
A Performance Analysis of EC2 Cloud
Computing Services for Scientific Computing

Simon Ostermann1, Alexandru Iosup'' , Nezih Yigitbasi", Radu Prod an 1,
Thomas Fahringer", an d Dick Eperna/

1 University of Innsbruck, Austria
simon~dps.uibk .ac .at , radu~dps . u ibk . ac . at, tf~dps.uibk .ac .at

2 Delft University of Technology, The Netherlands
A .losup~tudelft .nl , M .N.Yigitbasi~tudelft .nl , D .H . J .Epema~tudelft .nl

Abstract. Cloud Computing is emerging today as a commercial infras­
truc ture that eliminates the need for maintaining expensive computing
hardware. Through the use of virtualization, clouds promise to address
with the same shared set of physical resources a large user base with dif­
ferent needs. Thus, clouds promise to be for scientists an alternative to
clusters , grids, and supercomputers. However, virtualization may induce
significant performance penalties for the demanding scientific computing
workloads. In this work we present an evaluation of the usefulness of the
current cloud computing services for scientific computing. We analyze
the performance of the Amazon EC2 platform using micro-benchmarks
and kernels.While clouds are st ill changing, our results indicate that the
current cloud services need an order of magnitude in performance im­
provement to be useful to the scientific community.

1 Introduction

Scient ific comp uting requires an ever-increas ing numbe r of resources to deliver
results for growing problem sizes in a reasonable t ime frame. In t he last decade,
while t he largest research projects were able to afford expensive supe rcompute rs,
ot her projects were forced to opt for chea per resources such as commodity clus­
ters and grids . Cloud computing pro poses an alternative in which resources are
no longer hosted by t he researcher 's computatio na l facilit ies, but leased from big
dat a centers only when needed. Despite t he existence of several cloud comput ing
vendo rs , such as Amazon [4J an d GoGrid [13], the potenti al of clouds remains
largely unexplored . To address t his issue, in this paper we present a performance
analysis of cloud computing services for scienti fic comp uting.

The cloud computing par adigm holds good pro mise for the perform ance­
hungry scient ific community. Clouds promise to be a chea p alte rnat ive to super­
computers and specialized clust ers, a much more reliable platform t ha n grids,
and a much more scalable platform t ha n t he largest of commodity clusters or
resource poo ls. Clouds also promise to "scale by credit card, " t ha t is, sca le up
immediately and te mpora rily wit h the only limits imposed by financial reasons,
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Table 1. A selection of cloud service providers. VM stands for virtual machine, S for
storage .

Service type Examples
VM,S Amazon (EC2 and 83), Mosso (+CloudFS) , ...
VM GoGrid , Joyent , infrastructures based on Condor

Glide-in [28]/Globus VWS [121/Eucalyptus [21], ...
S Nirvanix, Akamai, Mozy, ...
non-IaaS 3Tera, Google AppEngine, Sun Network, ...

as opposed to the physical limits of adding nodes to clusters or even supercom­
puters or to the financial burden of over-provisioning resources. However, clouds
also raise important challenges in many areas connected to scientific computing,
including performance , which is the focus of this work.

An important research question arises: Is the performance of clouds sufficient
for scientific computing? Though early attempts to characterize clouds and other
virtualized services exist [33,10,23,29], this question remains largely unexplored.
Our main contribution towards answering it is:

1. We evaluate the performance of the Amazon Elastic Compute Cloud (EC2),
the largest commercial computing cloud in production (Section 3);

2. We assess avenues for improving the current clouds for scientific comput­
ing; this allows us to propose two cloud-related research topics for the high
performance distributed computing community (Section 4).

2 Amazon EC2

We identify three categories of cloud computing services: Infrastructure-as-a­
Service (IaaS) , that is, raw infrastructure and associated middleware, Platform­
as-a-Service (PaaS) , that is, APls for developing applications on an abstract
platform, and Software-as-a-Service (SaaS), that is, support for running software
services remotely. The scientific community has not yet started to adopt PaaS
or SaaS solutions , mainly to avoid porting legacy applications and for lack of
the needed scientific computing services, respectively. Thus, in this study we are
focusing on IaaS providers.

