AppScale: Scalable and Open AppEngine
Application Development and Deployment

Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz,
Nagy Mostafa, Sunil Soman, and Rich Wolski

Computer Science Department
University of California, Santa Barbara

Abstract. We present the design and implementation of AppScale, an
open source extension to the Google AppEngine (GAE) Platform-as-
a-Service (PaaS) cloud technology. Our extensions build upon the GAE
SDK to facilitate distributed execution of GAE applications over virtual-
ized cluster resources, including Infrastructure-as-a-Service (IaaS) cloud
systems such as Amazon’s AWS/EC2 and EUCALYPTUS. AppScale pro-
vides a framework with which researchers can investigate the interaction
between PaaS and IaaS systems as well as the inner workings of, and new
technologies for, PaaS cloud technologies using real GAE applications.

Keywords: Cloud Computing, PaaS, Open-Source, Fault Tolerance,
Utility Computing, Distributed Systems.

1 Introduction

Cloud Computing is a term coined for a recent trend toward service-oriented
cluster computing based on Service-Level Agreements (SLAs). Cloud comput-
ing simplifies the use of large-scale distributed systems through transparent and
adaptive resource management. It provides simplification and automation for
the configuration and deployment of an entire software stack. Moreover, cloud
technology enables arbitrary users to employ potentially vast numbers of multi-
core cluster resources that are not necessarily owned, managed, or controlled by
the users themselves. Specific cloud offerings differ, but extant infrastructures
share two common characteristics: they rely on operating system virtualization
(e.g., Xen, VMWare, etc.) for functionality and/or performance isolation and
they support per-user or per-application customization via a service interface
typically implemented using high-level language technologies, APIs, and web
services.

The three prevailing classes of cloud computing are Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).
SaaS describes systems in which high-level functionality (e.g., SalesForce.com
[24], which provides customer relationship management software as an on-
demand service) is hosted by the cloud and exported to thin clients via the
network. The main feature of SaaS systems is that the API offered to the cloud
client is for a complete software service and not programming abstractions or

D.R. Avresky et al. (Eds.): Cloudcomp 2009, LNICST 34, pp. 57-70, 2010.
© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

58 N. Chohan et al.

resources. Commercial SaaS systems typically charge according to the number
of users and application features.

PaaS refers to the availability of scalable abstractions through an interface
from which restricted (e.g., HTTP(s)-only communication, limited resource con-
sumption), network-accessible, applications written in high-level languages (e.g.
Python, JavaScript, JVM and .Net languages) can be constructed. Two popular
examples of PaaS systems are Google App Engine (GAE) [13] and Microsoft
Azure [3]. Users typically test and debug their applications locally using a non-
scalable development kit and then upload their programs to a proprietary, highly
scalable PaaS cloud infrastructure (runtime services, database, distribution and
scheduling system, etc.). Commercial offerings for both PaaS and IaaS systems
charge a low pay-as-you-go price that is directly proportional to resource use
(CPU, network bandwidth, and storage); these providers typically also offer trial
or capped resource use options, free of charge.

IaaS describes a facility for provisioning virtualized operating system in-
stances, storage abstractions, and network capacity under contract from a service
provider. Clients fully configure and control their instances as root via ssh. The
Amazon Web Services (AWS) which includes the Elastic Compute Cloud (EC2),
Simple Storage System (S3), Elastic Block Store (EBS) and other APIs [1] is, at
present, the most popular example of an IaaS-style computational cloud. Amazon
charges per instance occupancy hour and for storage options at very competitive
rates. Similar to those for PaaS systems, these rates are typically significantly
less than the cost of owning and maintaining even a small subset of the resources
that these commercial entities make available to users for application execution.

EucaLypTus [20] is an open-source IaaS system that implements the AWS
interface. EUCALYPTUS is compatible with AWS to the extent that commercial
tools designed to work with EC2 (e.g., Rightscale [22], Elastra [11], etc.) cannot
differentiate between an Amazon and a EUCALYPTUS installation. EUCALYPTUS
allows researchers to deploy, on their own cluster resources, an open-source web-
service-based software infrastructure that presents a faithful reproduction of
the AWS functionality in its default configuration. Furthermore, EUCALYPTUS
provides a research framework for investigation of TaaS cloud technologies.

Such a framework is key to advancing the state of the art in scalable cloud com-
puting software architectures and to enabling users to employ cloud technologies
easily on their own local clusters. Yet, despite the popularity and wide-spread
use of PaaS systems, there are no open-source implementations of PaaS systems
or APIs. To address this need, we have designed and implemented an open-
source PaaS cloud research framework, called AppScale. AppScale emulates the
functionality of the popular GAE commercial cloud. Specifically, AppScale im-
plements the Google App Engine open APIs and provides an infrastructure and
toolset for distributed execution of GAE applications over virtualized clusters
and Iaa$S systems (including EC2 and EuCALYPTUS). Moreover, by building on
existing cloud and web-service technologies, AppScale is easy to use and able to
execute real GAE applications using local and private cluster resources.

AppScale: Scalable and Open AppEngine Application Development 59

AppScale consists of multiple components that automate deployment, man-
agement, scaling, and fault tolerance of a GAE system. AppScale integrates,
builds upon, and extends existing web service, high-level language, and cloud
technologies to provide a system that researchers and developers can employ to
investigate new cloud technologies or the behavior and performance of extant
applications. Moreover, AppScale deployment requires no modifications to GAE
applications. AppScale is not meant to compete with, outperform, or scale as well
as, proprietary cloud systems, including GAE. Our intent is to provide a frame-
work that enables researchers to investigate how such cloud systems operate,
behave, and scale using real applications. Moreover, by facilitating application
execution over important, lower-level cloud offerings such as EUCALYPTUS and
EC2, AppScale also enables investigation of the interoperation and behavior of
multiple cloud fabrics (PaaS and IaaS) in a single system. In the sections that
follow, we describe the design, implementation, and a preliminary evaluation of
AppScale.

