
F.A. Basile Colugnati et al. (Eds.): OPAALS 2010, LNICST 67, pp. 224–244, 2010.
© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2010

A Research Framework for Interaction Computing

Paolo Dini1 and Daniel Schreckling2

1 Department of Media and Communications
London School of Economics and Political Science

London, United Kingdom
p.dini@lse.ac.uk

2 Institute of IT-Security and Security Law
University of Passau, Passau, Germany

ds@sec.uni-passau.de

Abstract. This paper lays out an interdisciplinary research framework that
integrates perspectives from physics, biology, mathematics, and computer science
to develop a vision of interaction computing. The paper recounts the main insights
and lessons learned in the past six years across multiple projects, gives a current
definition of the problem, and outlines a research programme for how to approach
it that will guide our research over the coming years. The flavour of the research
is strongly algebraic, and the bridge to specification of behaviour of automata
through new formal languages is discussed in terms of category theory. The style
of presentation is intuitive and conceptual as the paper is meant to provide a
foundation widely accessible to an interdisciplinary audience for five threads of
research in experimental cell biology, algebraic automata theory, dynamical
systems theory, autopoietic architectures, and specification languages, the first
four of which are represented by more focussed technical papers at this same
conference.

Keywords: Bio-Computing, Interaction Computing.

1 Introduction

This research is motivated by the fundamental question whether a biological
ecosystem, or a subset thereof, could be used as a model from which to derive self-
organising, self-healing, and self-protection properties of software. This research
question is premised on the assumption that such biological properties can increase
the effectiveness of information and communication technologies (ICTs) in various
application domains, from ubiquitous computing, to autonomic communications, to
socio-economic processes aimed at regional development, simply on the basis of their
greater and spontaneous adaptability to user needs. Thus, this research addresses some
of the non-functional requirements or software qualities of the underlying technology,
which we refer to as software ecosystems [17].

This paper presents a research framework that aims to achieve a usable model of
bio-computing, based on several years of research across several projects [16] [17]
[18]. The application areas of interest ultimately are:

 A Research Framework for Interaction Computing 225

Structure

Function

Organisation

Algebraic automata theory
('static symmetries')

Algorithmic
transformations

('dynamic symmetries')

Architecture

Biological
Systemic Property

Underlying
Theory

Corresponding
Computer Science Concept

Logics, specification
language, operational

semantics

Category
Theory

Algebra

Autopoiesis

Dynamical Systems

Unifying
Formalism

Executable behaviour
specification

Behaviour

Fig. 1. High-level view of the theoretical research framework

– Service composition in the context of dynamic business workflow instantiation
– Biologically-inspired RESTful interaction framework
– Symbiotic security

Figure 1 gives a high-level view of the theoretical research framework that will be

discussed and justified in more detail in the rest of this paper. The most important
aspect of the theory that is emerging is that it needs to address three fundamental
aspects of biology: structure, function, and organisation. Our preliminary results and
insights point to algebra, dynamical systems, and autopoiesis, respectively, as the
theories that can explain and/or model these aspects of biology and that need to be
unified by a common mathematical framework that can effect a mapping to computer
science. The target of these mappings appears to be a unification of the algebraic and
algorithmic structure of automata, and novel ideas in software architectures and
biological design patterns inspired by autopoiesis. Category theory is then able to
relate any of the structures thus defined that have algebraic character to automata
behaviour (which is also some kind of algebra) and from behaviour into a language
which may be used to express (specify) some particular structures. Part of this
language may be some kind of logic. Instantiation of this framework in modern
distributed and web-oriented computing environments may be expressible compatibly
with the Representational State Transfer (REST) architectural style [29]. It is impor-
tant to emphasise that the term “structure” is quite overloaded in our work. It can refer
to biological (physical) structure or to algebraic structure. Hopefully the different
meanings will be clear from the context.

This paper outlines a research framework that is explored in greater depth in the
following four companion papers at this same conference:

– A Research Framework for Interaction Computing (this paper)
– Numerical and Experimental Analysis of the p53-mdm2 Regulatory Pathway [62]
– Lie Group Analysis of a p53-mdm2 ODE Model [35]
– Transformation Semigroups as Constructive Dynamical Spaces [23]
– Towards Autopoietic Computing [9]

We now retrace the arguments and rationale that we have developed over the past six
years in this area of research.

226 P. Dini and D. Schreckling

2 Historical Recap

The complexity and interconnections of the research activities that are gradually
unfolding in the two projects make it necessary to provide a summary of past
activities and to retrace the arguments that have led to the present research rationale.
Hopefully this context will make it easier to understand and assess the relevance and
validity of the current activities and of the activities that are planned for the remainder
of the OPAALS project, and beyond. Accordingly, Figure 2 provides a graphical
overview of our research in bio-computing over the past several years. The figure
shows the main points that each report addresses (in some cases this is the title of the
deliverable) along with the corresponding deliverable number, where by “main” we
mean the topics that, in hindsight, were found to be most relevant in later deliverables,
as a plausible theoretical and mathematical framework began to emerge.

2004

2005

2006

2007

2008

2009

D18.1: Physics
discussion of self-

organisation;
Networks

DBE

BIONETS

OPAALS

2010

D2.1.1: Abstract
algebra, network

coding; Logic

D2.2.4: Basic group theory;
Automata; Introduction to

category theory; Logic

D1.2: Autopoiesis;
Software ecosystems

D1.1: Ecosystem-oriented
architecture; Cell biology;

Abstract algebra

D1.3: Numerical analysis of p53-mdm2;
Metabolic pathways as automata;

p53-mdm2 automaton;
Autopoietic software ecosystems

D2.2.9: Algebraic structure of automata; Lie
groups; Categories, logic & security;

Interaction computing & REST

D3.2.7: Lie group analysis of p53-mdm2 pathway,
preliminary architecture of Interaction Machine,

outline of categorical framework to relate
automata structure and behaviour D1.5: Autopoiesis-inspired

computing
D1.4: Model of gene

expression computing

D6.1: Complexity
measure for evolving
multi-agent systems

D6.2: Self-organisation of
evolving agent populations

D9.1: Fitness
landscape

D9.2: Evolutionary
environmentD9.5: EveSim

Legend

Evolutionary computing

Gene expression computing

D6.4/D6.5: Distributed
Intelligence System

D18.4: Introduction
to Lie groups

D3.2.2: Service
evolution

D8.1: Software evolution

D4.6: Possible applications to securty

Fig. 2. History of relevant bio-computing reports across several projects

During the preparation of the DBE project, we proposed that the concept of
ecosystem could be used not only as metaphor, but also as model for biologically-
inspired computing. Ecosystems are characterised by self-organising and evolutionary
processes. Whereas, strictly speaking, evolution is a form of self-organisation, by the
latter term we refer to the order construction processes associated with cell
metabolism and morphogenesis. In developing our theory of bio-computing, thus, we
prioritise ontogeny over phylogeny.

