
Embryonic Models for Self–healing Distributed

Services�

Daniele Miorandi1, David Lowe1,2, and Lidia Yamamoto3

1 CREATE-NET, v. alla Cascata 56/C, 38100 – Povo, Trento, IT
daniele.miorandi@create-net.org

2 Centre for Real-Time Information Networks, University of Technology, Sydney
PO Box 123, Broadway 2007 NSW, Australia

david.lowe@uts.edu.au
3 Computer Science Department, Bernoullistrasse 16, CH - 4056 Basel, Switzerland

Lidia.Yamamoto@unibas.ch

Abstract. A major research challenge in distributed systems is the de-
sign of services that incorporate robustness to events such as network
changes and node faults. In this paper we describe an approach – which
we refer to as EmbryoWare – that is inspired by cellular development
and differentiation processes. The approach uses “artificial stem cells”
in the form of totipotent nodes that differentiate into the different types
needed to obtain the desired system–level behaviour. Each node has a
genome that contains the full service specification, as well as rules for the
differentiation process. We describe the system architecture and present
simulation results that assess the overall performance and fault tolerance
properties of the system in a decentralized network monitoring scenario.

Keywords: distributed services, autonomic computing, self–healing be-
haviour, robustness, embryogenesis, differentiation mechanisms.

1 Introduction

In this paper, we address the problem of devising architectures and methods
for robust and self–healing distributed services. Given a service whose execution
involves tasks running on a plurality of interconnected machines (or nodes),
we introduce techniques for coping with faults and ensuring robustness at the
system level.

The motivation for our work comes from the increasing utilisation of dis-
tributed services, i.e. services whose outcomes depend on the interaction of dif-
ferent components possibly running on different processors. Distributed services
typically require complex design with regard to the distribution and coordina-
tion of the system components. They are also prone to errors related to possible

� This work has been partially supported by the European Commission
within the framework of the BIONETS project EU-IST-FET-SAC-FP6-027748,
www.bionets.eu

E. Altman et al. (Eds.): Bionetics 2009, LNICST 39, pp. 152–166, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

Embryonic Models for Self–healing Distributed Services 153

faults in one (or more) of the nodes where the components execute. This is par-
ticularly significant for applications that reside on open, uncontrolled, rapidly
evolving and large–scale environments, where the resources used for providing
the service may not be on dedicated servers (as the case in many grid or cloud
computing applications) but rather utilise spare resources, such as those present
in user’s desktops or even mobile devices. (Examples of such scenarios are the
various projects making use of the BOINC or similar platforms1.) Other exam-
ples of distributed applications where each node takes on specific functionality
include: peer-to-peer file sharing; distributed databases and network file systems;
distributed simulation engines and multiplayer games; pervasive computing [13]
and amorphous computing [1]. With all of these applications there is a clear
need to employ mechanisms ensuring the system’s ability to detect faults and
recover automatically, restoring system–level functionalities in the shortest pos-
sible time.

In this paper we discuss an approach to addressing these issues that is inspired
by cellular development and differentiation processes. Similar techniques have
been applied in the evolvable hardware domain, giving rise to a specific research
field called embryonics [10,11]. We propose an approach that utilises distributed
nodes capable of differentiating into various types based on local knowledge, and
which collectively lead to the emergence of the desired behaviour.

2 Background and Related Work

Robustness and reliability in distributed computing systems are well–studied
topics. Classical fault–tolerance techniques include the use of redundancy (let-
ting multiple nodes perform the same job) and/or the definition of a set of rules
triggering a system reconfiguration after a fault has been detected [3]. When
the scale of the system grows large, however, it is not practically feasible to
pre–engineer in the system’s blueprint all possible failure patterns and the con-
sequent actions to be taken for restoring global functionalities. Such an issue is
reminiscent of the reasons that led to the launch, by IBM, of the Autonomic
Computing initiative [5], according to which one of the desirable properties of
an autonomic system is self–healing. A self–healing system must recover full
functionality, “healing” itself from faults and defects by actually fixing them
autonomously, instead of just bypassing them.

In previous work by two of the authors [8,9], we considered the potential for
using bottom-up approaches inspired by embryology to the automated creation
and evolution of software. In these approaches, complexity emerges from inter-
actions among simpler units. It was argued that this emergent behaviour can
also inherently introduce self–healing as one of the constituent properties.

