Combining Cloud and Grid with a User Interface

Jiaqi Zhao', Jie Tao?, Mathias Stuempert?, and Moritz Post?

! School of Basic Science, Changchun University of Technology, PR. China
% Steinbuch Center for Computing, Karlsruhe Institute of Technology, Germany
jie.taoliwr.fzk.de
3 Innoopract Informationssysteme GmbH, Karlsruhe, Germany

Abstract. Increasing computing clouds are delivered to customers. Each cloud,
however, provides an individual, non-standard user interface. The difference in
cloud interfaces must burden the users when they work with several clouds for
acquiring the services with expected price. This paper introduces an integrated
framework that can be used by cloud users to access the underlying services in a
uniform, cloud-independent manner. The framework is an extention of a graphical
grid user interface developed within the g-Eclipse project. The goal of building a
cloud user interface on top of a grid interface is to combine clouds and grids into
a single realm, allowing an easy interoperation between the two infrastructures.

1 Introduction

Since Amazon announced its computing cloud EC2 [1] and storage cloud S3 [2], cloud
computing becomes a hot topic. As a consequence, a number of cloud infrastructures
have been established, both for commercial and research purpose. Examples are Google
App Engine [13], Microsoft Live Mesh [15], Nymbus[8], Cumlus [16], Eucalyptus [5],
and OpenNybula [4]. Currently, most of the cloud projects focus on Infrastructure as a
Service and Software as a Service, but we are sure that other topics, such as Software
as Platform as a Service and HPC as a Service, will be addressed in the near future.

Actually, cloud computing is not a completely new concept. It has similar features
with grid computing. A detailed comparison between these two paradigms can be found
in [11]. Grid computing has been investigated for thirty years. Many grid infrastruc-
tures, especially those at the international level, were well established. Hence, cloud
computing will not replace grid computing; rather it provides the user community with
additional computing platforms.

Grid computing has ever faced a problem: different middlewares have own require-
ment for accessing the infrastructure. This problem was solved by building an ab-
stract layer to hide the middleware-specific implementation [7,14]. Cloud computing
has the same problems. Currently, each cloud offers a different user interface, mostly
command-line, requiring the user to install their client software and learn how to use
the commands to request the services.

Our solution is an integrated, intuitive platform that can be used as a generic, stan-
dard interface to access any cloud. Users see an identical view, no matter which cloud
is accessed. Furthermore, the interface uses graphical presentation, which is easier to
operate than command-line options. Besides serving as a cloud interface, the platform

D.R. Avresky et al. (Eds.): Cloudcomp 2009, LNICST 34, pp. 103-111, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

104 J. Zhao et al.

is also a bridge to connect the cloud with the grid. In this case, we build the cloud user
interface on top of an existing grid framework that was developed within the g-Eclipse
project.

g-Eclipse [7,10] aims at providing a generic framework that allows users to access
the power of the existing grid infrastructures via a standardized, customizable, and intu-
itive interface. This framework is designed for all grid users, operators, and application
developers. Grid users can interact with grid resources in a simple, graphical way with-
out having to know the technical details. For example, files can be transferred across
grid sites by drag&drop; job submission needs only a mouse click. Resource providers
can use the intuitive tools to operate and maintain the grid sites, manage the virtual orga-
nizations, and perform benchmarking. Application developers reduce the development
cycle with the g-Eclipse support of remote building and deployment tools.

g-Eclipse is designed to support users of various virtual organizations. It uses a lay-
ered infrastructure with middleware-independent interfaces and middleware specific
functionalities. Currently, standard middleware functionalities are provided.

This work extends g-eclipse with a cloud-independent infrastructure, including edi-
tors and views for service presentation and templates for supporting cloud programming
models. Based on this infrastructure, various cloud platforms can be connected to the g-
Eclipse framework with an individual implementation for accessing the specific cloud.
This paper describes the design of the cloud infrastructure and the connection to the
Amazon EC2 as an example.