Unlike traditional data centers , which lease physical resources, most clouds
lease virtualized resources which are mapped and run transparently to the user
by the cloud's virtualization middleware on the cloud's physical resources. For
example, Amazon EC2 runs instances on its physical infrastructure using the
open-source virtualization middleware Xen [7] . By using virtualized resources
a cloud can serve with the same set of physical resources a much broader user
base; configuration reuse is another reason for the use of virtualization. Scientific
software, compared to commercial mainstream products, is often hard to install
and use [8] . Pre- and incrementally-built virtual machine (VM) images can be
run on physical machines to greatly reduce deployment time for software [20].
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Table 2. The Amazon EC2 instance types. The ECU is the CPU performance unit
defined by Amazon.

::-i'ame ECUs RAM Archi I/O Disk Cost Reserve Reserved Cost
(Cores) [GB] [bit] Perf. [GB] [$/h] [$/y], [$/3y] [$/h]

m1 .small 1 (1) 1.7 32 Med 160 0.1 325,500 0.03
ml.large 4 (2) 7.5 64 High 850 0.4 1300,2000 0.12
m1.xlarge 8 (4) 15.0 64 High 1690 0.8 2600,4000 0.24
c1.medium 5 (2) 1.7 32 Med 350 0.2 650, 1000 0.06
c1.xlarge 20 (8) 7.0 64 High 1690 0.8 2600, 4000 0.24

Many clouds alread y exist , but not all provide virtualization , or even comput­
ing services. Table 1 summarizes th e characteristics of several clouds currently
in production; of these, Amazon is the only commercial IaaS provider with an
infrastructure size th at can accommodate ent ire grids and parallel production
infrastructures (PPI) workloads.

EC2 is an IaaS cloud computing service th at opens Amazon's large com­
puting infrastructure to it s users . The service is elastic in the sense that it
enab les the user to extend or shrink his infrastructure by launching or terminat­
ing new virtual machines (instances). The user can use any of the five instance
types current ly available on offer , th e characteristics of which are summarized in
Table 2. An ECU is the equivalent CPU power of a 1.0-1.2 GHz 2007 Opteron or
Xeon processor . The theoretical peak performance can be computed for different
instances from the ECU definition: a 1.1 GHz 2007 Opteron can perform 4 flops
per cycle at full pipeline, which means at peak performance one ECU equa ls 4.4
gigaflops per second (GFLOPS) . Inst ances can be reserved in advanced for one
or three years per location which results in a lower hourly cost let t ing user with
long usage periods benefit in a subscription way.

To create an infrastructure from EC2 resources, the user first requires the
launch of one or several instances, for which he specifies the instance type and
the VM image; the user can specify any VM image previously registered with
Amazon, including Amazon's or the user's own. Once th e VM image has been
transparently deployed on a physical machine (the resource st atus is running),
the instance is booted; at the end of the boot process the resource status be­
comes installed. The installed resource can be used as a regular comput ing node
immediately after th e booting process has finished, via an ssh connection . A
maximum of 20 instances can be used concurrently by regular users; an appli­
cation can be made to increase this limit . The Amazon EC2 does not provide
job execution or resource management services; a cloud resource management
system can act as middleware between th e user and Amazon EC2 to reduce re­
source complexity. Amazon EC2 abides by a Service Level Agreement in which
the user is compensated if the resources are not available for acquisition at least
99.95% of the time, 365 days/ year . The security of the Amazon services has been
investigated elsewhere [23].
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Table 3. The benchmarks used for cloud performance evaluation. B, FLOP, U, MS,
and PS stand for bytes, floating point operations, updates, makespan, and per second,
respectively. The other acronyms are described in the text.

Type Suite/ Benchmark Resource Unit
SJSI 1mbench/ all Many Many
SJSI Bonnie/ all Disk MBps
SJSI CacheBench/ all Memory MBps
SJMI HPCC/HPL CPU, float GFLOPS
SJMI HPCC/DGEMM CPU, double GFLOPS
SJMI HPCC/STREA),l Memory GBps
SJMI HPCC/ RandomAccess Network MUPS
SJMI HPCC/b e f f Memory tis , GBps

3 Cloud P erformance Evaluation

In this section we present a performance evaluation of cloud computing services
for scienti fic computing.