 A Research Framework for Interaction Computing 227

2.1 Evolution and Self-organisation

The current research thread in gene expression or interaction computing began with a
discussion of self-organisation through the minimisation of free energy, in DBE
D18.1 [16]. Although the concept of free energy is very useful for understanding and
modelling self-organisation in physical systems, unlike physical systems software
systems are abstract. Thus, the successes of statistical physics are not readily
transferrable to software due to the absence of an interaction potential energy and of
the concept of temperature in the latter. Of course, the wealth of probabilistic methods
based on uniform and nonuniform probability distributions do a good job at achieving
an analogous effect; but such effect is contrived in the sense that it is imposed on the
digital information which, if left to its own devices, would forever lie still in the
‘current state’. However, the users provide a continuous input of information, which
we can regard as analogous to the Sun’s energy as the fundamental driver of the
biosphere. Thus, even if we do not have a proper ‘temperature’, we do have a
continuous flow of information through the system and a continuous poking and
prodding by the users that can be seen as analogous to a certain level of
thermodynamic ‘mixing’. If we abstract a complex distributed computation and
communication system as a set of coupled finite-state machines, user inputs become
‘waves’ of signals that propagate through the system, carried by the interactions
between the state machines. The puzzle of self-organisation, thus, could be cast as the
problem of deriving appropriate constraints in the execution paths of the state
machines that can lead to the construction of ordered structure and behaviour by
harnessing the ‘energy’ (information) flowing through the (open) system.

Clearly the problem posed in this manner is not trivial. In the DBE project we
therefore developed an Evolutionary Environment (“EvE”) in parallel with more
mathematical research [32, 39, 55, 5, 6]. Although we were able to achieve some level
of optimisation of the distribution of services in the ecosystem through a neural
networks-based Distributed Intelligence System [7, 8], the evolution of the services to
satisfy a particular user request was not achieved. It appeared that using services as
the atomic units of evolution was not sufficiently granular to respond adequately to
different contexts. On the other hand, breaking services down to apply genetic
algorithms to the code itself is still too difficult for engineering applications.

The problem seemed to be a lack of understanding of the structural and dy-
namical features of ecosystems that need to be satisfied in order to support an
effective evolutionary framework. Put simply, because evolution is a weak and slow
process that, in order to avoid instabilities (death of the phenotype), can only make
extremely small modifications to a given genotype, the ecosystem itself must already
be highly performant, in the sense that its ‘components’ must already be quite
compatible with one another and must already be close to satisfying a given fitness
requirement. This implies the need for a holistic approach, whereby the ecosystem is
in some sense ‘bootstrapped’ all at once through a massively parallel process in which
hundreds if not thousands of requirements are satisfied simultaneously and
compatibly with one another.

Our objective, therefore, is to find a balance between evolutionary computing and
what we are calling gene expression computing. We seek an integration of the two
approaches that is analogous to what DNA has been able to achieve: the same
molecule is a carrier of hereditary traits across generations whilst also guiding the

228 P. Dini and D. Schreckling

morphogenesis and metabolism of the individual organism. Based on our experience
in these projects, we feel that the problem of gene expression computing must be
solved first, before we can hope to achieve effective evolutionary behaviour. Figure 3
shows how the abstract concept of Interaction Computing can be instantiated into
different contexts.1 Gene expression computing refers to the nuts and bolts of cellular
pathways and how they are able to construct order and exhibit stable and robust
behaviour; so it is a model oriented towards a local perspective. Autopoiesis-Inspired
Computing, on the other hand, looks at global properties of the cell and of autopoietic
systems, and tries to map these properties to computer architectures that replicate
autopoietic behaviour or its subsets (such as operational closure). Autopoiesis-
Inspired Computing is discussed in another paper in this same conference [9]. Finally,
Symbiotic Computing is more specifically focussed on the ecosystemic properties of
interdependence and synergy, and it is being pursued in the BIONETS project in
particular as regards software security.

Interaction Computing

Gene Expression
Computing

Symbiotic
Computing

Autopoiesis-Inspired
Computing

Fig. 3. Different possible models of computation derived from Interaction Computing

This prioritisation of ontogeny over phylogeny implied that an in-depth invest-
tigation of the physics and mathematics of (non memory-based) self-organisation was
necessary in order to understand what features could be transferred to software.
Because, in addition to the minimisation of free energy, both cell biology and
ecosystems are characterised by non-linear processes, we realised that we faced a
‘double jeopardy’: not only does it seem challenging to translate non-linear behaviour
into automata or algorithmic constraints, as above, but the non-linear behaviour itself
is in most cases the signature of systems that are not even integrable. In spite of the
daunting stack of challenges that was taking form, we kept focusing on the fact that
biological systems at all scales are able to cope with these challenges: they do an
extremely good job at producing ordered structures and behaviour, in spite of their
complexity and of the non-integrability of most mathematical models of biological
phenomena (which could be related to their non-computable aspects). This was
encouraging (if a biological system can manage this, there must be a way to formalise
it), even if it suggested to us that new ways to think of complex physical and
biological phenomena were likely to be needed.

2.2 Symmetry

Based on our previous experience in applied mathematics and physics of the use-
fulness of the concept of symmetry, our starting point was to assume that the same

1 No references are given for these terms because we invented them – and are in the process of

developing formalisations for them.

 A Research Framework for Interaction Computing 229

concept was likely to play an important role also here. Our intermediate results so far
have confirmed this hunch. Symmetry is a very general concept in mathematics that
formalises the notion of invariance or regularity. In mathematics, a symmetry is a
transformation that leaves some property of a mathematical object invariant. Now, it
is a truth universally acknowledged (and easily proven) that the invertible
transformations of a mathematical object that leave some property of its structure
invariant form a group.2 Therefore, the mathematical study of symmetries and
regularities must necessarily rely on algebra.

The above statement should be taken as a necessary rather than as a sufficient
condition. In other words, a technical system that interfaces at some level with human
users and that is meant to support socio-economic processes must be open to new
information and must allow for the emergence of new structures and patterns. Even if
such a requirement were not enforced or relevant (i.e. if all we were trying to do was
to develop an artificial life environment), the wish eventually to replicate and support
evolutionary behaviour implies that the emergence of new forms must be supported.
Our current understanding of algebra is not necessarily sufficient to develop the best
mathematical framework for the formalisation of emergent behaviour and open-ended
evolution. By the same token, however, the system must also be stable and reliable,
since it is meant also to uphold robust (self-healing!) engineering applications and
non- functional requirements. It must behave similarly in similar contexts; hence, it
must embody a fair amount of regularity and predictable behaviour. This is what
mathematics, and algebra in particular, formalises. Again, we wish to emulate the
delicate balance between order/reliability and unpredictability/openness that biology
has been able to fine-tune and leverage to produce stable but ever- changing life-
forms of unbelievable complexity.