Our approach described in this paper builds on these concepts, leveraging
off previous research conducted in the evolvable hardware domain on the ap-
plication of architectures and methods inspired by the cellular developmental

1 http://boinc.berkeley.edu/

154 D. Miorandi, D. Lowe, and L. Yamamoto

and differentiation processes. Such approaches, which gave rise to the embry-
onics field [10,15], are based on the use of “artificial stem cells” [7,11], in the
form of totipotent entities that can differentiate —upon reception of relevant
signalling from nearby cells— into any component needed to obtain the desired
system–level behaviour. Such an architecture has been successfully applied to
field programmable gate arrays (FPGAs), resulting in the design of robust (i.e.,
able to sustain a large number of failures) and self–healing (i.e., able to recover
automatically from faults by re-arranging its internal structures) hardware sys-
tems [10,14]. However, this earlier work did not consider the application of these
approaches to distributed software applications.

In our work, we apply the concepts and tools developed in embryonics to the
domain of distributed software systems. Such an application requires rethinking
some of the design choices made by the embryonics research community to adapt
to the specific features and constraints arising when working with software that
is distributed over a network of interconnected machines. For example, network
characteristics such as latency and dropped data packets can become a more
significant factor in affecting the performance of the system. We call the resulting
systems EmbryoWare (i.e. Embryonic Software).

Our approach bears many similarities to the work of Magrath [6], insofar as
cells can propagate through a network and interact to achieve a global goal.
The goal in Magrath’s work is however to achieve a global pattern of cells (de-
scribed as a phenotype) rather than a global behaviour. The cells in Magrath’s
approach also have a fixed set of behaviours that are not dependant upon the
cell type (i.e. they do not change type). Further, their behaviour is dependant
upon the network configuration of the neighbourhood rather than the cell types
in the neighbourhood. This constrains the overall patterns of behaviour that can
emerge from the network. The work described by Magrath does, however raise
interesting questions with regard to how the cell genome can be designed so as
to achieve a particular global pattern (or phenotype) – a question that is also
relevant in our work.

Related approaches have also been recently proposed for enabling autonomic
load–balancing among different application servers in a network [12]. Similar
work by Chanprasert and Suzuki [2] considered the issue of self–healing in com-
plex networks. Whilst not based on embryonics, the approaches were neverthe-
less bio-inspired (at the level of interacting individuals, rather than specialising
cells), and demonstrated how distributed or decentralized control and processes
of natural selection can lead to robust solutions.

3 Embryoware: Embryonic Software

EmbryoWare takes inspiration from the embryological or developmental pro-
cesses in biology, by which an embryo made of initially identical cells (stem
cells) develops into a full organism in which every cell assumes a different, spe-
cialized function, e.g. blood cells, skin cells, neurons. Stem cells are totipotent,
i.e. unspecific and able to differentiate into the various cell types needed.

Embryonic Models for Self–healing Distributed Services 155

In EmbryoWare, software stem cells contain a genome with a concise repre-
sentation of the complete service process to be performed. Such artificial stem
cells are initially totipotent and are designed to spread throughout the net-
work by self-replication. These cells differentiate into the various components
needed for performing the overall service. Adequate signalling mechanisms shall
be provisioned, so that cells could exchange information about the state of their
neighbours. Upon detection of a fault in a neighbouring cell, they are able to
re-enter the embryo state (unlike in biology), for differentiating again into the
required functionalities, expressing the necessary genes.

It is important to note that, like most bio-inspired approaches, EmbryoWare
remains an analogy, and is not meant to be entirely faithful to biology. A number
of notable differences from true embryological processes can be highlighted. For
example, unlike most biological examples, the EmbryoWare cells retain totipo-
tency throughout their life, and are always able to re-differentiate into other cell
types as needed. This is also done in other embryology-inspired approaches such
as embryonics [10,15]. Similarly, real embryo formation makes use of on apopto-
sis (i.e. programmed cell death), whereas in our framework nodes will continue
operation indefinitely (or until the operational task is completed).

3.1 Architecture and Components

The EmbryoWare approach is based on the use of nodes or cells (understood
as basic computational units) 2 possessing the ability to decide autonomously,
based on the task currently performed (referred to as “cell type” in the following)
and on the ones performed by nearby cells, which task should be performed next
in order to maximize the benefit for the system as a whole. Each cell is provided
with a complete system–level specification of the service to be performed, called
the genome, which includes:

(i) a description of the expected behaviour of the service as a whole;
(ii) a description of the single tasks to be performed by cells;
(iii) a set of rules for deciding, based on the current task and the task performed

by neighbouring cells, which task is to be performed next.