3.1 Method

We design a performance evaluation method , that allows an assessment of clouds.
To this end, we divide the evaluation procedure into two par ts, t he first cloud­
specific, the second infrastructure-agnostic.

Cloud-specific evaluation. An attractive promise of clouds is that t here are
always unused resources, so that t hey can be obtained at any time without addi­
tional wait ing t ime. However, t he load of ot her large-scale systems (grids) varies
over time due to submission patterns; we want to investigate if large clouds can
indeed bypass this problem. Thus, we test the dur ation of resource acquisition
and release over short and long periods of time. For the short -t ime periods one
or more instances of the same instance type are repeatedly acquired and re­
leased during a few minutes; the resource acquisition requests follow a Poisson
process with arrival rate ,\ = Is. For the long periods an instance is acquired
then released every 2 min over a period of one week, th en hourly averages are
aggrega ted from the 2-minutes samples taken over a period of one month.

In frastructure-agnost ic evaluation. The re currently is no single accepted
benchmark for scientific computing at large-scale. In particular , there is no such
benchmark for the common scientific computing scenar io in which an infras­
t ruct ure is shared by several independent jobs, despite the large performance
losses that such a scenario can incur [5] . To address this issue, our method both
uses t rad itional benchmarks comprising suites of jobs to be run in isolation and
replays workload tr aces taken from real scientific comput ing environments .

We design two types of test workloads: SJSI /MJSI- run one or more single­
process jobs on a single instance (possibly with mult iple cores) and SHU-run a
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Table 4. The EC2 VM images. FC6 stands for Fedore Core 6 as (Linux 2.6 kernel).

EC2 VM image Software Archi Benchmarks
ami-2bb65342 FC6 32bit Bonnie & LMbench
ami-36ffla5f FC6 64bit Bonnie & LMbench
ami-3e836657 FC6 & MPI 32bit HPCC
ami-e813f681 FC6 & MPI 64bit HPCC

single mult i-process jobs on multiple instances. The SJSI, MJSI, and SJMI work­
loads all involve executing one or more from a list of four open-source bench­
marks: LMbench [17], Bonnie [9], CacheBench [18], and th e HPC Challenge
Benchmark (HPCC) [15]. The characte rist ics of the used benchmarks and th e
mapping to the test workloads are summarized in Table 3.

Performance metrics, We use the performance metrics defined by the bench­
marks used in thi s work. We also define and use the HPL efficiency for a real
virtual cluster based on instance type T as the rat io between th e HPL benchmark
performance of the cluster and the performance of a real environment formed
with only one instance of same type, expressed as a percentage.

3.2 Experimental Setup

We now describe the experimenta l setup in which we use the performance eval­
uation method presented ear lier.

Environment. We perform all our measurements on the EC2 environment .
However, thi s does not limit our result s, as there are sufficient reports of per­
forma nce values for all the Single-Job benchmarks, and in particular for the
HPCC [2] to compare our results with . For our experiments we build homoge­
neous environments with 1 to 128 cores based on the five EC2 instance types.

Amazon EC2 offers a wide range of ready-made machine images. In our ex­
periments , we used the images listed in Table 4 for the 32 and 64 bit instances;
all VM images are based on a Fedora Core 6 as with Linux 2.6 kernel. The VM
images used for the HPCC benchmarks also have a working pre-configured MPI
based on the mpich2-1. 0 .5 [31J implementation .

Optimizations, tuning. The benchmarks were compiled using GNU C/ C++
4.1 with the -03 - f unr oll- l oops command-line arguments . We did not use
any additional architecture- or instance-dependent optimizations. For the HPL
benchmark , the performance result s depend on two main factor s: th e Basic Lin­
ear Algebra Subprogram (BLAS) [11] library, and the problem size. We used in
our experiments th e GotoBLAS [30J library, which is one of the best portable
solutions freely available to scientists . Searching for the problem size that can
deliver peak performance is extensive (and cost ly); instead , we used a free math­
ematic al problem size analyzer [3] to find the problem sizes th at can deliver
results close to the peak performance: five problem sizes ranging from 13,000 to
55,000.
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Fig. 1. Resource acquisition and release overheads for acquiring single instances

3.3 Experimental Results

The experimental results of the Amazon EC2 performance evaluat ion are pre­
sented in the following.