2.3 Lie Groups

In DBE D18.4 [15] we therefore began a discussion of the method of Lie groups for
the solution of differential equations, since it is the most general method that applies
equally well to linear and non-linear systems. At that time we were aware that a
method developed for continuous systems would be difficult to apply to discrete
automata, but we were also aware of the fact that generalisations of Lie groups have
been applied to discrete dynamical systems.3

The relevance of an algebraic perspective was strengthened by observing how
finite ring and field theory has been used in network coding. An examination of
network coding was motivated initially by the BIONETS project, where we thought
that the ability to reconstruct missing information from a bitstream might have been
extended towards self-healing properties of software, or perhaps the reconstruction of
the whole phenotype from a partial specification. However, it soon became apparent
that the value of the exercise was more as an example of abstract algebra that was
relatively accessible to computer scientists than as a technique that could be directly
relevant to evolutionary or gene expression computing. Because this algebraic theory
deals with discrete finite sets, it not only demonstrated another area of applications

2 Paraphrased from Stewart ([61]:xxvii).
3 See Maeda [42] and Peter Hydon’s work at
http://personal.maths.surrey.ac.uk/st/P.Hydon/sym.htm

230 P. Dini and D. Schreckling

where algebra is relevant but, by providing a basis for the more difficult group theory,
it also brought us one step closer to the mathematical formalisation of symmetries in
the context of computer science. This abstract groundwork was reported in both
projects [20, 17].

At about the same time we ran across the work of the Cuban HIV researchers
Sanchez, Morgado, and Grau [57, 58, 56], an interdisciplinary research team com-
posed of a biochemist, a mathematician, and a computer scientist. AIDS research is
concerned with, among other things, mutations in the DNA of the HIV virus.
Mutations that impede the ability of this virus to function are good news for us. The
operational effectiveness of a particular strand of DNA is dependent on the geometry
of the proteins (enzymes) that are synthesised from it through gene expression,
because this geometry has to match the complementary geometry of its substrate for
the enzyme to be effective. The 3-D shape of an enzyme depends on the folding of the
strand of aminoacids built by the ribosomes from the corresponding tract of DNA, by
applying the genetic code.4 Protein folding depends to a large extent on polar bonds
which, in turn, depend on the hydrophobicity of the aminoacids along the chain. The
hydrophobicity of an aminoacid depends on the second base of the corresponding 3-
base codon. We know empirically that mutations are most likely to occur in the
middle or second base of a codon. Now the surprising fact is that, if a codon
undergoes a mutation (most likely to happen in its second base) to a new codon, the
hydrophobicity of the new aminoacid will be very similar to the original aminoacid’s.
Furthermore, it turns out that if the 20 aminoacids are arranged in order of increasing
hydrophobicity the corresponding codons form a partial order, in fact a 64-node
Boolean lattice.

Thus, a particular assignment of the bases to the field extension GF (22)
(represented by the 4 nucleotite bases) leads to a Boolean lattice (as a third direct
product of the 2 × 2 base lattice due to the fact that each codon is formed by three
bases) whose minimum and maximum elements are the codons that correspond to the
least and most hydrophobic aminoacids, and this assignment leads to a self-consistent
partial order for the rest of the codons that matches corresponding levels of
hydrophobicity. The relevance of this finding is that this particular algebraic structure
corresponds to what amounts to hydrophobicity as a continuous function of codon
mutation. In other words, the operational semantics of the DNA code are fairly robust
with respect to mutations. This is not good news for AIDS research, because it
confirms the observation that mutations of the HIV virus are likely to remain as
deadly as the originals. However, the same effect underpins the stability of any other
organism with respect to pertur- bations brought by genetic mutations, i.e. it takes a
relatively improbable large mutation to upset the functioning of a particular
phenotype. In other words, the robustness of the most fundamental ‘architectural’
feature of biology, the DNA code, is formalisable through an equally fundamental
algebraic structure. Boolean algebras are not uncommon, however. So the fact that a
particular data set forms a partial order or even a Boolean lattice (slightly more
restrictive) is not necessarily of great significance.

4 The genetic code is a many-to-1 map from the 64 codons to the 20 aminoacids. Each

codon is composed of 3 bases, each of which can assume one of the 4 values A, G, T,
E. Hence, 4 bases occupying 3 possible slots: 43 = 64.

 A Research Framework for Interaction Computing 231

In their more recent work Sanchez, Morgado, and Grau [56] report that the codons
actually carry additional structure, in particular they form a Lie algebra. A Lie algebra
is a vector space whose elements satisfy an additional binary operation, the Lie
bracket. Because the set of codons can be seen not only as a Boolean algebra but also
as the Galois field extension GF(26), it already was isomorphic to a (discrete and 3-
dimensional) vector space over the finite field GF(22), so this means that the codons
also satisfy the Lie bracket, as an additional constraint. The physical significance of
this fact is not clear; however, we know that a Lie algebra can also be seen as the
tangent space to a Lie group at its identity, and a Lie group is the only algebraic
structure that can sometimes help us in solving non-linear dynamical systems – for
example the non-linear dynamical systems that formalise cell metabolic and
regulatory pathways. Therefore, once again not only does the algebraic approach
seem justified, but the need to develop a unified theory between (discrete) finite group
theory and (continuous) Lie group theory around dynamical systems arising from
cellular processes appears increasingly likely.

The investigation of DNA as a Lie algebra will be performed in future projects
because first we need to assess the feasibility of the Lie group perspective in the
solution of cell metabolic and regulatory pathways. Thus, our shorter-term objective
is to extend the work begun in DBE D18.4 and perform a Lie group analysis of the
p53-mdm2 regulatory pathway (see [35] in this same conference, which is based on
[18] and [40]).

2.4 Functional Completeness

There is one more topic that provides an important background to our research:
functional completeness [34]. The interesting aspect of this point of view is that it
resonates with the physics and engineering research literature around a concept that
seems at first unrelated to our discussion: choice of variables.

It is well-known in the modelling of physical phenomena that a judicious choice of
coordinate system and/or of the representation of the dependent and independent
variables can simplify the mathematics greatly, at the same time providing useful
insights into the nature of the problem under study.5 The choice of coordinate system
is perhaps easier to see, for example when choosing cylindrical coordinates to
describe fluid flow through a circular pipe. Many physical problems, however, can
also be characterised by groupings of variables that also simplify the mathematics
considerably. This was first noticed in the 19th Century by experimental researchers
in a variety of applied and scientific disciplines, who noticed that particular
dimensionless groupings of variables could sometimes lead to the collapse of data
clouds and families of data sets onto single curves. The practical usefulness of this
fact was soon to be investigated more rigorously, leading eventually to Lie’s group-
theoretical methods for differential equations.

The general epistemological principle we can derive from this is that in many
complex problems increasing complexity of the variables used to describe them often
appears to simplify the mathematical model, in some cases leading to an analytical
solution. This same principle could be relevant to the problem of bio-computing

5 E.g. see the famous Buckingham Pi Theorem [10] and generalisations thereof.

232 P. Dini and D. Schreckling

when, as Horvath has done, we generalise the fundamental structures of computer
science to more complex structures.