Each genome comprises a finite number of functions to be executed. We say that
a cell performing a given function has differentiated into a given type. The type
of a cell defines therefore its current role in the system–level architecture. A cell
containing the genome can differentiate into any specific cell type encompassed
by the genome.

Cells are arranged in a graph topology. The immediate neighbours (or 1-hop
neighbors) of a cell are defined as the cells that are able to communicate directly
with it. The n-hop neighbourhood consists of nodes located n communication
hops away. In the embryonics domain, cells are often arranged in a toroidal reg-
ular grid, akin to a cellular automaton (CA), where each cell is connected only
2 Throughout the paper, we use the words cell and node interchangeably, as well as

the words task and function.

156 D. Miorandi, D. Lowe, and L. Yamamoto

with its immediate four (von Neumann neighborhood) or eight (Moore neigh-
borhood) neighbours. Toroidal grids avoid border effects, but are rarely found
in practical network scenarios (e.g. sensors spread over a field to be monitored)
where border effects cannot be neglected. In our work we have not assumed
this for the general case, and the algorithms are independant of the network
topology.

An EmbryoWare system consists of the following components:

– Genome: defines the behaviour of the service as a whole, and determines
the type to be expressed based on the local context (i.e., neighbouring cell
types).

– Sensing agent: software component that periodically communicates with
neighbours regarding their current type. The type of a cell is maintained
in a separate register;

– Replication agent: software component that periodically polls the neighbours
about the presence of a genome; if a genome is not present then the current
genome is copied to the “empty” cell;

– Differentiation agent: software component that periodically decides, based on
the cell’s current type and the knowledge about the types of the neighbouring
cells, which functions should be performed by the node.

Fig. 1. Architecture of EmbryoWare: single–node view

A possible node–level architecture for EmbryoWare is shown in Fig. 1. The
genome is connected to both the replication agent (which tries to replicate it
in neighbouring “empty” cells) and to the differentiation agent. The latter also
receives information from the sensing agent on the status of neighbouring cells.
The cell’s “type” is maintained in a separate register. It is also communicated to
the execution engine, which performs the tasks/actions associated to the current
type. The outcome of the execution process may trigger a differentiation (as in
the case in which, e.g., the execution cannot be performed successfully due to
some faults in the genome). The type of a cell can be read by the sensing agent of
a neighboring node. The differentiation process can be implemented in a variety
of ways. The simplest one is a lookup table (similar to those used in CAs), that

Embryonic Models for Self–healing Distributed Services 157

determines, based on the current type of a node and on the sensed type of its
neighbours, which type it should differentiate into.

In order to limit potential security issues, we further add autonomy con-
straints. Namely, a cell cannot be “reprogrammed” by a peer, but it will decide
autonomously on the function to be performed (taking into proper account the
local context). Hence a cell can influence only in an indirect way (by setting its
own personal ‘type’) what neighbouring cells will do. Such a feature is appeal-
ing in that it limits the possibility of a malicious host affecting the emerging
system–level behaviour.3

The two key aspects of EmbryoWare are related to (i) the development of an
adequate representation of the service as a whole, able to be at the same time
concise and expressive (ii) the development of efficient techniques for handling
the differentiation process, requiring only local information from surrounding
nodes. It is important to remark that the EmbryoWare architecture fits well
services where the role of a given cell depends only on the type of neighbouring
cells. While appropriate signalling mechanisms can be put in place to exchange
information among remote nodes (enlarging in such a way the possible appli-
cation domain), the resulting overhead may limit the system’s performance. At
the same time, communications among remote cells can be needed to obtain the
desired system–level functionalities. Such a feature is supported by the system.
What in EmbryoWare shall be limited is the signalling needed between cells
in order to perform differentiation. We illustrate this issue in the case study
presented later in the paper.

4 Algorithms for Embryonic Software

Given the architecture presented in the previous section, we may identify three
key operations to be performed within an EmbryoWare–type system: sensing,
differentiation and replication. In this section, we present algorithms for per-
forming such functions in a distributed and asynchronous way.

4.1 Sensing Process

The sensing process is performed periodically at each node. Every τ1 seconds,
the cell issues a queryType message to its 1-hop neighbours, which reply send-
ing information about their current type. The list of neighbours (indicated as
NeighboursList) is created at bootstrap; its setup and maintenance is deferred
to appropriate network–level services and is therefore not described in this work.