The remainder of the paper is organized as following. Section 1 first gives an intro-
duction to the g-Eclipse framework. This is followed by the concept and design of an
integrated cloud user interface in Section 3. Section 4 describes our initial implemen-
tation of the proposed concept with EC2 and demonstrates how to access this cloud
via the extended g-Eclipse framework. The paper concludes in Section 5 with a brief
summary and several future directions.

2 g-Eclipse: Building a Framework to Access the Power of the
Grid

The g-Eclipse framework was originally designed to provide a high-level abstraction
for accessing grid infrastructures based on traditional grid middleware systems such as
gLite [6] or GRIA [9]. It is build on top of the well-known Eclipse framework [12]
and makes extensive use of its design-patterns. The abstraction layer — called the Grid
Model — unifies the structure and functionality of grids in a set of well defined Java
interfaces. Basic implementations of these interfaces for generic functionalities, as well
as a Ul layer, are provided to present and access underlying infrastructures in a stan-
dardized way. On top of these core parts, middleware specific implementations of the
Grid Model can be plugged-in. This so called implementation layer enables the access
to infrastructures based on the corresponding middlewares.

So far the g-Eclipse project has integrated two different middlewares, i. e. gLite
which focuses on the scientific user and GRIA which targets industry and commerce.
The current gLite implementation covers all use-cases foreseen in the Grid Model.
Therefore, this part may be seen as finalized. The GRIA implementation is in an early

Combining Cloud and Grid with a User Interface 105

Preeiend 1 Buflpd [Puized O semdfon 2 roufis pd
Overview L

General trformation Jab Befinition

Application Besources Page

Duta Staging

e et rewfle ad

@ freriog | ik Wealsacen

0 se] uetodfese

POOOOOOOOOOOOE A Fhin vmj

Fig. 1. Screenshot of the g-Eclipse user interface

state and mainly covers the grid user’s use cases. Further development, e.g. for Globus
Toolkit 4, is currently ongoing.

Fig. 1 shows a screenshot of the g-Eclipse framework for grid users. The left column
of the platform is a Grid Project view where all projects created by the user are depicted.
Project is a fundamental concept in g-Eclipse. It is the interface for any grid operations.
Hence, a project has to be created before any action can be invoked.

The concrete view in Fig. 1 contains four projects where the last one, with the name
of g-Eclipse, was expended. Each project consists of several folders for storing tempo-
ral files and for presenting information. For example, all established grid connections
can be found in the folder “Connection”. The lower window on the right side of Fig. 1
depicts the contents of this folder. The three connections are built for different ma-
chines to transfer data. Files can be moved from one machine to another by drag&drop.
The folder *“Job Description” holds all job descriptions that define computing tasks.
A job description file can be simply created using a multi-editor shown on the upper
side of the right column of Fig. 1. Users need only specify the executables and param-
eters, a job description with the grid standard is created automatically. The jobs can
be submitted with a mouse click and the results are demonstrated in the folder “Jobs”.
The last folder is a specific one showing the VO related information, including the

106 J. Zhao et al.

deployed applications, the computing and storage resources, as well as the available
services.

Overall, g-Eclipse built a platform allowing an easy access to grid infrastructures. It
also integrated tools for support application development. More importantly, it enables
an interoperation between different grids. Therefore, we select this platform as the base
for an intuitive, unified cloud user interface.

3 A Cloud Framework Based on g-Eclipse

We intend to develop a cloud user interface like g-Eclipse for the grid. The interface
provides basi¢ functionalities for accessing a scientific cloud. This includes facilities
for authority and authentication, for data management, for service deployment, and for
accesses to the computing resources and services. It also contains tools for debugging
and visualizing applications, for benchmarking, and for resource management.