In particular, digital computers today are able to perform any computation because
they are functionally complete. This means that there is an algebraic structure, in this
case a Boolean algebra, such that any n-ary function can be represented by a
corresponding propositional logic expression (or ‘polynomial’) that is implementable
as logic gates. It has been known for many years that one can use more general
algebraic structures to achieve equally functionally complete computational models.
Horvath investigated whether a semigroup can have the functionally complete
property expressible as more general ‘polynomials’ than propositional logic. He
proved that the answer is Yes, as long as the semigroup is a finite simple non-abelian
group (SNAGs).6 In group theory, SNAGs play a role similar to prime numbers in
number theory, thus the possible ramifications of this fact are quite intriguing.
Because, even though they are somewhat special, there are infinitely many such
groups, this means that we could build a ‘more complex’ computer science using
more complicated fundamental structures.

What does this ultimately mean and what would this buy us? In terms of Turing
computability, these different ways of thinking of computing would not change
anything. We would compute problems of the same complexity class. However, we
argue that it is worth investigating what kind of computations we might be able to
perform, and how, but using SNAGs rather than Boolean algebra as the fundamental
starting point for computing. Another analogy that may help clarify this point is to
compare the use of Assembly language versus objects. One can program anything in
Assembler, and in fact any program is eventually compiled down to binary code, but
it’s a lot easier to program classes and let the compiler do the hard work.

With this historical background in mind we now turn to the problems we are
currently facing in our research.

3 Current Research Questions

3.1 Abstraction Level

Cell metabolism relies on ultimately undirected bottom-up and random/stochastic
processes that can only ‘execute’ through the spontaneous interaction of the various
components. The interactions are driven by a combination of electrostatic forces
(usually conceptualised as minimising the potential energy of interaction) and most
probable outcomes (maximisation of entropy), which can be modelled together as the
minimisation of free energy. In spite of this fundamental randomness, however, a
healthy cell behaves in an organised and finely balanced way that is more evocative
of a deterministic, even if very complex, machine than of random chaos. The cell in
fact has a definite physical structure and executes well-defined ‘algorithms’ in the
form of cellular processes (several hundred per cell type) such as metabolic or
regulatory biochemical pathways. This suggests a description and modelling of cell
behaviour at a level of abstraction that is higher than the molecular, and through
mechanisms or constraints that are complementary to stochastic processes.

6 Every group is also a semigroup, but not conversely of course.

 A Research Framework for Interaction Computing 233

In particular, our perspective views the stochastic nature of cell biochemistry
mainly as a mechanism of dimensional reduction7 that does not necessarily need to be
emulated in any detail. For example, a gene expresses hundreds of mRNA molecules
which, in turn, engage hundreds of ribosomes for no other reason than to maximise
the probability that a particular, single genetic instruction will be carried out, such as
the synthesis of a particular enzyme. As a consequence of this dimensional reduction
(hundreds to 1), a higher level of abstraction than that at which stochastic molecular
processes operate is justified in the modelling approach – in particular, a formalisation
that retains, and builds on, the discrete properties of cell biology.8 However, even the
resulting lower-dimensional system can’t plausibly be imagined to perform the
complexity of a cell’s functions driven simply by a uniform distribution of interaction
probability between its (now fewer) components. Additional structure and constraints
must be at play.

3.2 Dynamic Stability

The presence of additional constraints is evident from the internal physical structure
or topology of the cell. For example, the citric acid cycle that metabolises energy
from sugar takes place within the mitochondrion, isolated from the rest of the cell.
But cellular macrostructures such as the mitochondrial membrane are too coarse to
explain the bewildering complexity of parallel processing that takes place even within
the mitochondrion itself. There must be constraints operating at a finer granularity
that support specific reaction pathways over others and that prevent the cytoplasm
from becoming a well-mixed solution of compounds of uniform concentration
reacting indiscriminately with one another. In other words, even if the precise form of
these additional constraints that keep cellular processes running smoothly is far from
evident, their existence is implicit in the complex and dynamically stable operation of
the metabolic and regulatory pathways.

Dynamic stability is only an intuitive concept at this point, which can be thought of
as the signature of certain types of non-linear behaviour and for which a precise
mathematical definition does not exist yet, although research in related fields is
growing ([66, 43]). However, we can say that dynamic stability is a generalisation of
the well-trod engineering principle of stable design, which tends to keep human
machinery within its linear regime in fear of catastrophic failure if instabilities or
resonances are allowed to grow. But linear systems are information-poor and cannot
sustain rich and complex behaviour. Biology has been able to harness the expressive
power of non-linear behaviour whilst maintaining adequate stability, thereby
capturing the ‘sweet spot’ between order and chaos. From the point of view of
information theory, linear systems tend to have a discrete power spectrum, whereas

7 In dynamical systems theory, dimensional reduction refers to a reduction in the number of

degrees of freedom of a system. Since biochemical systems are composed of thousands to
millions of elements, the time evolution of each of which is governed (for the sake of
argument within a Newtonian framework) by at least three separate ordinary differential
equations (ODEs), successful abstraction and dimensional reduction can lead to significant
theoretical insight and savings in CPU requirements.

8 Notice that the statistical nature of the metabolic step carries a built-in robustness, i.e. if
something is wrong with one of the proteins being generated, the metabolic cycle as a whole
can proceed unhindered.

234 P. Dini and D. Schreckling

chaotic systems have a flat or continuous ‘white noise’ spectrum. An example of a
human creation that strikes a balance between these two extremes and that is at a
similar level of abstraction as software is music, which was discovered to be
uniformly 1/f-noise, 30 years ago [63]. This provides motivation for why we think
that mapping the greater expressive power of non-linear behaviour into computer
science concepts will lead to a correspondingly greater power to ‘compute’
unprogrammed behaviour in real time.

The fact that the cell is not a well-mixed solution tells us, as is well-known, that it
must not be in thermodynamic equilibrium. Prigogine’s work [48] is deeply
significant because it showed that ordered structures form in open systems under
conditions of disequilibrium – maintained as such by a constant energy flow. Thus,
although the phenomena he studied (e.g. the toroidal vortices of Rayleigh- Benard
convection) are much simpler than what happens inside a cell, his insights give us a
relatively concrete example of what a ‘dynamical structure’ might look like. The
dynamic stability of cellular processes then constitutes a generalisation of Prigogine’s
ordered structures. Therefore, treating cellular processes as automata, or discrete low-
dimensional dynamical systems, appears to be the most appropriate level of
abstraction and entry point to understand biological construction of order in a way
that is relatively easy to transfer to computer science.

3.3 Structure and Function in Biology and Computer Science

To make progress in this direction, we take as a starting hypothesis that the
dynamically stable operation of the cell is critically dependent on two additional
forms of structure that are more abstract than physical structure and that can be
formalised mathematically as follows (see Figure 4):

– Time-independent algebraic structure of the automata modelling the cellular
pathways. Algebraic structure gives rise to what we are calling static symmetries.

– Time-dependent Lie group structure of the dynamical systems modelling the same
cellular pathways. This form of structure is formalised through a mix- ture of
algebra and geometry and gives rise to what we are calling dynamic symmetries.