3 It is however worth noticing that such an approach does not prevent malicious
hosts from influencing the behaviour of the system. Proper security countermea-
sures should be put in place to limit the possible impact of such an occurrence.
Further, it is worth remarking that the replication of genome in nearby cells require,
in order to avoid potentially disruptive interference by malicious nodes, to put in
place appropriate authorization and authentication procedures.

158 D. Miorandi, D. Lowe, and L. Yamamoto

The information about the type of neighbours, Type(·), maintained in an
appropriate knowledge base, is then updated. If a cell is faulty (i.e., machine
is down due to maintenance or technical problems), it will not reply to the
queryType message. Every node maintains therefore a timer, associated to a
timeout, for each query message sent. In the case where no reply is obtained
from a neighbour within the given timeout, its type is set to ’faulty’. The sensing
process can be executed serially (polling one neighbour at a time) or in parallel
(sending out queries to all neighbours and waiting for the message replies). Alg. 1
details the algorithm for the parallel case.

loop
every τ1
for all i ∈ NeighbourList do

send queryType message to i
instantiate timer(i) for node i

if timer(i) expires then
Type(i) ← FAULTY

if received message from i then
update Type(i)

Algorithm 1. Sensing algorithm pseudo-code (parallel)

4.2 Differentiation Process

As with sensing, the differentiation process is performed periodically at each cell.
We denote by τ2 the differentiation period. Cells are not necessarily synchronized,
so that the differentiation process can take place at different time instants at
different nodes. In general, there is no need to specify a particular coupling
between the differentiation period and the sensing period (they can well be
implemented as independent threads). However, to reduce redundant processing,
the period of the cell differentiation process should be equal to or larger than
the sensing period τ1.

The differentiation process is represented as a set of rules (which may be coded
as a lookup table) provided as part of the genome.4 Each cell uses information
about its current type and the type of neighbouring cells to decide which type
to express next (i.e., which function to be performed). The mechanism can be
deterministic (given current state x and neighbours 1, . . . , k in state y1, . . . , yk,
move to state z) or probabilistic (given current state x and neighbours 1, . . . , k in
state y1, . . . , yk, move to state z1 with probability p1, to state z2 with probability
p2 etc). A possible implementation of the differentiation algorithm is shown in
Alg. 2.

4 In general, other methods can be envisioned, based on, e.g., reaction–diffusion pat-
terns [4]. It is also possible to envision accounting for environmental variables (such
as, e.g., current CPU load or other contextual information) in the differentiation
process. In this work, we limit our attention to a simpler set of rules only for the
sake of simplicity.

Embryonic Models for Self–healing Distributed Services 159

loop
every τ2
read Type(myID)
for all i ∈ NeighbourList do

read Type(i) {Update information on neighbour’s type.}
LOOKUP < Type(myID), Type(i1), . . . , Type(ik)) >
update Type(myID)

Algorithm 2. Differentiation algorithm pseudo-code

4.3 Replication Process

The replication process is meant to ensure that the system can make use of spare
resources (empty cells that have not yet had a genome inserted into them by a
neighbouring cell) whenever available, and hence the ability (at the system level)
to recover from major faults. It could also be seen as a mechanism for automat-
ing service deployment in a distributed system. Through a suitable replication
process, it would be sufficient to inject a “seed” genome into the system, and it
will replicate itself across the network and differentiate into the necessary com-
ponents. We assume that only the genome is replicated onto empty nodes: the
management components (differentiation agent, replication agent, sensing agent,
execution engine) are assumed to be present on all nodes in the system as part
of the basic node platform. The replication algorithm works by periodically in-
quiring all neighbour cells about the presence of a genome. A node without an
installed genome is still able to respond to queries, but will indicate that it has
no functioning genome. If the cell is found to be empty, a copy of the genome
is transmitted to the empty node, where it is installed and initiated. A possible
implementation of the replication process is described in Alg. 3. While the repli-
cation period τ3 is not strictly related to the sensing and differentiation period,
the following relation provides an ordering suitable to maintain a good level of
performance: τ3 � τ2 ≥ τ1.

