Activity Control in Application Landscapes

A Further Approach to Improving Maintainability of
Distributed Application Landscapes

Oliver Daute and Stefan Conrad

SAP Deutschland AG & Co. KG, University of Diisseldorf, Germany
oliver.daute@sap.com, conrad@cs.uni-duesseldorf.de

Abstract. The system administration has been waiting for a long time for pro-
cedures and mechanism for more control over process activities within complex
application landscapes. New challenges come up due to the use of linked up
software applications to implement business scenarios. Numerous business
processes exchange data across complex application landscapes, for that they
use various applications, retrieve and store data. The underlying technology has
to provide a stable environment maintaining diverse software, databases and
operating system components. The challenge is to keep the distributed applica-
tion environment under control at any given time. This paper describes a steer-
ing mechanism to control complex application landscapes, in order to support
system administration in their daily business. Process Activity Control, PAC is
an approach to get activities under central control. PAC is the next reasonable
step to gaining more transparency and visibility to improving system mainte-
nance of Cloud Computing environments.

Keywords: Cloud computing, complex application landscape, distributed infra-
structure, process activity control, RT-BCDB, Code of business process.

1 Introduction

More transparency and control inside complex application landscapes is required
[6] [9] since concepts like Cloud Computing [17], client-server architectures, service-
oriented architecture [12], or IT service management [5] make it possible to build up
giant networked applications environments. New mechanisms are required to ensure
maintainability, evolution and data consistency in order to support the operation of the
underlying distributed information technology. Cloud Computing infrastructures
require control, virtualization, availability and recovery of their applications and data.

Process Activity Control (PAC) is the next step after the introduction of the Real-
Time Business Case Database (RT-BCDB) [1]. The concept of PAC concentrates on
the control of processes activities which are currently running within an application
landscape. The goal is to avoid indeterminate processing states which can cause
further incidents within a Cloud environment.

Most enterprise or service frameworks are focused on business requirements which
have improved the design of enterprise solutions significantly but often with too littie

D.R. Avresky et al. (Eds.): Cloudcomp 2009, LNICST 34, pp. 83-92, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010



84 0. Daute and S. Conrad

consideration for the underlying information technology. Operation interests are ne-
glected and little information about how to run a designed enterprise solution can be
found. A sequence of application processes (e.g. a business case) is able to trigger
process activities across the whole landscape, uses different applications, servers and
exchanges data. The challenge for the system administration is to manage these com-
plex Cloud environments and to react as swiftly as possible to incidents [11].

The missing outer control mechanism is the fundamental idea for Activity Control
in application landscape. Activity Control is an approach to having power over proc-
esses in order to reduce incidents, to gain more stability and to improve maintainabil-
ity. PAC and RT-BCDB are able to improving the system administration in Cloud
application environments significantly.

2 Terms and Areas of Discussion

The term RT-BCDB [1] stands for Real-Time Business Case Database and it is an
approach to collecting and providing information about business process activities in
heterogeneous application landscapes. In RT-BCDB information about run-states of
active business processes are collected and stored synchronously. This information
supports the system administration during maintenance activities of complex applica-
tion environments and is an important source of information for the business design-
ers as well. In detail, RT-BCDB stores information about business cases, business
processes, process owner, history of previous processing, execution frequencies, run-
time, dependencies and availabilities of processing units and applications. Knowledge
about run-states of business processes is important for maintaining and controlling
processes and applications [1].

A Cloud computing environment or application landscape or application infrastruc-
ture can consist of ‘simple’ applications, ERPs, legacy systems, data warehouses, as
well as middleware for exchanging data and connecting software applications. Clouds
are complex distributed application landscapes.

A business case combines (cloud) applications and describes a sequence of activi-
ties to fulfill specific tasks. Business cases make use of different applications and
databases across a landscape with regard to the enterprise needs. A business (applica-
tion) process consumes data or provides them and can trigger other processes or ser-
vices. Processes which have a high importance, such as invoicing, are called core
business processes. An enterprise solution is built up of several software components
and information sources. It is designed by the business requirements. Business cases
determine the tasks of the customer’s enterprise solution.

3 The Idea

Process Activity Control is required because of the continuously increasing complex-
ity of application landscapes driven by business requirements, modern tools and en-
terprise application frameworks which make it more comfortable to design enterprise
application solutions [8]. The challenge for the IT administration is to manage these
application environments in any situation. New mechanisms are required to assist the
system administration in their work.