Cell metabolic or
regulatory pathway

Ordinary Differential
Equation model

Automaton model

Lie group analysisAlgebraic decomposition

Dynamic symmetriesStatic symmetries Interdependence?

Category
Theory

Specification of
Interaction Computing

Machine

Algebraic Structure of Automata & Dynamical Systems

Fig. 4. Mathematical analysis workow to uncover biological symmetries

 A Research Framework for Interaction Computing 235

The relevance of the relationship between structure and function to all types of
engineering and applied thinking motivates us to investigate how these two kinds of
mathematical structure are related. The benefit of such a relationship would be the
ability to specify desired behavioural properties and derive the corresponding
structural properties.

In its simplest form, a finite-state automaton is a nite set of states acted upon by a
semigroup of transformations. Until the 1960s the general consensus was that
semigroups were too unstructured for anything useful to be done with them. This
perception was changed by one of the landmark theorems in this field, the Krohn-
Rhodes prime decomposition theorem for finite semigroups [38], which proved the
existence of a much greater amount of structure in semigroups. The relevance of
semigroups to automata has then made this mathematical theory of increasing interest
to computer science over the past 40 years. Furthermore, the non-linear character of
automata ([36]) suggests that they are the right instrument to model the enormously
intricate feedback loops of discrete cellular processes. This observation is greatly
strengthened by the current research of the Biocomputation Laboratory at the
University of Hertfordshire, UK ([47, 26, 25, 24, 27]), in which several examples of
cell regulatory and metabolic pathways are shown to be formalisable as finite-state
automata. The application of Krohn- Rhodes decomposition to the corresponding
semigroups then reveals the presence of a rich algebraic structure in the form of
permutation groups and non-invertible components (flip-flops) at different levels of
their hierarchical decomposition.

Cell driven
by random

interactions

Behaves
like machine

Higher abstraction
level and lower
dimensionality
than stochastic

Automaton or
dynamical system

Minimisation
of free energy

Construction
of order in

open out-of-
equilibrium

systems

Construction
of order

Memory

Physical
structure and
constraints

Dynamic
stability

Algebraic structure
& static symmetries

Lie group structure
& dynamic symmetries

Structure & Function
in Cell Biology and
Computer Science

However

Interaction forces
plus entropy

Justifies Needs

Benefits from

Underpins

Provides ratchet and
pawl mechanism

Cooling

Visible
trace of

Supports

Supports

Supports

Dynamic and
computational
aspects can be
formalised as

Embodies

Embodies

Formalise

Formalise

Molecular
replicators

Competition
for available

energy

Selection
of fittest

replicators

Proto-Evolution

Cellular
Organisation

Successful design

Energy absorption

Interacts

Evolutionary
Processes

Ecosystems

Implements

EnableBootstrap

Semantic link

Causal link

Legend:

Significant
conceptual
milestone

How did the
first cell arise in
the primordial

soup?

Starting
point of

argument

Fundamental mechanisms
of order construction and

emergence of first cell

Scalability through recursive application

Auto-
catalytic

cycles and
operational

closure

Fig. 5. Causal-semantic workflow summarising a part of the research rationale

236 P. Dini and D. Schreckling

The algebraic structure of automata does not account for their time-dependent or
dynamic behaviour. Therefore, a significant challenge we face is how to make sense
of the often non-integrable dynamical behaviour of non-linear systems. Systems
biology, in fact, relies heavily on the numerical solution of the ordinary differential
equations (ODEs) derived from the chemical rate equations modelling the cellular
pathways, simply because no analytical solutions exist. However, as we mentioned
above it is well-known that in many cases systems of coupled non-linear ODEs
embody so-called global symmetries obtainable through Lie groups analysis [49].
Although global symmetries are quite constraining and are correspondingly difficult
to find, this is not necessarily a drawback since biological systems exhibit ordered
behaviour only within certain ranges of their parameters (e.g. temperature). In other
words, Lie groups can help us solve mathematical models that are clearly very
idealised approximations to how real systems work. However, the important point is
that they do capture and formalise the concept of order in dynamical behaviour, which
we have loosely called ‘dynamic stability’ above. It is not unreasonable to claim,
therefore, that the symmetries corresponding to ‘local’ or parameter-limited ordered
biological behaviour could be found through an extension of Lie’s theory to less
rigidly defined mathematical structures such as groupoids, as well as to discrete
dynamical systems due to their closer relevance to automata:

There are plenty of objects which exhibit what we clearly recognize as
symmetry, but which admit few or no nontrivial automorphisms. It turns out that
the symmetry, and hence much of the structure, of such objects can be
characterized algebraically, if we use groupoids and not just groups. ([64];
quoted in [31])

Groupoids are like groups except that the group operation (usually functional
composition) is defined only for some and not all of the elements.

Figure 5 gives an overall summary of the rationale of the research workflow and of
some of the concepts we have discussed so far. Having summarised the main concepts
of the mathematical theory, we now start building a bridge towards computer science.

3.4 Behaviour-Based Specification

It appears obvious that several parts of interaction computing systems could be
described by existing formal specification frameworks or formal system, such as
VDM [3], Z notation [60], CCS [45], π-calculus [46], CSP [33], LOTOS [4], ACPτ
[2], etc. While there are languages which are very similar to our approach, and
Aspect-Oriented Programming (AOP) is certainly one of them, the reason for
developing a new language is fundamentally different. Interaction computing is
highly different from existing systems in terms of its concurrency, its interde-
pendability, its realisation of functionality, its non-deterministic and probabilistic
computation, and its modularity. Modifications of some specification languages may
support all these properties. This has been shown in the past, for example, for Z. Step
after the step the original language was extended with new features, such as non-
determinism or the full support of temporal logic. This valuable engineering process
extends a language such that it fits a certain need. However, this requires that the
actual problem the language describes is similar.

 A Research Framework for Interaction Computing 237

Our problem is interaction computing and instead of trying to describe interaction
computing using an existing language, adapting it to our needs, we take the opposite
approach and start with analysing the problem first, i.e. its dynamical and structural
properties. In the course of our research we will learn about this structure and identify
basic functional components inspired by biology. This will also determine the
primitives of the language. On top of that, our language will be based on behaviour
the system to be described should exhibit. Here, the internal structure of the
components realising this behaviour is not essential. They are hidden from the
specification as they are far too complex. This is in strong contrast with existing
formal specification methods which try to describe the actual functionality but not the
behaviour. Here we define functionality as the actual functions which have to be
executed to implement a certain behaviour.

Thus, the functionality of an interaction machine describes in detail the internal
states and transitions the machine has to go through in order to achieve its desired
behaviour, i.e. the specification would follow a white box characteristic approach. In
contrast, the behaviour describes the observable or expected effects of a black box.
Thus, behaviour strongly abstracts from the internal structure and gives a wider
flexibility to its implementation. This takes the established high-level programming
and specification languages one step further. While they already abstract from the
hardware level and use higher-order programming language constructs, the
biologically-inspired interaction computing specification language even abstracts
from functionality and lifts programming and specification to the behavioural level. In
our work we are studying how the two concepts of machine structure and its
behaviour are strongly linked in categorical terms [40]. In particular, we show how a
category of behaviour is directly linked to a category of machines realising this
behaviour.