loop
every τ3
for all i ∈ NeighbourList do

send isGenomePresent message to i
if noGenomePresent message received then

send Genome to i

Algorithm 3. Replication algorithm pseudo-code

5 Evaluation on a Decentralized Monitoring Scenario

We evaluate the proposed techniques with a case study in the domain of decen-
tralized network monitoring. Consider a sensor network, or any large network
of devices where environment or system parameters must be monitored, and
alarms must be raised whenever abnormal circumstances are detected. In such
a scenario, nodes may perform different tasks, e.g. sense, collect, filter and log
information, and then finally decide whether an alarm should be raised or not,

160 D. Miorandi, D. Lowe, and L. Yamamoto

based on the information sensed. This is a typical scenario where the automatic
differentiation into each of these separate tasks, performed by EmbryoWare, is a
helpful feature in order to keep providing a prompt and reliable service in spite
of node failures or unexpected network changes.

5.1 Case Study Description

We consider a network of cells performing resource monitoring, logging, and
alarm generation. We assume that each cell possesses some parameter that needs
to be periodically monitored. Each monitoring sample needs to be reported to a
logging cell that should be no more than 2 hops away from the monitoring cell in
order minimise network traffic5. The logging cell will accumulate data samples
and report them periodically to alarm cells. The network should contain 2 alarm
cells for redundancy, but no more than 2 alarm cells in order to minimise the
resource requirements associated with alarms. Each alarm cell should have two
1–hop neighbours that are analysis cells which it uses to assist in analysing the
provided samples. When the alarm cell recognises an alarm condition on one of
the data samples this is reported in a system-dependant fashion.

In addition, in order to distribute the load associated with alarm condition
evaluation, the cells taking on the alarm behaviour should change periodically.
Further, to evaluate fault performance, our simulation includes random genome
failures (with a predefined probability that is independent in our case study
of the cell type). A genome fault is where the genome can no longer operate
correctly – and hence will not respond with a valid genome type when queried
by a neighbouring node. The underlying management components are however
still operational, and so a neighbour could reinsert a new genome to correct the
genome fault. Conversely, a node failure is where the node becomes permanently
inoperable.

5.2 Cell Types and Their Behavior

The desired behaviour requires a genome with the following types: Stem, Faulty,
Monitor, Logger, Analysis, Alarm. A stem cell in our system is one that is cur-
rently idle but ready to differentiate into some needed type. The specific be-
haviours outlined above can then be obtained in a number of different ways,
with different implications for the cell type patterns that emerge, and the tim-
ing within which the differentiation happens.

A crucial aspect is how to maintain a global target number of alarm nodes
(N = 2 in the case study), in a decentralized way. Presently, this is achieved
by letting nodes broadcast a beacon when they become alarm ones. Each cell
maintains a list of active alarm nodes. When any logging cell is ready to send
its data, it will try to send to each alarm cell that is in its list, and if it does not
receive an acknowledgment then it removes that alarm from its list.
5 A 2-hop neighbourhood can be monitored by asking 1-hop neighbours about their

neighbours. i.e. when a 1-hop neighbour reports its node type, in also includes rele-
vant information about it’s own 1-hop neighbours.

Embryonic Models for Self–healing Distributed Services 161

One key choice is with regard to the processes associated with differentiation.
It is possible to implement the conversion of a cell’s genome into an alarm type
either proactively or reactively. In the pro-active case, each cell (through its
sensing agent) will monitor the state of other cells and if it determines that
there are not two alarm cells, then it can proactively differentiate into an alarm
cell (albeit with a level of randomness to ensure that not all nodes differentiate
into an alarm cell simultaneously). In the reactive case, when a logging node’s
execution engine attempts to transmit data to the alarm cells, if it receives no
response then it can reactively trigger the differentiation into an alarm cell. Both
variations have been implemented in order to compare the performance of the
two approaches. The detailed implementation description is deferred to App. A.

5.3 Results and Assessment

The case study has been implemented and simulated with Matlab, using a reg-
ular Moore-neighbourhood grid. It illustrates the viability of both the general
approach and the specific architecture that has been proposed. It also uncovers
a number of performance considerations and system design guidelines.

