) is the unique minimal 
automaton that realizes f. He goes on to say 

 

The reason why Turing machine programs to realize a computable f are not  
unique and the circuit which realizes the (sequential) machine f (namely C (f))  
is unique is not hard to fathom. In the sequential machine model we are given  
much more information. It is ‘on-line’ computing; we are told what is to happen  
at each unit of time. The Turing machine program is ‘off-line’ computing; it  
just has to get the correct answer – there is no time restraint, no space restraint,  
etc. ([22]: 58) 
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Rather than constructing dynamical behaviour through a sequential algorithm 
expressed in a programming language, which can be realized by a single automaton or 
Turing machine, we are talking about constructing dynamical behaviour through the 
interaction of two or more finite-state automata. This is because, if the possibility that 
Q be infinite is left open as the above definition does, “then the output function could 
be a badly non-computable function, with all the interesting things taking place in the 
output map δ, and we are back to recursive function theory” ([22]: 59). Therefore, we 
note the interesting conclusion that, for a tractable approach, Q must be finite and that 
the realization of an Interaction Machine must be made up of interacting finite-state 
automata. Thus, from the mathematical or behavioural perspective, we will build the 
Interaction Machine by using sequential (or interacting) machines as basic units and 
by combining them in various ways. 

The mathematical and computer science challenge, therefore, is to develop a 
formalism that is able to capture the non-linear character of the dynamics of an 
arbitrary number of coupled metabolic systems, so that when this mathematical 
structure is mapped to our yet-to-be-developed specification language we will be able 
to specify software environments capable of supporting self-organizing behaviour 
through interaction computing, driven by external stimuli from users or other 
applications. 

In the next subsection we switch the perspective from synthetic, i.e. constructing 
automata and models of computation, to analytical, i.e. analysing cellular pathways 
and interpreting the role and function of the algebraic structures they harbour. 

3.2   Permutation Groups from the Biological Point of View 

The presence of permutation groups in the hierarchical decomposition of the 
semigroups associated with automata derived from cellular pathways presents a 
difficult puzzle. This is because a permutation group can be interpreted in different 
ways: the fact that groups are defined up to isomorphism means that different 
‘implementations’ could be derived from the same abstract group. In this subsection 
we explore some of the possibilities. Ultimately, if we are not able to resolve this 
puzzle theoretically, ex ante, it will be resolved ex post by building different kinds of 
interaction machines, based on different interpretations of these groups, and by seeing 
which kind behaves in the most convincingly ‘biological’ way. 

Based on the analysis of the Krebs metabolic cycle and the p53-mdm2 regulatory 
pathway, it appears that the permutation groups may be associated with cyclic 
phenomena in biochemical processes. The challenge is to relate such cyclic or 
oscillatory behaviour to the computational properties of its mathematical 
discretization. 

It is helpful, first, to clarify the connection between cycles and oscillations by 
resorting to an idealized system in the form of the simple harmonic oscillator of 
elementary physics. As shown in Figure 2, for a simple harmonic oscillator periodic 
cycles (in some parameter space, which could include also Euclidean space) are 
mathematically indistinguishable from oscillations (in time, at a fixed point in space). 
It is possible, therefore, that the same kind of algebraic structure, i.e. non-trivial 
permutation groups, could result from different kinds of cyclic biochemical 
phenomena. For example, the discrete algebraic analysis discussed in the next section 
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indicates that biochemical processes such as the Krebs cycle, the concentration levels 
of whose metabolites can be assumed to remain constant over time, have similar 
‘algebraic signature’ (i.e. permutation groups) to processes such as the p53-mdm2 
pathway [24, 16], in which the concentrations of the compounds can oscillate (for 
some parameter values) as a function of time.4  

t

 

Fig. 2. Periodic behaviour of the simple harmonic oscillator 

The reason may be found in the fact that the models that give rise to these 
signatures describe what will happen (or what could happen, if there is a choice) to 
individual instances of classes of molecules or molecular complexes, but do not 
distinguish between instances of the same class. In simulations of the synchronized 
Krebs cycle and the p53-mdm2 pathway under conditions that promote sustained 
oscillations, indistinguishable instances of particular classes, such as citrate and active 
p53, appear and disappear periodically. 

What could be the computational significance of such periodic structures? We see 
at least two possibilities. 
 