Activity Control in Application Landscapes 85

Frequently, incidents within application landscapes interrupt business processes
while they are performing a task. The malfunction of a processing unit or of an appli-
cation can cause business processes failure. Business processes need to be restarted or
rolled back for completion to reach a consistent state within the business data logic.
The increasing complexity of software solution is the number one cause of system
failures [3].

3. Business
processes fail
3 F o

- ) BP3S3

/ -1 BP1S4 153 | "K‘-‘-' -
3
/i sinesgProcess Layer /‘

s /,.

[ 2. Database I
stopped — ‘
)= —

)

:TSW&.I-IM;L ayer /
/

& 1. Server failui

= - -\.-""“”
) Hardware Layer

~C
/,.J

Fig. 1. Failure within the application environment

The idea of PAC is to minimize uncontrolled failure and reduce the amount of in-
cidents. If problems within the application landscape are already known, for instance
a database stopped processing then there is no reason for a business process to start
with the risk of halting in a failure situation. PAC acts proactively and thus avoids
disruptions when problems are known.

PAC also addresses another unsolved problem: the start and stop process of an ap-
plication landscape or parts of it. It is still a challenge and complex matter to
shutdown an application without the knowledge of dependent processes running
within the environment. Business processes are triggered by different activators. At
the moment, no outer control for business case in Cloud application environments is
available.

The figure depicts a well-known situation in application environments without
process control. When a server fails, all applications and database used to run on this
processing unit will fail too. Business processes using these applications and data-
bases will be impaired and must terminate immediately. In application environments
without PAC this uncontrolled failure of business processes may result in unknown
run-states or data inconsistencies.

From the perspective of a business case or an enterprise solution, a consistent state
requires more than data integrity on database level. Also dependent interfaces or sin-
gle process steps must be taken into considerations. Those can halt in an inconsistent



86 0. Daute and S. Conrad

state anywhere in an application environment. The challenge is to avoid these incon-
sistencies. The basis for this is the knowledge about business processes, dependen-
cies, availabilities and run-states information. Our goal is to support the system ad-
ministration in their work.

PAC works as an outer control mechanism for processes and is especially valuable
in the control of core business processes. To interact with application processes, PAC
makes use of RunControl commands. PAC is able to collect run-states and send them
to RT-BCDB. PAC works best in collaboration with RT-BCDB.

4 Code of Business Processing

Various situations arise in distributed application landscapes because of missing
form of identification. These are not easy to handle or to overcome in case of inci-
dents. For activity control we propose a Code of Business Processing, CoBP. This
code contains general rules and requirements for using an application environment.
The code should only be applied to processes which are of significance for the enter-
prise solution itself.

Traffic laws are simple and effective. They are necessary to control and steer the
traffic within a defined infrastructure. Traffic laws describe a kind of code of conduct
which participants (road users) have to accept. It is an appropriate mechanism for a
complex environment with easily learnable rules. We will try to translate some ele-
ments of traffic laws and network into a code for business processes used for complex
application environments.

First CoBP: Each process must have a unique form of identification. This is re-
quired to identify a process and to steer the process while it is active. Second: Each
process must have a given priority. The higher business processes must process first,
unless PAC decides it differently. Third: Each business process must be documented.
It must belong to a business case and visualization must exist. Procedures must be
given for recovery purposes in case of a failure. Fourth: The higher a priority is the
higher the charge for a business process. A process with a high priority does have a
significant impact on all other processes that run within that environment.

Ideally, communication between processes should always take place on traceable
ways. Fifth CoBP: Business Processes should use defined and traceable ways for
processing. This forces the use of known interfaces, improves the traceability and
supports the maintainability of Cloud application landscapes.

5 Basic Elements of PAC

Process Activity Control is an approach to controlling process activities in complex
Cloud application environments. PAC is aware of the function states of processing
units and applications. PAC will stop further processing in case problems occur
within the application environment. This will prevent business processes running into
undefined processing states.

PAC has to consider several issues in order to control process activities. A major
task is, for instance, determining the function state of processes, applications and
processing units. PAC can take advantage of the agents introduced with RT-BCDB.