As a first performance metric, we considered the fraction of time the system
was in the ‘up’ state (i.e., a state in which the requirements in terms of presence
of loggers, alarms and analysis nodes were met) as a function of the failure rate of
single genomes. We considered a 10× 10 network, alarms differentiating back to
stem cells after 20 s, stem cells becoming monitors with probability (per second)
of 0.1, loggers differentiating back to stem cells with probability (per second) of
0.001, alarms differentiating to stem cells with probability (per second) of 0.1,
alarms decaying to stem cells with probability of 0.3 in case too many alarms are
present in the system. At the beginning of the simulation, one single genome is
injected into the node at position (1, 2), and is left to replicate and differentiate
in the system. For each value of the genome fault rate, 20 runs were performed,
each one consisting of 3000 iterations of the differentiation process over the
whole system. The genome fault rate (in s−1) was varied between 10−3 to 0.9.
The results obtained are plotted in Fig. 2 on a semi–logarithmic scale. As it can
be seen, the fraction of time spent in an invalid state is only marginally sensitive
to the genome fault probability, an appealing feature for system’s designers.
The presence of a “floor” on the system downtime depends on the high level of
randomness present in the system; in particular the decay of nodes into the stem
cell state leads to a non–zero probability of being in an invalid state even in the
absence of genome faults.

As a second performance metric, we considered the time necessary for the
system to reach a valid state (i.e., able to meet the requirements in terms of
presence of loggers, alarms and analysis nodes) starting from a single genome
injected into the cell (2, 1). Such a parameters provide a measure of the time
needed for a newly deployed system to settle into a valid state. We varied the
network size between 36 and 400 nodes and used a genome failure rate of 0.01
s−1. For each network size considered, 10 independent runs were executed. The
other parameters were set as described above. The results obtained are plotted in

162 D. Miorandi, D. Lowe, and L. Yamamoto

10
−3

10
−2

10
−1

10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Genome Failure Rate (s−1)

F
ra

ct
io

n
of

 T
im

e
th

e
S

ys
te

m
 is

 in
 In

va
lid

 S
ta

te

Fig. 2. Fraction of time the system is in an invalid configuration as a function of the
genome fault rate

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

Number of Nodes

S
ys

te
m

 S
et

up
 T

im
e

(s
)

Fig. 3. Time necessary for reaching a valid configuration starting with a single genome
injected in node (2, 1) as a function of the network size

Fig. 3. The dashed line represents the mean values, while the outcomes of single
runs are reported using triangular markers. As it can be seen, the time to reach
a valid state increase with the network size, growing from ∼ 5 s to ∼ 15 s (in
terms of mean values). Such an increase cannot be ascribed to communication
delays, but is related to the fact that the probabilistic differentiation processes
at the hearth of the example shown require careful tuning of parameters to of-
fer good performance for different network size. In other words, the parameters
driving the transitions between different types should be tuned according to the
network size in order to achieve optimal performance. At the same time, while an
“aggressive” behaviour (with rather high values for differentiation probability,
and hence nodes volunteering more rapidly) can lead to a speed–up of the time
taken to reach a valid state, it may also lead to undesirable oscillation during

Embryonic Models for Self–healing Distributed Services 163

normal operations. This is because too many nodes can differentiate into a par-
ticular role (e.g. the alarm in our scenario). When each node realises that there
are too many volunteers, they then “aggressively” revert back - though again
too many do so, setting up a cycle. This is a combination of high probabilities of
conversion, coupled with the communication delays, meaning that cells make a
differentiation decision before they have data on the fact that they have neigh-
bours who have also done so. We are yet to investigate the circumstances under
which such an oscillatory beahviour may occur.

Overall, the simulation demonstrated that robust fault tolerance, in the event
of both node and genome faults, can be supported quite elegantly. In the case of
genome faults, provided the node can detect a fault in its genome, it can purge
it and allow the replication process to reinsert a new (operational) one. When a
node itself fails then it will remain inoperable, but the simulation demonstrated
that its functionality is subsequently accommodated by other ones.

The simulation also highlighted that in the current architecture the optimal
tuning of the differentiation parameters is dependant upon the network size.
For example, when an alarm differentiates back to a stem cell, logger nodes
will probabilistically differentiate to form new alarm nodes. As the network size
increases, the number of differentiations that occur, for the same probability
parameters, will increase. This behavioural dependence upon network size is
undesired – ideally the performance should be independent of the number of
nodes. 6

A number of genome design issues also emerged from the simulation. It became
evident that network fringe effects need to be considered in designing the genome
behaviours. For example, with a poorly designed genome, it is possible that an
alarm node might appear on the border of the network where the requirement for
two neighbouring analysis nodes cannot be met. This issue could be addressed
in several ways.Nevertheless, this does highlight that careful consideration must
be given to the genome design lest unintended behaviours emerge.