Resource Acquisition and Release. We study three resource acquisition and
release scenarios: for single instances over a short period, for multiple instances
over a short period, and for single instances over a long period of time.

Single instances. We first repeat 20 times for each of the five instance types a
resource acquisition followed by a release as soon as the resource status becomes
installed (see Section 2). Figure 1 shows the overheads associated with resource
acquisit ion and release in EC2. The total resource acquisition t ime (Total) is the
sum of t he Install and Boot t imes. The Release time is the ti me taken to release
the resource back to EC2; after it is released the resource stops being charged
by Amazon. The cl. * instances are surprisingly easy to obtain; in cont rast , the
ml .* instances have for the resource acquisition time higher expectation (63-90s
compared to around 63s) and variability (much larger boxes). With the exception
of the occasional out lier, both the VM Boot and Release times are stable and
represent about a quarter of Total each.

Multiple instances. We investigate next the performance of requesting the ac­
quisition of multiple resources (2,4,8,16, and 20) at the same time; this
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Fig . 2. Instance resource acquisition and release overheads when acquiring multiple
c1.xlarge instances at the same time

corresponds to the real-life scenario where a user would create a homogeneous
cluster from Amazon EC2 resources. When resources are requested in bulk,
we record acquisition and release times for each resource in the request , sep­
arately. Figure 2 shows the basic statistical properties of the times recorded for
c1.xl ar ge inst ances. The expectation and the variability are both higher for
multip le instances than for a single instance.

Long-term investigation. Last , we discuss the Install t ime measurements
published online by the independent CloudStatus team [1]. We have written
web crawlers and parsing tools and ta ken samples every two minutes between
Aug 2008 and Nov 2008 (two months). We find that the time values fluctuate
within the expected range (expected value plus or minus the expected variabil­
ity). We conclude that in Amazon EC2 resources can indeed be provisioned
without addit ional waiting t ime due to system overload.

Performance of SJSI Workloads. In this set of experiments we measure
the raw performance of the CPU , I/ O, and memory hierarchy using the Single­
Inst ance benchmarks listed in Section 3.1.

Compute performance. We assess the computational performance of each in­
stance type using the entire LMbench suite. The performance of int and int64
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opera t ions, and of th e float and doub le float operations is depicted in Figure 3 top
and bottom, respectively. The GOPS recorded for the float ing point and double
operations is 6 - 8x lower than the theoretical maximum of E CU (4.4 GOPS).
Also, the double float performance of the ct ,* instances, argua bly th e most
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Table 5. The I/ O performance of the Amazon EC2 instance types and of 2002 [14]
and 2007 [6] systems

Seq. Output Seq. Input Rand.
Instance Char Block Rewrite Char Block Input

Type [MB/ s] [MB/ s] [MB/s] [MB/ s] [MB / a] [Seek / s]

ml.s mall 22.37 60.18 33.27 25.94 73.46 74.4
ml.large 50.88 64.28 24.40 35.92 63.20 124.3
m1.xlarge 56.98 87.84 33.35 41.18 74.51 387.9
c1.medium 49.15 58.67 32.80 47.43 74.95 72.4
c1.xlarge 64.85 87.82 29.96 44.98 74.46 373.9
'02 Ext3 12.24 38.75 25.66 12.67 173.68 -
'02 RAID5 14.45 14.32 12.19 13.50 73.03 .
'07 RAID5 30.88 40.63 29.03 41.91 112.69 192.9

import ant for scientific computing, is mixed : excellent addition but poor multipli­
cation capabilities. Thus, as many scientific comp uting applications use heavily
both of t hese operations, the user is faced wit h the difficult problem of selecting
between two choices where none is optimal. Finally, several floating and double
point operations take longer on c i.medium than on mi. small.