Following the g-Eclipse architecture, the cloud interface contains a core and a cloud-
specific implementation, where the core plug-ins provide the basic functionality to ac-
cess a cloud platform. For this, an extension of the g-Eclipse core is essential to define
interfaces for cloud specific functionality, e.g. cloud services.

In a cloud world, everything is observed as a service: hardware is a service, software
is a service, and infrastructure is a service. Therefore, a cloud access interface must sup-
port the presentation, request, and deployment of services. The following components
are required:

- A multi-layer editor for users to specify service request.
A cloud service is combined with various parameters. Different services have also
individual formation of the parameters. For example, CPU frequency and memory
size are typical specifications for a hardware service, while version number and file
size are parameters to describe a software package. The multi-layer editor allows
the user to describe the requested services in detail.

— A view for showing the available services.
The service view will be designed and implemented for presenting the services
which are available in a cloud or requested by the users.

- An editor for service deployment and publication.
Cloud developers or resource providers need an interface to describe new services
and then publish them. Again, service related metrics and SLA values are necessary
parameters. An editor will be provided for this task.

In addition, cloud computing has its own programming languages and models. Cur-
rently, MapReduce [3] is regarded as an adequate paradigm for writing cloud applica-
tions. It can be expected that more models will be designed in the future. We intend to
develop templates to support application developers, with an initial implementation for
MapReduce.

The functionalities listed above are common for all clouds. They form the base for
accessing any cloud with g-Eclipse. Additionally, a specific implementation is required
for each different cloud to cover its individual feature, in the same way that g-Eclipse
handles different grid middlewares. The development work is currently on-going.

Combining Cloud and Grid with a User Interface 107

4 An Initial Implementation: Access the Amazon Web Service

For verifying our concept of building a cloud framework using g-Eclipse, we first ex-
tended this grid user interface with several cloud related components with respect to the
Amazon Web Services. We then implemented additional plug-ins for accessing EC2.
Theses plug-ins are responsible for handling AWS specific issues, such as accounting,
running machine image, and logging in a machine.

= AWS VO (o @
|
| AWS VO
|
| Specify the attributes of your AWS YO *
VO Settings
WO Name: AWS WO

AWS Access ID:

Services

Service URL I

Elastic Compute Cloud (EC2) https: {lec2.amazonaws.com/ |
Simple Storage Service (53) https: {/s3.amazonaws.com/

|

Lird l < Back [Einish l | Cancel |

Fig. 2. Screenshot of the VO wizard for creating an AWS VO

In the grid world, any user must be a member of a virtual organization (VO). To
access a grid infrastructure with g-Eclipse, a VO has to be created or imported. Cloud
computing does not apply the VO concept. However, we make use of this concept in
the AWS implementation in order to specify the endpoints for accessing an underlying
cloud infrastructure. A screenshot of the wizard for creating an AWS VO is shown in
Fig. 2.

As shown in the figure, the VO wizard allows users to define a VO which can be later
used to create a project. The user has to specify the name of the VO, the AWS access
identifier, and the access points to the underlying clouds. This wizard is implemented
for AWS, but can be directly applied for accessing other similar clouds, for example,
Eucalyptus.

To use the Amazon cloud services, a user has to provide a secrete ID. This issue is
solved in g-Eclipse by reusing its Authentication Token that is actually designed for
grid authentication.

Fig. 3 shows the wizard for creating such a token. As can be seen, users can give
their AWS credentials using this wizard. g-Eclipse then uses these credentials to create
tokens and relies on the tokens to interact with the cloud for authentication.

108 J. Zhao et al.

& Authentication Token =1 =
1 1

I Create new authentication token

ol

Provide authentication credentials

Amazon Web Service Credentials
Access ID:
Secret 1D: !
I
i
|
|
I
I\ |
I 1l
i' |
i s < g:_a(k | L Einish L‘ _Cancel | |

Fig. 3. Screenshot of the wizard for creating an authentication token

As mentioned in Section 1, g-Eclipse uses the project concept for grid actions. This
concept is reused for cloud operations. By creating a project bound to a cloud VO a
user is able to query and access his personalized resources that are available from the
specified cloud services.