Activity Control in Application Landscapes 87

The tasks of the agents are dependent on the kind of source of information. The
agents inspect the given sources and try to identify run-state and availability informa-
tion. On the hardware and application level, agents can search for a specific pattern in
a log file to determine the function state. Application processes on operating system
can be monitored as well to identify availability or throughput. A premature termina-
tion of an application process may point to a failure.

For smaller environments this mechanism provides information which is sufficient
enough to control process activities. For large application landscapes PAC must also
be informed of run-states of business processes. Therefore PAC will benefit when
using the knowledge base of RT-BCDB.

The information is used to react to current circumstances within the application en-
vironment. PAC will try to avoid any starting of processes which will make use of a
malfunctioning processing unit or impaired application or process or service.

Basic elements of PAC: a decision-control mechanism, a Custom Rule Set, the
CoBP, an interface to RunControl, and a communication process to RT-BCDB.

N

{ |
Custom PAC CoBP
Rule Set
e T
| v | evaluate 1—_—
' h RfR . _J
 roceive receive | )
[ & | request ‘ decision |
| [answer | \__ """ L )
|| Run | CIR iro)
| | Control | contro
) SPRIITE:
| (
! L request & update RT-BCDB J :

Fig. 2. Architecture of PAC

The decision-control mechanism is subdivided into four main activities: receive
request, evaluate, decision and control. Each activity has one or more tasks.

Activity ‘receive request’, just receives the Request for Run (RfR) in sequence of
income. Whenever an application process starts or stops or changes its run-state, then
RunControl will send an RfR. The RfR contains the ID and the state of running.

Activity ‘evaluate’, evaluates the RunControl request against the information
stored in RT-BCDB. The run-state table of RT-BCDB always reflects the status of
process activities within the application environment. Any known problems with the
availability of applications or processing units are taken into consideration.

The ‘decision’ process is an activity based on CoBP, Custom Rule Set and the
evaluation of the previous activity. A final decision will be prepared to return a ‘Con-
Sfirmation to Run (CtR)’ or to stop or to halt a business process or application.



88 0. Daute and S. Conrad

The ‘control’ activity is the steering part. It has two functions. The first function is
to answer the RfR and to send a CtR. In case a business process must be paused, the
control process waits to send the CtR until problems are solved. The second function
is to stop business processes in case the application landscape has to be shut down.
Vice versa ‘control’ enables the start-up of business cases in a predefined sequence,
for instance after system maintenance activities or after the elimination of incidents.
The Custom Rule Set contains customized rules given for a customer’s application
landscape. The rule set can contain an alteration of priorities or a list of business cases
which have to run with a higher priority. Also preferred processing units can be part
of the rule set.

Further basic elements are CoBP, described previously and the application inter-
face which is used to communicate with RT-BCDB.

PAC as a control instance must monitor its own availability. Therefore at least two
instances of PAC must run within the application environment. This is necessary to
prevent that PAC is becoming a single-point of failure for the application infrastruc-
ture. One instance of PAC is the master instance and the second is functioning as the
backup instance. If PAC detects a malfunction with its master instance then it passes
control to the second instance. In normal operation the second instance should also be
used to answer RfR. This makes sense for the distribution of workload of PAC and
will avoid delays in the steering of business process activities.

6 Run-Control

PAC introduces an extension to RunControl commands. RunControl commands are
used to receive information about process run-state. They are also required for con-
trolling the progress of process activities.

ni@n — T RS,
——BPF1Z BRI = A T
ap1st] | ’@ C— &
___.. |-—_:_ +

o Using RunControl Commands

Fig. 3. Collecting Run-State

Whenever a process starts, stops or waits, the RunControl command will send a
message with the process ID and the run-state. RunControl statements were first in-
troduced with the architecture of RT-BCDB. There, RunControl statements are used
to collect run-states and to store them immediately in the run-state table of RT-
BCDB. Due to this an overview of current process activities is available at any time.

Several options are given to implement RunControl statements. One option is in-
serting RunControl statements into the source code. This makes sense especially for
newly designed applications [2] [16] [14]. For existing applications adaptations are



Activity Control in Application Landscapes 89

possible for instance during migration projects [13]. For sure, reverse engineering
should be the preferred discipline to enrich the resource code with RunControl
statements.