Another interesting behaviour that became apparent was what we might call
the Hydra7 behaviour. If we split the network of nodes into two isolated sub-
networks, then the nodes differentiate in order to create a fully operational sys-
tem in each sub-network, exhibiting a natural self-healing ability.

6 Conclusion

In this paper we have proposed EmbryoWare, an embryonic–inspired architec-
ture for robust and self–healing distributed software. The approach is based on

6 Such a dependence on the network size comes from the fact that the case study has
to satisfy a global constraint (i.e., on the number of alarm nodes in the system). If
only local constrains were present (e.g., one alarm cell shall be present within k hops
from any loggers), the dependence on the network size would blur.

7 The Hydra is a small freshwater animal that exhibits an interesting behaviour. If
it is severed into multiple parts, then each part is capable of morphollaxis – i.e.
reorganising / regenerating to become a fully functioning individual hydra.

164 D. Miorandi, D. Lowe, and L. Yamamoto

each node in the system containing a genome that includes a complete specifi-
cation of the service to be performed, as well as a set of rules that ensure each
node differentiates into the node type required to provide required overall system
behaviour. The simulations that we have performed have examined the case of
genome failure and demonstrated the viability of this approach as well as the
inherent robustness and self-healing that is achieved.

In ongoing work we will be considering other failure scenarios (e.g. link and
node failures, changes in network topology, etc.) and how the system recovers
from these failures. We will also be broadening the basis for analysing the system
performance to include a more thorough analysis of how the tuning of the genome
differentiation rules – and especially the stochastic parameters associated with
decisions on the timing of the differentiation – affect the overall performance.
We will also be evaluating the processing and communication overheads that
this approach introduces, and how these scale with changes in the network size.

A number of additional research questions also emerge from these prelimi-
nary studies. Whilst our simulation captured relatively sophisticated behaviour,
it was still less complex than many applications. It does raise the question of
how complex a genome needs to be in order to provide desired behaviours, and
whether a threshold will be reached where the genome complexity becomes pro-
hibitive. Our evaluation also indicated the importance of considering carefully
the processes required to understand and design for reliability and robustness –
particularly in the context of network fringe effects. Subsequent work will also
need to consider how to handle differences in the capabilities of nodes by ad-
equately taking them into account in the differentiation process. The system
sensitivity to various environmental characteristics, such as network size and
network latency should also be considered.

Other future work could be to complement the EmbryoWare framework with
an apoptosis or programmed cell death scheme, as a reverse operation for the
current replication scheme. Apoptosis could be useful to optimize the place-
ment of redundant functions (e.g. to minimize broadcast, etc.). It could also be
used to deal with security breaches by isolating and killing misbehaving cells, a
mechanism that is necessary when code can propagate in the network by repli-
cation. Apoptosis could also offer a mechanism by which, once the processing is
complete in some regions of the network, nodes could “die” elegantly. Finally,
another topic for future work would be to actually evolve the genome program
to adapt to new situations.

References

1. Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy Jr., G., Knight, T.F., Nagpal,
R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications
of the ACM 43(5), 74–82 (2000)

2. Champrasert, P., Suzuki, J.: A biologically-inspired autonomic architecture for
self-healing data centers. In: 30th IEEE International Conference on Computer
Software and Applications Conference (COMPSAC), vol. 2, pp. 350–352. IEEE,
Los Alamitos (2006)

Embryonic Models for Self–healing Distributed Services 165

3. Coulouris, G.F., Dollimore, J., Kindberg, T.: Distributed systems: concepts and
design. Addison-Wesley Longman, Amsterdam (2005)

4. Deutsch, A., Dormann, S.: Cellular automaton modeling of biological pattern for-
mation: characterization, applications, and analysis. Birkhäuser, Basel (2005)

5. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. IEEE Comp.
Mag. 36(1), 41–50 (2003)

6. Magrath, S.: Morphogenic systems engineering for self-configuring networks, July
2-5 (2007)

7. Mange, D., Stauffer, A., Tempesti, G.: Embryonics: a microscopic view of the
molecular architecture. In: Sipper, M., Mange, D., Pérez-Uribe, A. (eds.) ICES
1998. LNCS, vol. 1478, pp. 185–195. Springer, Heidelberg (1998)

8. Miorandi, D., Yamamoto, L.: Evolutionary and embryogenic approaches to auto-
nomic systems. In: Proc. of ValueTools (InterPerf Workshop), Athens, Greece, pp.
1–12 (2008)