Fig. 4 is a screenshot of an AWS project on g-Eclipse, where the VO folder is ex-
panded. It can be seen that the cloud resources, like the Amazon machine images (AMI),
are presented in the service subtree of the project’s VO. These AMIs are listed in sepa-
rate folders for distinguishing those owned by the user and those accessible to the user.
Furthermore, the user’s security groups can be managed within this tree.

From context menu actions a user is able to start instances of these AMIs by cre-
ating an Eclipse launch configuration. Fig. 5 shows the corresponding launch dialog
that allows the user to specify various parameters such as the type and the number of
instances to be launched. In addition, from this dialog it is possible to specify a payload
file that is uploaded and made accessible to the running instances. This file is usually
used to parameterize these instances. Once one or more instances have been launched
they appear in the VO tree as computing nodes. These nodes may be accessed by using
the integrated SSH console that is part of g-Eclipse.

After an instance is launched g-Eclipse offers the possibility to access this machine
via a SSH shell. In order to use this connection method, the security group used to
launch the AMI has to open the port 22 (ssh default port). Because the ssh connection
method uses the Eclipse connection infrastructure, the ssh private key has to be inserted
into the list of available keys. The running instances can be connected using an action in
the context menu. This action opens the SSH login data dialog with the correct external
DNS name inserted. The only parameter to be provided is the login name which is
“root”. There is no need for a password, since it is contained within the ssh private key.
Fig. 6 shows a sample dialog.

Combining Cloud and Grid with a User Interface 109

1P GridProjects £2 B g0
| = 12 aws Project
I (5 Connections
| (¥ Job Descriptions
| 2 30bs
| = Fawsvo
+ = Computing
= = Services
* (= Elastic IPs
= = Images
4 > Al Images
= = My Accessible Images
ami-8f 7590e6 (
= = My Owned Images
ami-07957 16e (Jimage. manifest. xml)
ami-324d285h (Jimage.manfest.xmi)
ami-S9866230 (Jimage. mandfest.xmi)
| ami-a8ad49¢c1 (Jimage .manifest, xml)
ami-d59276bc (o wo fimage.manifest, xml)
. ami-ec92768S (fimage.marifest . xml)
+ (2 Keypairs
+ = Security Groups
+ \=> Storage

Fig. 4. Screenshot of a project view with EC2

C KLl a

Edit configuration and launch. Q

Bame: | ami-324da8Sb

| - AWS Credentisis |
AWS Access ID: e i

Amazon Machine Image Settings

AMIID: | ami-324da8Sh Min: | 1 Max: | 1 i
| [|

Kovi : =] 1

Image Configuration

Instance Type: | Small Instance (m1.small) |=]

Security Groups:

Fig. 5. Screenshot of the launch configuration dialog for launching an AWS machine image

110 J. Zhao et al.

s B[
SSH

Enker your authorization data.

Host name: | ec2-75-101-226-103.compute-1.amazonaws.com |w | Port: 22
\ser name; | root v

Password:

7 Net> || Fish || cacel ||

Fig. 6. Screenshot of the SSH login wizard

The Amazon S3 service is integrated as an Eclipse File System implementation. The
VO subtree of an AWS project lists the corresponding buckets as storage. From these
storage items a user is able to mount these buckets as connections. Such connections ap-
pear afterwards in the Connections folder of the project and may be accessed within the
project, in the same way of accessing any other folder (focal or remote). Files located
in these connections may be copied across different connections or just opened, edited
and saved on the fly. The underlying g-Eclipse layer for managing EFS implementa-
tions ensures interoperability between all available EFS implementations. Therefore,
file transfers between S3 and any other EFS implementation is straight-forward.