PAC adapts the concept of RunControl statements to its needs. The first change is
to the business information flow [2]. Instead of sending run-states information using
the agents, the RunControl statements send this information to PAC. PAC forwards
the information to RT-BCDB. The second change is the extension of functionality.
Each RunControl statement sends, in addition to run-state information, a ‘Request to
Run’. The RunControl function waits until it receives a ‘Confirmation to Run’ from
PAC.

To distinguish between the two versions of RunControl statements, we will use an
extended version for PAC and call it RunControlAC. The RunControlAC com-
mands send the business case ID, run-state and an RfR.

RunControlAC (process-1D, run-state)

Fig. 4. RunControl for Activity Control

Certainly, some effort is needed for implementation of the RunControlAC. But
with the constantly increasing complexity of Cloud application landscapes, a mecha-
nism as described is indispensable for keeping distributed infrastructures under con-
trol. Consequently for the future design of business solution, applications should be
developed with regard to run-state information or RunControl statements.

7 Improving System Maintainability

The aim of the concept is to gain more control over Cloud applications, as well as the
prevention of incidents.

An example depicts how PAC is able to avoid incidents due to known problems. A
failure of a server (processing unit) occurs and therefore an installed database must
stop its processing. PAC recognizes this problem and stops further processing of
business processes using the failed unit. Two business cases requesting to run are
stopped by PAC and avoid indeterminate processing states. The application processes
have to wait until the problem is solved. If a shadow database is available, PAC can
move business processing to it.

PAC will make use of RT-BCDB information to decide the confirmation of a ‘Re-
quest for Run’. If incidents to applications, processing units or business cases are
known, then PAC will determine if a ‘Request for Run’ will make use of them. The
run-states and availability information, stored in RT-BCDB, provides this important
knowledge, as well as dependencies within the application infrastructure.

How to measure improvements in terms of Return of Investments? Some benefits
are already shown and we will try to answer this question with regard to time, quality
or money. We will start with time.

Time: Each incident which was prevented saves time. An incident costs time to
identify the cause and time to solve. Additional time is needed for reporting and



90 0. Daute and S. Conrad

documentation of the solution process progress, and several persons of different de-
partments are involved. Users are hindered in their work and will lose time. We as-
sume that each incident costs in sum an average of 6 hours.

Money: Costs arise due to incident handling, software for incident tracking and sup-
port staff. Downtimes can cause less productivity and can result in fewer sales. In the
worst case, especially in the area of institutional banks, an unsolved incident can
cause bankruptcy within a few days [3].

e — —: —7 cusim PAC oo
3. PAC stops "
b = L further processing

“H [ e

—. /4

—— I

3 -
2. Database

il )

=

y i - A ¢ k|
,’:-"/ | ":_\;\-\ v 7
V4 Applicatior’Layer

X 1. Server failure

Lt
4 s

wwlal

F
§

|
L3 H
o
L 2

Fig. 5. Avoid indeterminate run-states

Quality is often not easy to measure. For Cloud application landscapes quality
means availability, reliability, throughput and competitiveness. We assume that for
large environments the investment in regard to the increase in quality will save money
in the end. In smaller environments our concept will at least improve quality.

Maintenance tasks like updates or upgrades of the Cloud landscapes also require
detailed information about the business processes possibly involved. PAC can prevent
business process activities while parts of the application landscape are under construc-
tion. In case of performance bottlenecks, PAC is able to stop a business process in
order to prevent that a problem from getting worse. Or PAC decides to shift an RfR to
another Cloud application if possible. These are examples of how PAC is able to
improving the maintainability of a Cloud application landscapes.

8 Extensions for Frameworks

Most enterprise or service frameworks are focused on the business requirements and
neglect the operation interest. Concepts like SOA [12], IT Service Management [5] or



Activity Control in Application Landscapes 91

TOGAF [15] improve the design of application solutions but often with too little
consideration for the underlying information technology. Business cases can be cre-
ated easily by orchestrating services (composite application). But there is no informa-
tion how to control them. No mechanisms are described how to react to problems
within an application landscape. An active steering process is also not part of the
frameworks. PAC is able to extend these frameworks and can reduce the TCO [4]
significantly.