Cyclic interpretation. If a element g of a permutation group G is interpreted as a 
function g : X → X from a subset X of the state set Q to itself, then if g is non-trivial, 
then some element x ∈ X is actually moved by g, so when the system reaches state x 
∈ X and is acted upon by g it will transition to state y ∈ X , i.e. xg = y (where the 
group action is taken as multiplication on the right). Now, if g is applied again, this 
time to y, another state z ∈ X will be reached. This process could be repeated such 
that 

 
x → xg → xg2 → xg3 → · · · → xg(n−1) → x,                    (3) 

 

                                                           
4 We hasten to add that the permutation groups found in these two systems are not of the same 

kind. Therefore, the two systems are different in some important way. However, our first goal 
is to find a plausible explanation for the presence of permutation groups in the first place, and 
it is only in this specific sense that we mean that these two systems have the same algebraic 
signature. 
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where the arrow “→” means “multiply on the right by g”, for some n > 1, where n 
divides the order of g.5 This is periodic behaviour, or a cycle of the system’s states, 
that the system can potentially exhibit. 
 
Parallel interpretation. Although we are still far from pinpointing the characteristics 
of ‘cellular computation’, as discussed in [6] and consistently with the discussion in 
Section 2 there is one aspect that is hard to overlook: parallelism. It is obvious that 
biochemical events take place in parallel in solution. We also know that a group 
element acting on a set can be conceived of as permuting all the elements of that set, 
at once. In the language of automata, this corresponds to the parallel transition of 
every state of the automaton to its next state as determined by the transition function, 
in parallel. This is not a single machine, clearly. We are talking about an ensemble of 
machines that are computing in parallel, each of which is at a different location along 
the same algorithm.  

 

Fig. 3. Schematic of the Krebs or citric acid cycle [17] 

A specific example could help elucidate the above point. Take, for instance, the 
Krebs or citric acid cycle, shown in Figure 3. It is clear that all the reactions around 
the cycle can be happening simultaneously and in parallel. But if we assume that the 
average concentrations of the metabolites in each stage around the cycle are constant 
then, strictly speaking, this system is always in the same state. Thus, in this case the 
discretization of this system into a finite-state automaton must be based on the history 
of an individual molecule as it travels around the circle. Such a molecule will indeed 
experience different ‘states’ as it is transformed at each stage. The hierarchical 

                                                           
5 For example, g = (123)(45) has order 6, and g acting repeatedly on the state 4 is 4 → 4g =  

5 → 5g = 4g2 = 4, i.e. n = 2 in this case and 2 divides 6.  
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decomposition of the semigroup associated with such an automaton contains non-
trivial permutation groups, e.g. C2 and C3 [9, 22]. This could indicate the parallel 
transition of 2 and 3 (abstracted or ‘macro-’) states, respectively under the same 
metabolic program (sequence of atomic transition operations). Once the concept of 
parallel transitions has been accepted as a possibility the generalization of the same 
mechanism to the simultaneous transition of all the states and macro-states permuted 
by a given subgroup, as we are proposing here, is equally possible and worth 
investigating further. 

3.3   A Conceptual Architecture for the IM 

Building on the above discussion, let us now simplify the system such that it is closed 
and let us neglect the irreversible (semigroup) components for the moment. Rather 
than performing an isolated algorithm to evaluate a mathematical function, as a 
Turing machine does, we are talking about an ‘open’ or ‘permeable’ algorithm, which 
can be coupled to other algorithms at each of its steps. A non-trivial question concerns 
the form such a coupling could or should take. 

As we saw in Section 2 an algorithm is realized by one or more generating 
semigroup elements concatenated in a sequence or string of symbols. Because each 
semigroup element is a mapping Q → Q, knowledge of the algorithm and of the state 
space implies knowledge of the state transition function λ. Therefore, an algorithm is 
a part of the realization of a sequential machine or mathematical function in the sense 
of Rhodes. It may therefore be more useful and appropriate to talk about the coupling 
between automata rather than between algorithms. 

Automata can be coupled in different ways, for example by overlapping on one or 
more states. Such a case seems important for modelling symbiosis but presents some 
difficulties, since a common state for two automata would seem to imply that the two 
automata are actually associated with the same physical system and simply drawing 
on different sets of its states, with one in common. Alternatively, the output alphabet 
of an automaton could have some symbols in common with the input alphabet of 
another automaton, and vice versa. In this way, each automaton reaching certain states 
would trigger inputs to the other, causing it to transition. The same arrangement could 
be generalized to 3 or more automata coupled in different ways. Thus, state transitions 
taking place in one automaton could trickle through the system, causing other 
automata to advance their own algorithms. 