Overall, we have made it possible to access the Amazon clouds using g-Eclipse with
a slight extension of its core architecture and a specific implementation for AWS. This
achievement allows the user not only to access the clouds in an easier way but also to
move their data across grids and clouds.

5 Conclusion

Cloud platforms are emerging. Different clouds also offer different client side interfaces
that are mainly based on command-line designs. To hide the details of cloud client
implementations, a generic user interface is required.

This work aims at developing such an interface to both allow cloud users to access the
underlying infrastructures in a unified, graphical way and build a bridge between grid
and cloud. The interface is an extension of an existing grid framework developed within
the g-Eclipse project. To verify our concept, an initial implementation with respect to
the Amazon Web Services has been completed. Currently, the entire cloud infrastructure
is under development. Furthermore, implementations for connecting other cloud are
also planned.

Combining Cloud and Grid with a User Interface 111

References

10.

11.

12.

13.

14.

15.
16.

. Amazon Web Services. Amazon Elastic Compute Cloud (Amazon EC2),

http://aws.amazon.com/ec2/

. Amazon Web Services. Amazon Simple Storage Service (Amazon S3),

http://aws.amazon.com/s3/

. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters. Com-

munications of the ACM 51(1), 107-113 (2008)

. Sotomayor, B., et al.: Capacity Leasing in Cloud Systems using the OpenNebula Engine. In:

Proceedings of CCA 2008 (2008)

. Nurmi, D., et al.: The Eucalyptus Open-source Cloud Computing System. In: Proceedings of

CCA 2008 (2008)

. Laure, E., et al.: Programming the Grid with gLite. Computational Methods in Science and

Technology 12(1), 3345 (2006)

. Kornmayer, H., et al.: gEclipse- An Integrated, Grid Enabled Workbench Tool for Grid Ap-

plication Users, Grid Developers and Grid Operators based on the Eclipse Platform. In:
Proceedings of the 2nd Austrian Grid Symposium, Innsbruck, Austria (September 2006),
http://www.geclipse.eu/

. Keahey, K., et al.: Science Clouds: Early Experiences in Cloud Computing for Scientific

Applications. In: Proceedings of CCA 2008 (2008)

. Surridge, M., et al.: Experiences with GRIA - Industrial applications on a Web Services Grid.

In: E-SCIENCE 2005: Proceedings of the First International Conference on e-Science and
Grid Computing, pp. 98-105 (2005)

Wolniewicz, P, et al.: Accessing Grid computing resources with g-Eclipse platform. Com-
putational Methods in Science and Technologie 13(2), 131-141 (2007)

Foster, L.T., Zhao, Y., Raicu, I, Lu, S.: Cloud Computing and Grid Computing 360-Degree
Compared. In: Grid Computing Environments Workshop, pp. 1-10 (2008)

Gamma, E., Beck, K.: Contributing To Eclipse: Principles, Patterns, And Plug-Ins. Addison-
Wesley Professional, Reading (2003)

Google. Google App Engine,
http://code.google.com/intl/de-DE/appengine/

Malawski, M., Bartyfiski, T., Bubak, M.: A Tool for Building Collaborative Applications by
Invocation of Grid Operations. In: Bubak, M., van Albada, G.D., Dongarra, J., Sloot, PM.A.
(eds.) ICCS 2008, Part III. LNCS, vol. 5103, pp. 243-252. Springer, Heidelberg (2008)
Microsoft. Live Mesh, https: //www.mesh.com/welcome/default.aspx

Wang, L., Tao, J., Kunze, M.: Scientific Cloud Computing: Early Definition and Experience.
In: Proceedings of the 2008 International Conference on High Performance Computing and
Communications (HPCC 2008), pp. 825-830 (2008)

	Combining Cloud and Grid with a User Interface
	1 Introduction
	2 g-Eclipse: Building a Framework to Access the Power of the Grid
	3 A Cloud Framework Based on g-Eclipse
	4 An Initial Implementation: Access the Amazon Web Service
	5 Conclusion
	References