I/O performance . We assess the I/ O performance of each instance type with
the Bonnie benchmarks, in two steps. The first step is to determine the smallest
file size that invalidates the memory-based I/O cache, by running the Bonnie
suite for thirteen file sizes in the range 1024 Kilo-binary byte (KiB) to 40 GiB.
Figure 4 depicts the resu lts of the rewrite with sequential output benchmark,
which involves sequences of read-seek-write operations of data blocks that are
dirtied before writing. For all instance types, a performance drop begins wit h the
100MiB test file and ends at 2GiB , indicating a capacity of t he memory-based
disk cache of 4-5GiB (twice 2GiB). Thus, the resu lts obtained for the file sizes
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instance

above 5GiB correspond to the real I/O performance of the system; lower filesizes
would be served by the system with a combination of memory and disk opera­
tions . We analyze the I/O performance obtained for files sizes above 5GiB in the
second step ; Table 5 summarizes the results. We find that the I/O performance
indicated by EC2 (see Table 2) corresponds to the achieved performance for ran­
dom I/O operations (column 'Rand. Input' in Table 5). The * .xlarge instance
types have the best I/O performance from all instance types . For the sequen­
tial operations more typical to scientific computing all EC2 instance types have
in general better performance when compared with similar modern commodity
systems, such as the systems described in the last three rows in Table 5.

Memory hierarchy performance. We test the performance of the memory
hierarchy using CacheBench on each instance type. Figure 5 depicts the perfor­
mance of the memory hierarchy when performing the Rd-Mod-Wr benchmark
with 1 benchmark process per instance. The ct ,* instances perform very similar,
almost twice as good as the next performance group formed by mi. xlarge and
mi. large; the mi. small instance is last with a big performance gap for working
sets of 217_219B. We find the memory hierarchy sizes by extracting the major
performance drop-offs. The visible LI /L2 memory sizes are 64KB/IMB for the
mi .* instances ; the ci .* instances have only one performance drop point around
2MB (L2). Looking at the other results (not shown), we find that L1 c i . * is only
32KB. For the Rd and Wr unoptimized benchmarks we have obtained similar



A Performance Analysis of EC2 Cloud Computing Services 125

~ 100

(i) 24 75

0..a
~...J

LL ~

Q. c-,
o

Q) 16 50 co Q)c ' (3co
E !E
.g w

Q)
0.. 8 25

o 0

L1NPACK Efficiency ['!oj -

2 4

Number of Nodes
UNPACKPerformance[GFLOPSj _

8 16

Fig. 6. The HPL (LINPACK) performance of mi.small-based virtual clusters

results up to the L2 cache boundary, after which the performance of mi .xlarge
drops rapidly and the system performs worse than ml . l ar ge. We speculate on
the existence of a throttling mechanism installed by Amazon to limit resource
consumption. If this is true, the performance of computing applications would
be severely limited when the working set is near or past the L2 boundary.

Reliability. We have encountered several system problems during the SJSI ex­
periments. When running the LMbench benchmark on a cl. mediurn instance
using the default VM image provided by Amazon for this architecture, the test
did not complete and the instance became partially responsive; the problem was
reproducible on another instance of the same type . For one whole day we were no
longer able to start instances-any attempt to acquire resources was terminated
instantly without a reason. Via the Amazon forums we have found a solution
to the second problem (the user has to perform manually several account /setup
actions); we assume it will be fixed by Amazon in the near future.

Per formance of SJMI Wor kloads. In this set of experiments we measure
the performance delivered by homogeneous clusters formed with EC2 instances
when running the Single-Job-Multi-Machine (in our case Instance) benchmarks.
For these tests we execute the HPCC benchmark on homogeneous clusters of
size 1-16 instances.

HP L per for mance . The performance achieved for the HPL benchmark on
various virtual clusters based on the ml . small instance is depicted in Figure 6.
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Table 6. HPL performance and cost comparison for various EC2 instance types

Peak GFLOPS GFLOPS
Name Perf. GFLOPS / ECU / $1
m1.small 4.4 1.96 1.96 19.6
ml.large 17.6 7.15 1.79 17.9
m1.xlarge 35.2 11.38 1.42 14.2
c1.medium 22.0 3.91 0.78 19.6
c1.xlarge 88.0 49.97 2.50 62.5

Table 7. The HPCC performance for various platforms. HPCC-x is the system with
the HPCC ID x [2].