Additionally, to be able to transform an existing specification into an executable
form, the specification language requires some operational semantics which allows us
to translate a behaviour specification into interaction machines and their execution
steps. Similar to functional or logical specification languages, the realisation of such
an approach in an executable instance includes several implicit steps wihch are not
explicitly stated in a machine specification. In interaction computing this process is
even more complex because even simple operations are realised by multiple
interactions between multiple machines. Adapting the operational semantics of an
existing language becomes infeasible. Thus, we follow the general design process
which tries to develop a language which actually fits best our needs.

Finally, we do not refuse the use of existing formal systems. In fact, our work
already uses mechanisms [1] which allow us to transform one logic into a comparable
one, to recognise the well-established correspondence between coalgebras and
temporal logics (see also BIONETS deliverable D2.2.4 [22]), or which compare their
internal structures. If we find that our systems possess properties which are
describable by existing formal systems, we will opt for them, of course.

Thus, this work aims to develop the basis of an ‘environment specification’
language, which can be seen as a higher-abstraction software engineering specifi-
cation language addressing both the structure and content of bio-inspired digital
systems. Figure 6 shows at a high level how category theory can enable a mapping
from algebraic and coalgebraic structures to algebraic and coalgebraic logic, as an

238 P. Dini and D. Schreckling

initial step in this direction. This work is in progress ([20, 22, 21, 19, 59, 18, 40]) and
elaborates concepts which map algebraic structure corresponding to automata into
categories of behaviour.

Algebra CoalgebraDual
Algebraic

logic
Coalgebraic

logic
Dual

Universal
(co)algebra

Logic

Trace
semantics

Algebraic Structure of
Automata &

Dynamical Systems

Category
Theory

Specification of Interaction Computing Machine

Fig. 6. Mapping of algebraic structures to logic structures through category theory

3.5 Organisation in Biology and Computer Science

The reliance on category theory is further motivated by Rosen [51, 52] who,
following Rashevsky’s ideas [50], first applied category theory to cell biology to
develop a theory of “relational biology” as an alternative to the reductionist analytical
methods still prevalent to this day. His main result was to prove that the cell
metabolism repair function performed by the DNA is invertible into a DNA repair
function performed by the cell metabolism. Hence the cell is ‘self-sufficient’ in terms
of information, it contains all the information it needs to repair all of its parts. Of
course we already knew that the cell is able to repair its DNA, but for our purposes it
is very good to know that the same mathematical theory that can map automata to
logic and dynamical systems is also able to capture important properties of the cell.
Rosen’s result has more recently been interpreted ([14]) as the mathematical analogue
of Maturana and Varela’s “operational closure” (or organisational closure) within the
theory of autopoiesis [44]. In spite of the fact that Rosen’s subsequent generalisation
of this proof into a much more ambitious ‘theory of Life’ [54] has recently been
criticised and has been the subject of a lively debate ([11, 13, 12, 41, 65]), Rosen
should be credited with a simple but insightful observation:

... systems of the utmost structural diversity, with scarcely a molecule in com-
mon, are nevertheless recognizable as cells. This indicates that the essential
features of cellular organization can be manifested by a profusion of systems
of quite different structure. [53]

In other words, all cells, regardless of their structure, share a similar organisation.
However, depending on their function, cells can have very different structure. This
suggests that Structure, Function, and Organisation are equally fundamental
concepts in biology.

In computer science, on the other hand, things are a bit different. In analogue
computer systems the computation to be performed (Function) was strictly dependent
on the electronic components utilised and their wiring (Structure). Digital computers,

 A Research Framework for Interaction Computing 239

by contrast, were developed as “general-purpose machines” through extensive use of
abstraction/layering. In contrast to biology and analogue computers, there is very little
interdependence between Structure and Function in digital computers – by design!
However, Organisation does map well from biology to computer science, where it is
called Architecture. An interesting example of the applicability of these concepts is
provided by the “conscientious software” of Gabriel and Goldman [30], who identify
software that performs some useful external function as “allopoietic”, in symbiotic
coexistence with software that keeps the system alive as “autopoietic”. A related
concept that is similar to operational closure and that is a current focus of our research
is to wire different allopoietic components together in order to form an autopoietic
whole. A more in-depth discussion of autopoiesis-inspired computing can be found in
another paper being presented at this conference [9].

The complexity of the problem and of the theory that is emerging is making it
difficult to keep the various analogies, metaphors, and models straight, partly because
the concepts apply at very different levels of abstraction. Table 1 provides a possible
mapping between how these three fundamental concepts apply in biology,
mathematics and computer science.

Table 1. Examples of how the fundamental properties of biology might map to other domains

Biology Mathematics Computer
Science

Shape of Group structure of sequential/
Structure nerve cell cellular pathways parallel/

concurrent

Function Nerve signal Metabolic Algorithm
conduction pathway Behaviour

Organisation Operational Group closure Autopoietic
closure property architecture

3.6 Gene Expression Computing, or Interaction Computing

In reference to Figure 5, proto-evolutionary mechanisms in the primordial soup
bootstrapped resilient organisational forms such as hypercycles [28] and auto-
catalytic cycles [37] from random physical interactions. After the membrane emerged
as a structure that could delimit an ‘inside’ from an ‘outside’, these so-called
molecular replicators eventually led to the emergence of the cell with its autopoietic
properties (organisationally closed, recursively self-generating). As we argued above,
cellular pathways today are still driven by the same interaction and entropic physical
processes. Thus, if we wish to emulate, in software, principles from biology that can
rightfully claim ‘fundamental’ status, in its most general form context-sensitivity must
work both ways, which argues for a reciprocal and pervasive interaction model.

Our work is inspired by the observation that the computation performed by a
biological ecosystem can be conceptualised as a theoretical limit characterised by the
number of peers in a distributed P2P architecture approaching infinity, with the
amount of traditional computation performed by each approaching zero. This analogy
can also be extended to the ‘computation’ performed by the cell’s cytoplasm. More

240 P. Dini and D. Schreckling

precisely, the computation performed by biological systems always involves at least
two entities, each of which is performing a different, and often independent, algorithm
which can only be advanced to its next state by the interaction itself. This is the kernel
of the concept of interaction computing or gene expression computing. We wish to
explore the implications of such a ‘vanishing CPU’ scenario because by providing a
mathematical foundation to building nested and recursively interacting structures we
believe that it underpins a model of emergent computation that will lead to new
insights in biology and computer science, in equal measure.

This explains why we are trying to develop an emergent model of computation by
mapping the regulatory and metabolic biochemical pathways of the cell to interacting
automata. Such a model of computation will both require and enable a shift from a
reliance on human design as the only source of order in software towards a greater
reliance on information and structures built into the environment. In fact, the
complexity of the cell’s interior suggests that in the cell ‘interaction’ can acquire
significantly greater semantics than, for example, perfect collisions between point
particles in an ideal gas. We then notice that the cell is itself surrounded by other cells
with which it communicates, and all are embedded in a complex mixture of tissues
and fluids that form organs. Organs, in turn, cooperate in the functioning of
individuals, which interact to form biological ecosystems. Thus, interactions happen
at all scales within the nested and recursively organised hierarchical structure of all
biological systems.