What remains to be seen is whether such an architecture of computation will yield 
more powerful qualities (in the sense of non-functional requirements), e.g. greater 
efficiency, where efficiency could be defined as 

 
number of functional requirements satisfied

number of state transitions required                               (4) 

 
This is in fact what the map of metabolic pathways looks like: a complex network of 
automata intersecting or communicating at several steps, which therefore means that 
the chemical reactions taking place at each of these intersection points are ‘serving’ 
multiple algorithms at the same time. This is one of the points of inspiration of the 
concepts of interaction computing, symbiotic computing, and multifunctionality [7]. 
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From an evolutionary point of view, the emergence of an architecture that seems to 
violate just about all the accepted principles of software engineering (modularization, 
separation of concerns, loose coupling, encapsulation, well-defined interfaces, etc) 
might be explainable simply in terms of efficiency. In the presence of finite energy 
resources and multiple survival requirements, the organisms and the systems that 
survived were those that could optimize the fulfilment of such requirements for the 
most economical use of materials and energy; hence the overloading, the 
multifunctionality, and so forth. This in fact is not an unfamiliar concept in software 
engineering: where resources are constrained, for example in specialized drivers for 
real-time systems, it is common to code directly in assembly language and to develop 
code that is incredibly intricate and practically impossible for anyone but the engineer 
who wrote it to understand. Evolution has achieved the same effect with biological 
systems, but to an immensely greater extent. 

Whether or not the above concepts will withstand closer scrutiny as we continue to 
develop the theory, it is interesting to show a visualization of the interaction machine 
according to Rhodes, in Figure 4 ([22]: 198). Rhodes does not use this term, but he 
does talk about the DNA and the cytoplasmic processes as interacting automata. His 
description of the cell as a system of interacting automata comes after the formal 
development of the sequential machine and its realization (that we presented above) 
all the way to the Krohn-Rhodes prime decomposition theorem ([22]: 62), and after a 
lengthy analysis and discussion of the Krebs cycle. Therefore, we expect Rhodes’s 
work to continue to provide valuable inputs to our emerging theory of interaction 
computing. 

...

Outputs of G = Inputs of M
(Enzymes)

G

M

Outputs of M = Inputs of G
(Substrates, etc)

External

inputs

and

outputs

Other inputs: inducers, co-repressors

Outputs: substrates, inducers, co-repressors, coenzymes

The states of M are its outputs: they are the products of
the biochemical reactions and therefore act as input to
the DNA (G automaton).

Possible pathway

Rhodes models the DNA as a
single-state automaton with many
inputs and many outputs.

 

Fig. 4. Conceptual architecture of the biological realization of the Interaction Machine, based 
on Rhodes ([22]: 198) 
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4   Some Results from the Algebraic Analysis of the p53-mdm2 
Regulatory Pathway 

By using the now available SgpDec computer algebra software package [12] we can 
start applying these algebraic methods to real-world biological problems. 

4.1   Petri Net of p53-mdm2 System 

Here we briefly study the algebraic structure of the p53-mdm2 system. The p53 
protein is linked to many other proteins and processes in the cell, but its coupling to 
the mdm2 protein appears to be particularly important for understanding cancer. 
Depending on the concentration level of p53, the cell can (in order of increasing 
concentration): (1) operate normally; (2) stop all functions to allow DNA repair to 
take place; (3) induce reproductive senescence (disable cellular reproduction); and (4) 
induce apoptosis instantly (cell ‘suicide’). Therefore, p53 is a very powerful and 
potentially very dangerous chemical that humans (and most other animals) carry 
around in each cell, whose control must be tuned very finely indeed. Roughly 50% of 
all cancers result from the malfunction of the p53- mdm2 regulatory pathway in 
damaged cells that should have killed themselves. 