Peak Perf. HPL STREAM RandomAc. Latency Bandw.
Provider, System [GFLOPS] [GFLOPS] [GBps] [MUPs] [ps] [GBps]

EC2, m1.small 4.40 1.96 3.49 11.60 - -
EC2, ml.large 17.60 7.15 2.38 54.35 20.48 0.70
EC2, m1.xlarge 35.20 11.38 3.47 168.64 17.87 0.92
EC2, c1.medium 22.00 3.91 3.84 46.73 13.92 2.07
EC2, c1.xlarge 88.00 51.58 15.65 249.66 14.19 1.49
EC2, 16 x m1.small 70.40 27.80 11.95 77.83 68.24 0.10
EC2, 16 x c1.xlarge 1408.00 425.82 16.38 207.06 45.20 0.75
HPCC-228, 8 cores 51.20 27.78 2.95 10.29 5.81 0.66
HPCC-227, 16 cores 102.40 55.23 2.95 10.25 6.81 0.66
HPCC-224, 128 cores 819.20 442.04 2.95 10.25 8.25 0.68

The cluster with one node was able to achieve a perform ance of 1.96 GFLOPS,
which is 44.54% from the peak performance advertised by Amazon . For 16 in­
st ances we have obtained 27.8 GFLOPS, or 39.4% from th e theoret ical peak and
89% efficiency. We further investigate the performance of t he HPL benchmark
for different inst ance types; Table 6 summa rizes the results. The c1 .xlarge
inst ance achieves good performance (51.58 out of a t heoretical performance of
88 GFLOPS, or 58.6%), but t he ot her instance types do not reach even 50% of
t heir theoretical peak performance. The low performance of c1 .medium is due to
t he reliability problems discussed later in this sect ion. Cost -wise, t he ct .xlarge
instance can achieve up to 64.5 GFLOPSj$ (assuming an already inst alled in­
stance is present) , which is th e best measured value in our test . This instance
type also has in our test s t he best ratio between its Amazon ECU rating (column
"ECUs" in Table 2) and achieved perfor mance (2.58 GFLOPSjECU).

HPCC performance. To obtain t he performance of virtual EC2 clusters we
run the HPCC benchmarks on unit clusters comprising one inst ance, and on
16-core clusters comprising at least two inst ances. Table 7 summarizes the ob­
t ained result s and, for comparison, results publi shed by HP CC for four modern
and similarly-sized HP C clusters [2]. For HPL, only t he perform ance of t he
c1 .xlarge is comparable to that of an HP C system. However, for DGEMM,
STRE AM, and RandomAccess t he perform ance of t he EC2 clusters is similar or
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better than the performance of the HPC clusters. We attribute this mixed be­
havior to the network characterist ics: the EC2 platform has much higher latency,
which has an important negat ive impact on the performance of the HPL bench­
mark. In part icular, this relatively low network performance means that the
ratio between the theoretical peak performance and achieved HPL performance
increases with the number of instances, making the virtual EC2 cluste rs poorly
scalable. Thu s, for scientific computing applicat ions similar to HPL the virtual
EC2 clusters can lead to an order of magnitude lower performance for large sys­
tem sizes (1024 cores and higher), while for other types of scientific comput ing
the virtual EC2 clusters are already suitable execut ion environments.

Reliability. We have encounte red several reliability problems durin g these ex­
periments ; the two most important were related to HPL and are reproducible.
First , the ml .large instances hang for an HPL problem size of 27,776 (one pro­
cess blocks). Second, on the cl.medium instance HPL cannot complete problem
sizes above 12,288 even if these should st ill fit in the available memory; as a
result , the achieved performance on cl.medium was much lower than expected.