Virtualization, in the sense of representation, is one of the enablers of Cloud Com-
puting infrastructures. Servers are pooled together acting like a large computing
resource. Virtualization is the basis for new application platforms for managing dis-
tributed computing resources efficiently. Also process activities and their representa-
tion must be taken into consideration as presented in this paper. The goal is to gain
more transparency and control over processes in order to reduce cost-intensive inci-
dents and to avoid data inconsistencies on business process level.

Computing Clouds and the concepts, as mentioned above can benefit from the
ideas of PAC & CoBP & RT-BCDB for gaining better maintainability and higher
availability of an application landscape.

9 Conclusion

Maintenance and control of constantly increasing complexity of Cloud Computing
environment are challenging tasks. New mechanisms as described are indispensable
for keeping a distributed application infrastructure maintainable in the future.

PAC is a concept for gaining control, higher availability and better visibility of ac-
tivities within Cloud application environments. Application processes will run into
fewer incidents. The system administration can react more purposefully due to better
transparency.

PAC is a further step to getting distributed application infrastructures landscapes
under control. The concept works best in collaboration with the RT-BCDB [1]. Our
ideas should encourage future research to invest more on these topics [7].

References

1. Daute, O.: Introducing Real-Time Business CASE Database, Approach to improving sys-
tem maintenance of complex application landscapes. In: ICEIS 11th Conference on Enter-
prise Information Systems (2009)

2. Daute, O.: Representation of Business Information Flow with an Extension for UML. In:
ICEIS 6th Conference on Enterprise Information Systems (2004)

3. Economist Intelligence Unit: Coming to grips with IT risk, A report from the Economist
Intelligence Unit, White Paper (2007)

4. Gartner Research Group: TCO, Total Cost of Ownership, Information Technology Re-
search (1987), http://www.gartner.com

5. ITIL, IT Infrastructure Library, ITSMF, Information Technology Service Management
Forum, http://www.itsmf.net

6. Kobbacy, Khairy, A.-H., Murthy, Prabhakar, D.N.: Complex System Maintenance Hand-
book. Springer Series in Reliability Engineering (2008)



92

10.

1.

12.

13.

15.

16.

17.

0. Daute and S. Conrad

. Mei, L.: More Tales of Clouds: Software Engineering Research Issues from the Cloud
Application Perspective. In: 33rd Annual IEEE International Computer Software and
Applications Conference (2009)

Papazoglou, M., Heuvel, J.: Service oriented architectures: approaches, technologies
and research issues, Paper. International Journal on Very Large Data Bases (VLDB) 16,
389-415 (2007)

. Rosemann, M.: Process-oriented Administration of Enterprise Systems, ARC SPIRT pro-
ject, Queensland University of Technology (2003)

Sarkar, S., Kak, A.C., Nagaraja, N.S.: Metrics for Analyzing Module Interactions in Large
Software Systems. In: The 12th Asia-Pacific Software Engineering Conference, APSEC
2005 (2005)

Schelp, J.: Winter, Robert: Business Application Design and Enterprise Service Design: A
Comparison. Int. J. Service Sciences 3/4 (2008)

SOA: Reference Model for Service Oriented Architecture Committee Specification (2006),
http://www.ocasis-open.org

Stamati, T.: Investigating The Life Cycle Of Legacy Systems Migration. In: European and
Mediterranean Conference on Information Systems (EMCIS), Alicante Spain (2006)
Svatos§, O.: Conceptual Process Modeling Language: Regulative Approach, Department of
Information Technologies, University of Economics, Czech Republic (2007)

TOGAF, 9.0: The Open Group Architecture Framework, Vendor- and technology-neutral
consortium, The Open GROUP (2009), http: //www. togaf.org

UML: Unified Modeling Language, Not-for-profit computer industry consortium, Object
Management Group, http://www.omg.org

Vouk, M.: Cloud Computing — Issues, Research and Implementations. In: Proceedings
of the 30th International Conference on Information Technology Interfaces (ITI 2008),
pp. 31-40 (2008)



	Activity Control in Application Landscapes A Further Approach to Improving Maintainability of Distributed Application Landscapes
	1 Introduction
	2 Terms and Areas of Discussion
	3 The Idea
	4 Code of Business Processing
	5 Basic Elements of PAC
	6 Run-Control
	7 Improving System Maintainability
	8 Extensions for Frameworks
	9 Conclusion
	References