3.7 Computational Medium and RESTful Architecture

Interaction signals in biological systems are mediated in physical space by the solid,
liquid or gaseous media that fill it (with the exception of light, which does not need a
medium). Software systems, by contrast, do not interact over continuous metric
spaces, they interact over topological spaces, or networks. By ‘network’ we do not
mean simply the IP layer or below, we mean the term in the most general possible
sense, applicable as a medium of low-abstraction signals, of application layer
protocols, or of semantic and knowledge networks. In order to provide a roadmap of
applicability to instantiate the theoretical and mathematical results of the project into
the software and web environments of the future we need to understand how
distributed and networked systems can support the interaction or gene expression
computing models and their recursive application.

Our starting point for the development of a run-time framework that is general
enough to support the mathematical results and that is relevant to today’s web
computing environments is a RESTful architecture for the definition of a message-
passing interaction model for distributed environments. REST (Representational State
Transfer [29]) in general, and the REST over HTTP architecture of the web
specifically, constitutes a language in which interaction can be considered a primitive
element. The REST architectural style has been conceived to reflect the architecture
of the web. Since the architecture of the web is constrained at the lowest levels to
enable extensibility at higher levels, higher-order capabilities such as support for
complex interactions that require transactional guarantees (e.g. in long-running
service applications) and querying languages can be constructed on top of it.

 A Research Framework for Interaction Computing 241

4 Conclusion

The aim of this paper was to provide a broad research framework through which the
rationale of more focussed research activities could be understood [62, 35, 23, 9].
Much work remains to be done. However we hope that the framework we have
presented here will appear plausible enough to attract more computer scientists,
mathematicians, and cell biologists in the development of a common and unified
theory of bio-computing for autopoietic digital ecosystems.

Acknowledgements

The authors wish to thank Dr Sotiris Moschoyiannis of the University of Surrey for
clarifying how the RESTful perspective could be connected to the concept of
interaction computing presented here. The support for this work by the OPAALS
(FP6-034824) and the BIONETS (FP6-027748) EU projects is gratefully
acknowledged.

References

1. Andréka, H., Neméti, I., Sain, I.: Universal Algebraic Logic, 1st edn. Studies in Universal
Logic. Springer, Heidelberg (to appear)

2. Bergstra, J.A., Klop, J.W.: ACPτ: a universal axiom system for process specification, pp.
447–463 (1989)

3. Bjorner, D., Jones, C.B. (eds.): The Vienna Development Method: The Meta-Language.
LNCS, vol. 61. Springer, Heidelberg (1978)

4. Bolognesi, T., Brinksma, E.: Introduction to the ISO specification language LOTOS.
Comput. Netw. ISDN Syst. 14(1), 25–59 (1987)

5. Briscoe, G.: D6.1-Entropy-Based Complexity Measure for the Evolution-Based Self-
Organisation of Agent Populations. DBE Project (2004),

 http://files.opaals.org/DBE/deliverables
6. Briscoe, G., De Wilde, P.: D6.2-Self-Organisation of Evolving Service Populations. DBE

Project (2005), http://files.opaals.org/DBE/deliverables
7. Briscoe, G., De Wilde, P.: D6.4-Intelligence, learning and neural networks in distributed

agent systems. DBE Project (2005),
 http://files.opaals.org/DBE/deliverables

8. Briscoe, G., De Wilde, P.: D6.5-The effect of distributed intelligence in evolutionary
dynamics. DBE Project (2006),

 http://files.opaals.org/DBE/deliverables
9. Briscoe, G., Dini, P.: Towards Autopoietic Computing. In: Proceedings of the 3rd

OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)
10. Buckingham, E.: The principle of similitude. Nature 96, 396–397 (1915)
11. Chu, D., Ho, W.K.: A Category Theoretical Argument Against the Possibility of Artificial

Life: Robert Rosens Central Proof Revisited. Artificial Life 12, 117–134 (2006)
12. Chu, D., Ho, W.K.: Computational Realizations of Living Systems. Artificial Life 13,

369–381 (2007)
13. Chu, D., Ho, W.K.: The Localization Hypothesis and Machines. Artificial Life 13,

299–302 (2007)

242 P. Dini and D. Schreckling

14. Cornish-Bowden, A., Cardenas, M.L.: Self-organization at the origin of life. Journal of
Theoretical Biology 252, 411–418 (2008)

15. Dini, P.: D18.4-Report on self-organisation from a dynamical systems and computer
science viewpoint. DBE Project (2007), http://files.opaals.org/DBE

16. Dini, P., Berdou, E.: D18.1-Report on DBE-Specific Use Cases. DBE Project (2004),
http://files.opaals.org/DBE

17. Dini, P., Briscoe, G., Munro, A.J., Lain, S.: D1.1: Towards a Biological and Mathematical
Framework for Interaction Computing. OPAALS Deliverable, European Commission
(2008),
http://files.opaals.org/OPAALS/Year_2_Deliverables/WP01/

18. Dini, P., Horvath, G., Schreckling, D., Pfeffer, H.: D2.2.9: Mathematical Framework for
Interaction Computing with Applications to Security and Service Choreography.
BIONETS Deliverable, European Commission (2009), http://www.bionets.eu

19. Dini, P., Schreckling, D.: More Notes on Abstract Algebra and Logic: Towards their
Application to Cell Biology and Security. In: 1st OPAALS Workshop, Rome, November
26-27 (2007)

20. Dini, P., Schreckling, D.: On Abstract Algebra and Logic: Towards their Application to
Cell Biology and Security. In: Altman, E., Dini, P., Miorandi, D., Schreckling, D. (eds.)
D2.1.1 Paradigms and Foundations of BIONETS research (2007)

21. Dini, P., Schreckling, D.: Notes on Abstract Algebra and Logic: Towards their Application
to Cell Biology and Security. In: 2nd International Conference on Digital Ecosystems and
Technologies, IEEE-DEST 2008, February 26-29 (2008)

22. Dini, P., Schreckling, D., Yamamoto, L.: D2.2.4: Evolution and Gene Expression in
BIONETS: A Mathematical and Experimental Framework. BIONETS Deliverable,
European Commission (2008), http://www.bionets.eu

23. Egri-Nagy, A., Dini, P., Nehaniv, C.L., Schilstra, M.J.: Transformation Semigroups as
Constructive Dynamical Spaces. In: Proceedings of the 3rd OPAALS International
Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

24. Egri-Nagy, A., Nehaniv, C.L.: Algebraic Properties of Automata Associated to Petri Nets
and Applications to Computation in Biological Systems. BioSystems 94(1-2), 135–144
(2008)

25. Egri-Nagy, A., Nehaniv, C.L., Rhodes, J.L., Schilstra, M.J.: Automatic Analysis of
Computation in Biochemical Reactions. BioSystems 94(1-2), 126–134 (2008)