4 How to Improve Clouds for Scientific Computing?

Tuning applications for virtualized resources: We have shown through­
out Section 3.3 that there is no "best"-performing instance type in clouds-each
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instance type has preferred instruction mixes and types of applications for which
it behaves better than the others. Moreover, a real scientific application may ex­
hibit unstable behavior when run on virtualized resources. Thus, the user is
faced with the complex task of choosing a virtualized infrastructure and then
tuning the application for it. But is it worth tuning an application for a cloud?
To answer this question , we use from CacheBench the hand-tuned benchmarks
to test the effect of simple, portable code optimizations such as loop unrolling
etc. We use the experimental setup described in Section 3.2. Figure 7 depicts
the performance of the memory hierarchy when performing the Wr hand-tuned
then compiler-optimized benchmark of CacheBench on the c i .xlarge instance
types, with 1 up to 8 benchmark processes per instance . Up to the L1 cache size,
the compiler optimizations to the unoptimized CacheBench benchmarks leads
to less than 60% of the peak performance achieved when the compiler optimizes
the hand-tuned benchmarks. This indicates a big performance loss when run­
ning applications on EC2, unless time is spent to optimize the applications (high
roll-in costs) . When the working set of the application falls between the L1 and
L2 cache sizes, the performance of the hand-tuned benchmarks is still better,
but with a lower margin. Finally, when the working set of the application is
bigger than the L2 cache size, the performance of the hand-tuned benchmarks
is lower than that of the unoptimized applications. Given the performance dif­
ference between unoptimized and hand tuned versions of the same applications,
and that tuning for a virtual environment holds promise for stable performance
across many physical systems, we raise as a future research problem the tuning
of applications for cloud platforms.

Newproviders seem to address most of the bottlenecks weidentified in this work
by providing cloud instances with high speed interconnections like penguin com­
puting [24] with their Penguin on Demand™(PODTM) and HPC as a Service"
offers. HPC as a Service extends the cloud model by making concentrated, non­
virtualized high-performance computing resources available in the cloud.

5 Related Work

There has been a spur of research activity in assessing the performance of virtu­
alized resources, in cloud computing environments and in general [33,10,23,29,
21,19,32,26,27]. In contrast to these studies, ours targets computational cloud
resources for scientific computing, and is much broader in size and scope: it per­
forms much more in-depth measurements, compares clouds with other off the
shelf clusters.

Close to our work is the study of performance and cost of executing the
Montage workflow on clouds [10]. The applications used in our study are closer
to the mainstream HPC scientific community. Also close to our work is the
seminal study of Amazon S3 [23], which also includes an evaluation of file
transfer between Amazon EC2 and S3. Our work complements this study by
analyzing the performance of Amazon EC2, the other major Amazon cloud ser­
vice. Several small-scale performance studies of Amazon EC2 have been recently
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conducted: the study of Amazon EC2 performance using the NPB benchmark
suite [29], the early comparative study of Eucalyptus and EC2 performance [21],
etc . Our performance evaluation results extend and complement these previous
findings, and give more insights into the loss of performance exhibited by EC2
resources.

On the other hand scientists begin to adapt the cloud infrastructure for their
scientific computing. They run their calculations in the cloud [16], extend clusters
on demand with IaaS resources [10] and execute big workflows on a resource mix
from traditional grids and clouds [22]. This shows the growing importance of
IaaS cloud providers for scientific computing and the need to have performance
estimates for the different offered types beyond the marketing information offered
by the providers.

6 Conclusions and Future Work

With the emergence of cloud computing as the paradigm in which scientific
computing is done exclusively on resources leased only when needed from big
data centers , e-scientists are faced with a new platform option . However, the
initial target of the cloud computing paradigm does not match the characteristics
of the scientific computing workloads. Thus, in this paper we seek to answer an
important research question: Is the performance of clouds sufficient for scientific
computing'? To this end, we perform a comprehensive performance evaluation
of a large computing cloud that is already in production. Our main finding is
that the performance and the reliability of the tested cloud are low. Thus , this
cloud is insufficient for scientific computing at large, though it still appeals to
the scientists that need resources immediately and temporarily. Motivated by
this finding, we have analyzed how to improve the current clouds for scientific
computing, and identified two research directions which hold each good potential
for improving the performance of today's clouds to the level required by scientific
computing. New provider [24] seem to address this directions and we plan to test
their services to see if they can hold their claims.

We will extend this work with additional analysis of the other services offered
by Amazon: Storage (S3), database (SimpleDB), queue service (SQS), Private
Cloud, and their inter-connection. We will also extend the performance evalu­
ation results by running similar experiments on other IaaS providers [25] and
clouds also on other real large-scale platforms, such as grids and commodity
clusters . In the long term, we intend to explore the two new research topics that
we have raised in our assessment of needed cloud improvements.
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