P53 levels are controlled by a fast feedback mechanism in the form of the mdm2 
protein. P53 is synthesized all the time, at a fairly fast rate; but the presence of p53 
induces the synthesis of mdm2, which binds to p53 and causes it to be disintegrated. 
When the DNA is damaged (for instance by radiation in radiotherapy) the cell 
responds by binding an ATP molecule to each p53, bringing it to a higher energy 
level that prevents its destruction and causes its concentration to rise. Thus in the 
simplest possible model there are in all 4 biochemical species: p53 (P), mdm2 (M), 
p53-mdm2 (C), and p53* (R), whose concentrations are modelled by 4 coupled and 
non-linear ordinary differential equations (ODEs) [24]. Whereas [16] analyzes the 
algebraic structure of this pathway from the point of view of the Lie group analysis of 
the ODEs, in this paper we look at the algebraic structure of the same pathway from 
the point of view of the discrete finite-state automata that can be derived from it. 

4.2   Algebraic Decomposition 

It is now a common practice to model biological networks as Petri nets. Petri nets can 
easily be transformed into finite automata, though this operation should be carried out 
with some care (for a detailed explanation see [11]). Depending on the capacity 
allowed in the places of the Petri net, the automaton’s state set can be different in size, 
thus we can get different resolutions during discretization. 

When we distinguish only between the presence and absence (in sufficient 
concentration) of the molecules, the derived automaton has only 16 states (see  
Fig. 5).6 This may be considered as a very rough approximation of the original 
process, but still group components do appear in this simple model: S3 , the symmetric 
group on 3 points is among the components. The existence of these group components 
is clearly connected to oscillatory behaviours, however the exact nature of this 
relation still needs to be investigated.  
                                                           
6 4 places each taking on 2 possible values (0 or 1) makes 24 = 16 states. 
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Fig. 5. Petri net for the p53-mdm2 regulatory pathway [10]. P = p53, M = mdm2, C = p53-
mdm2, R = p53*.  

 

Fig. 6. Automaton derived from 2-level Petri net of the p53 system (16 states). The labels on 
the nodes encode the possible configurations for M, C, P and R (in this order). 0 denotes the 
absence, 1 the presence of the given molecule. For instance, 0101 means that C and R are 
present. 
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If we in addition distinguish two levels of significant concentration, i.e. absence (or 
very low, sub-threshold concentration), low, and high levels concentrations, then the 
corresponding automaton has 81 states (34 = 81) and the algebraic decomposition 
reveals that it contains S5 among its components. The appearance of S5 is 
particularly interesting as it contains A5 , the alternating group on 5 points, 
which is the smallest SNAG (simple non-abelian group). The SNAGs are considered 
to be related to error-correction [22] and functional completeness [18, 15, 7]. The 
latter property of SNAGs makes them a natural candidate for realizing an analogue of 
‘universal computation’ within the finite realm. The presence of a SNAG in the 
decompostion of the p53-mdm2 path- way suggests that the cell could potentially be 
performing arbitrarily complex finitary computation using this pathway. Moreover, 
how the activity of the rest of the cell interacts with the p53-mdm2 pathway to 
achieve such fine regulatory control could depend on other components (interacting 
machines) in the interaction architecture of the cell harbouring similar group 
structures. 

5   Conclusions 

In this paper we have tried to paint a broad-brush picture of the possibilities for the 
roles of algebraic structures in enabling open-ended constructive computational 
systems, based on recent work and on our current results. The most immediate 
example is to regard a transformation semigroup as a constructive dynamical space in 
which computation can be carried out, analogous to programming languages on 
present-day computers. Although practical implementations of automata in real 
computers cannot help being finite, the size of the state space of a modern computer is 
well beyond our human ability to count without losing all sense of scale (many times 
the number of molecules in the known universe) and so ‘approximates’ the infinite 
size of a Turing machine reasonably well for practical purposes. 

The work of Rhodes suggests, however, a much stronger claim, that sequential and 
interacting machines inspired by biological systems must be finite in a much more 
limiting sense, and that algebraic structure is the key to finitary computation and to 
understanding how computation can proceed via interaction. This leads us to a meta-
space of constructive dynamical systems in which the interacting parts that 
synergetically conspire to achieve complex computation are individual machines or 
transformation semigroups themselves. We are combining this insight with the results of 
the algebraic analysis of the semigroups derived from cellular pathways and with more 
synthetic tentative arguments about the architecture of an Interaction Machine that could 
replicate biological computation. We have not yet reached actionable conclusions, but 
we feel we are uncovering interesting mathematical and computational properties of 
cellular pathways and are finding intriguing correspondences between biochemical 
systems, dynamical systems, algebraic systems, and computational systems. 
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