26. Egri-Nagy, A., Nehaniv, C.L.: Hierarchical coordinate systems for understanding
complexity and its evolution with applications to genetic regulatory networks. Artificial
Life 14(3), 299–312 (2008) (Special Issue on the Evolution of Complexity)

27. Egri-Nagy, A., Nehaniv, C.L.: SgpDec - software package for hierarchical coordi-
natization of groups and semigroups, implemented in the GAP computer algebra system
(2008), http://sgpdec.sf.net

28. Eigen, M., Schuster, P.: The Hypercycle. Naturwissenschaften 65(1) (1978)
29. Fielding, R.: Architectural Styles and the Design of Network-based Software

Architectures. UC Irvine PhD Dissertation (2000),
 http://www.ics.uci.edu/fielding/pubs/dissertation/top.htm

30. Gabriel, R.P., Goldman, R.: Conscientious software. In: OOPSLA’06, Portland, Oregon,
October 22-26 (2006)

31. Golubitsky, M., Stewart, I.: Nonlinear Dynamics of Networks: The Groupoid Formalism.
Bulletin of the American Mathematical Society 43, 305–364 (2006)

32. Heistracher, T., Kurz, T., Marcon, G., Masuch, C.: D9.1-Report on Fitness Landscape.
DBE Project (2005), http://files.opaals.org/DBE/deliverables

 A Research Framework for Interaction Computing 243

33. Hoare, C.A.R.: Communicating sequential processes. ACM Commun. 21(8), 666–677
(1978)

34. Horvath, G.: Functions and Polynomials over Finite Groups from the Computational
Perspective. The University of Hertfordshire, PhD Dissertation (2008)

35. Horvath, G., Dini, P.: Lie Group Analysis of p53-mdm3 Pathway. In: Proceedings of the
3rd OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

36. Kalman, R.E., Falb, P.L., Arbib, M.A.: Topics in Mathematical System Theory. McGraw-
Hill, New York (1969)

37. Kauffman, S.: The Origins of Order: Self-Organisation and Selection in Evolution. Oxford
University Press, Oxford (1993)

38. Krohn, K., Rhodes, J.: Algebraic Theory of Machines. I. Prime Decomposition Theorem
for Finite Semigroups and Machines. Transactions of the American Mathematical
Society 116, 450–464 (1965)

39. Kurz, T., Marcon, G., Okada, H., Heistracher, T., Passani, A.: D9.2-Report on
Evolutionary and Distributed Fitness Environment. DBE Project (2006),

 http://files.opaals.org/DBE/deliverables
40. Lahti, J., Huusko, J., Miorandi, D., Bassbouss, L., Pfeffer, H., Dini, P., Horvath, G.,

Elaluf-Calderwood, S., Schreckling, D., Yamamoto, L.: D3.2.7: Autonomic Services
within the BIONETS SerWorks Architecture. BIONETS Deliverable, European
Commission (2009), http://www.bionets.eu

41. Louie, A.H.: A Living System Must Have Noncomputable Models. Artificial Life 13, 293–
297 (2007)

42. Maeda, S.: The similarity method for difference equations. IMA Journal of Applied
Mathematics 38, 129–134 (1987)

43. Manrubia, S.C., Mikhailov, A.S., Zanette, D.H.: Emergence of Dynamical Order. World
Scientific, Singapore (2004)

44. Maturana, H., Varela, F.: Autopoiesis and Cognition, the Realization of the Living. D.
Reidel Publishing Company, Boston (1980)

45. Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg
(1980)

46. Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, I. Inf.
Comput. 100(1), 1–40 (1992)

47. Nehaniv, C.L., Rhodes, J.L.: The Evolution and Understanding of Hierarchical Complexity
in Biology from an Algebraic Perspective. Artificial Life 6, 45–67 (2000)

48. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley, New York
(1977)

49. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, Heidelberg
(1986)

50. Rashevsky, N.: Mathematical Biophysics and Physico-Mathematical Foundations of
Biology, vol. II. Dover, New York (1960)

51. Rosen, R.: A Relational Theory of Biological Systems. Bulletin of Mathematical
Biophysics 20, 245–260 (1958)

52. Rosen, R.: The Representation of Biological Systems from the Standpoint of the Theory of
Categories. Bulletin of Mathematical Biophysics 20, 317–341 (1958)

53. Rosen, R.: Some relational cell models: The metabolism-repair systems. In: Rosen, R.
(ed.) Foundations of Mathematical Biology. Cellular Systems, vol. II, Academic Press,
London (1972)

54. Rosen, R.: Life Itself. Columbia University Press, New York (1991)

244 P. Dini and D. Schreckling

55. Rowe, J.E., Mitavskiy, B.: D8.1 - report on evolution of high-level software components
(April 2005)

56. Sanchez, R., Grau, R., Morgado, E.: A novel Lie algebra of the genetic code over the
Galois field of four DNA bases. Mathematical Biosciences 202, 156–174 (2006)

57. Sanchez, R., Morgado, E., Grau, R.: The genetic code boolean lattice. Communications in
Mathematical and Computational Chemistry 52, 29–46 (2004)

58. Sanchez, R., Morgado, E., Grau, R.: Gene algebra from a genetic code algebraic structure.
Journal of Mathematical Biology 51, 431–457 (2005)

59. Schreckling, D., Dini, P.: Distributed Online Evolution: An Algebraic Problem? In: IEEE
10th Congress on Evolutionary Computation, Trondheim, Norway, May 18-21 (2009)

60. Spivey, J.M.: The Z notation:a reference manual. Prentice-Hall, Inc., Upper Saddle River
(1989)

61. Stewart, I.: Galois Theory, 2nd edn. Chapman and Hall, London (1989)
62. Van Leeuwen, I., Munro, A.J., Sanders, I., Staples, O., Lain, S.: Numerical and

Experimental Analysis of the p53-mdm2 Regulatory Pathway. In: Proceedings of the 3rd
OPAALS International Conference, Aracaju, Sergipe, Brazil, March 22-23 (2010)

63. Voss, R.F., Clarke, J.: 1/f noise in music: Music from 1/f noise. Journal of the Acoustical
Society of America 63(1) (1978)

64. Weinstein, A.: Groupoids: unifying internal and external symmetry. Notices of the
American Mathematical Society 43, 744–752 (1996)

65. Wolkenhauer, O.: Interpreting Rosen. Artificial Life 13, 291–292 (2007)
66. Wu, C.W.: Synchronization in Coupled Chaotic Circuits and Systems. World Scientific,

Singapore (2002)

	A Research Framework for Interaction Computing
	Introduction
	Historical Recap
	Evolution and Self-organisation
	Symmetry
	Lie Groups
	Functional Completeness

	Current Research Questions
	Abstraction Level
	Dynamic Stability
	Structure and Function in Biology and Computer Science
	Behaviour-Based Specification
	Organisation in Biology and Computer Science
	Gene Expression Computing, or Interaction Computing
	Computational Medium and RESTful Architecture

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