9. Miorandi, D., Yamamoto, L., De Pellegrini, F.: A survey of evolutionary and em-
bryogenic approaches to autonomic networking. Computer Networks (in press,
2009), doi:10.1016/j.comnet.2009.08.021

10. Ortega-Sanchez, C., Mange, D., Smith, S., Tyrrell, A.: Embryonics: a bio-inspired
cellular architecture with fault-tolerant properties. Genetic Programming and
Evolvable Machines 1, 187–215 (2000)

11. Prodan, L., Tempesti, G., Mange, D., Stauffer, A.: Embryonics: artificial stem cells.
In: Proc. of ALife VIII, pp. 101–105 (2002)

12. Saffre, F., Shackleton, M.: “embryo”: an autonomic co-operative service manage-
ment framework. In: Artificial Life XI: Proc. 11th Int. Conf. Simulation and Syn-
thesis of Living Systems, pp. 513–520. MIT Press, Cambridge (2008)

13. Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century.
Computer 36(3), 25–31 (2003)

14. Stauffer, A., Mange, D., Tempesti, G., Teuscher, C.: A Self-Repairing and Self-
Healing Electronic Watch: The BioWatch. In: Evolvable Systems: From Biology to
Hardware. LNCS, vol. 2210, pp. 112–127. Springer, Heidelberg (2001)

15. Tempesti, G., Mange, D., Stauffer, A.: Bio-inspired computing architectures: the
embryionics approach. In: Proc. of IEEE CAMP (2005)

A Detailed Use–Case Implementation Description

To illustrate a specific Genome pattern, we describe the execution and differen-
tiation behaviours for the case where the genome responds reactively to failures
to find logger and alarm nodes. Algorithm 4 describes the execution behaviours.
As can be seen, a monitor node can reactively trigger a differentiation into a
logger node when required, and a logger node can reactively trigger a differenti-
ation into an alarm node when required. Algorithm 5 shows both the proactive
and reactive differentiation behaviours for the genome. The proactive differentia-
tion is triggered by the relevant sensing of the node neighbourhood, whereas the
reactive differentiation is triggered by events occurring in the execution engine.

166 D. Miorandi, D. Lowe, and L. Yamamoto

– Stem cell:

None

– Faulty cell:

None

– Monitor cell:

every TM generate sample S
repeat

transmit S to logger
if transmission failed then

search 2-hop neighbourhood for logger
if no logger found then

trigger reactive differentiation
until S processed

– Logger cell:

accept, record all Monitor samples
accept, register all Alarm beacons
every TL

while recorded samples still to be transmitted do
attempt transmit samples to all alarms
for all alarm cells that do not respond do

deregister alarm
if < 2 registered alarms then

trigger reactive differentiation.

– Analysis cell:

accept, process Alarm requests

– Alarm cell:

accept, process Logged data
send Alarm requests to analysis cells

Algorithm 4. Execution behaviours for typical Genome for data logging applica-
tion.

– Stem cell:

Proactive: with probability PT toM ⇒ Type←Monitor

– Faulty cell:

None

– Monitor cell:

Reactive: no logger ⇒ Type← Logger
Proactive: alarm neighbour has < 2 analysis cells ∧ offer accepted⇒ Type← analysis
Proactive: probability PMtoT ⇒ Type← Stem

– Logger cell:

Reactive: if < 2 alarms found, with probability PLtoA ⇒ Type ← Alarm, broadcast
beacon
Proactive: with probability PLtoT ⇒ Type← Stem

– Analysis cell:

Proactive: alarm not responding ⇒ Type← Stem

– Alarm cell:

Proactive: > 2 registered alarms ∧ probability PMAtoT ⇒ Type← Stem
Proactive: active for > TAlm ∧ probability PMtoT ⇒ Type← Stem

Algorithm 5. Differentiation behaviours for typical Genome for data logging ap-
plication.

	Embryonic Models for Self–healing Distributed Services
	Introduction
	Background and Related Work
	Embryoware: Embryonic Software
	Architecture and Components

	Algorithms for Embryonic Software
	Sensing Process
	Differentiation Process
	Replication Process

	Evaluation on a Decentralized Monitoring Scenario
	Case Study Description
	Cell Types and Their Behavior
	Results and Assessment

	Conclusion
	References
	Detailed Use–Case Implementation Description

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