2 Google App Engine

In April 2008, Google released a software framework for developing and hosting
complete web service applications. This framework, called Google App Engine
(GAE), enables users to write applications written in high-level programming
languages and to deploy them on Google’s proprietary and vast computing re-
sources. The framework restricts the libraries that the application can use and
limits the resources consumed by the program. This sandbox execution model
limits application functionality in order to protect system stability, guarantee
performance, and achieve scalability. The restrictions include communication
limited to HTTP(S), program response to web requests within 30 seconds, no
file system access except for files uploaded with the application, and persistent
storage via simple in-memory or distributed key-value storage across requests.

Deployed GAE applications gain access to a high-quality, professionally main-
tained, and extremely scalable software infrastructure. This infrastructure is
closed proprietary and includes the Google File System (GFS) [12], BigTable [8],
MapReduce [9], Chubby [5] and Paxos [7]. GFS is a distributed, scalable, and
reliable file system optimized for very large files and throughput-oriented appli-
cations. BigTable offers a distributed and highly available schema-free key-value
store for fast access to structured data via a simple Datastore API. BigTable
also integrates MapReduce for highly scalable concurrent execution of embarass-
ingly parallel computations, such as data indexing and crunching for Google
PageRank [4], Google Earth, and other applications. Chubby is a highly avail-
able naming service for GFS (that was originally designed as a locking service);
the content of GFS are agreed upon using an optimized version of the original
Paxos algorithm [15].

Google applications access these services through well-defined interfaces en-
abling the cloud to manage and controll resource usage very efficiently and scal-
ably. GAE applications interoperate with other hosts via HTTP(S) using the

60 N. Chohan et al.

URL-Fetch API, manipulate images via the Images API, cache and store data
via the Memcache and Datastore API, and access other Google applications via
the Mail API and Accounts API. The web frontend of an application commu-
nicates via Remote Procedure Calls (RPC) with the datastore backend using
protocol buffers [21] for fast and portable data serialization.

GAE developers write their web applications (webpage frontend, response
computation, and data access) in Python using the GAE APIs, a subset of the
Python libraries approved by Google, and the Django web framework [10] (or
other similar and approved Python web framework). These frameworks signif-
icantly simplify and expedite common web development activities. Developers
modify the data model in their programs to access the GAE Datastore APL
In April 2009, Google made available a Java-based GAE framework. Develop-
ers employ the Java Servlet and Data Objects APIs and a subset of the Java
libraries approved by Google to implement JVM-based GAE web applications.

Developers write a runtime configuration file for their application that iden-
tifies the program, specifies the versioning information, and identifies the han-
dlers (code to execute or files to serve) for different URL accesses. Developers
use a GAE software development kit (SDK) to test and execute their applica-
tion locally and serially. The SDK implements the APIs using simple, slow, and
non-scalable versions of the internal services. In particular, the SDK implements
the Datastore API via a flat file (or very simple database). Once developers are
ready to deploy their application on Google’s resources, they do so by uploading
a gzipped tar-ball of the code and configuration file to App Engine using an SDK
tool. The developer also specifies and builds the indexes on the datastore for all
queries that the application code can make, as part of the upload process.

The Google runtime system automatically load-balances the application ac-
cording to user load. If the application exceeds its billable or fixed resource quota
within a 24-hour period or 1-minute interval, the system returns a HTTP 403
Forbidden status until the resource is replenished. Application activities that
are monitored by the Google system include CPU usage, network communi-
cation (bandwidth), requests (total and per minute), data storage, and emails
sent.

In summary, Google App Engine provides access to vast and extreme scale
resources for a very specific and well-defined web service application domain.
Applications can be implemented and deployed into the clould quickly and easily
using high-level languages, simple and well documented API’s, and Google’s SDK
tools. Furthermore, the Google platform monitors and scales the applications.
GAE thus enables a broad user base to develop web applications and deploy them
without owning and managing sufficient cluster resources. The GAE APIs and
the SDK carry open-source licenses but the internal, scalable, implementations
are closed-source.

3 AppScale

To provide a platform for GAE application execution using local and private
cluster resources, to investigate novel cloud services, and to faciliate research for

AppScale: Scalable and Open AppEngine Application Development 61

AppScale Cloud
GAE App : ;
Developer g +—»-AppScale Tools
(AppScale Admin) b 7
% ALB <4+— AppController (AC)
_ &/ 3
T - HTTPS
GAE App
Users /
/1]
> AS /i

Fig. 1. Overview of the AppScale design. The AppScale cloud consists of an AppLoad-
Balancer (ALB), a Database Master (DBM), one or more Database Slaves (DBS), and
one or more AppServers (ASs). Users of GAE applications interact with ASs; the de-
veloper deploys AppScale and her GAE applications through the head node (i.e. the
node on which the ALB is located) using the AppScale Tools. AppControllers (ACs)
on each node interact with the other nodes in the system; ASs interact with the DBM
via HTTPS.

the next-generation of cloud software and applications, we have implemented
AppScale. AppScale is a multi-language, multi-component framework for exe-
cuting GAE applications. Figure 1 overviews the AppScale design.

AppScale consists of a toolset (the AppScale Tools), three primary compo-
nents, the AppServer (ASs), the database management system, and the Ap-
pLoadBalancer (ALB), and an AppController (AC) for inter-component
communication. AppServers are the execution engines for GAE applications
which interact with a Database Master (DBM) via HTTPS for data storage and
access. Database Slaves (DBSs) facilitate distributed, scalable, and fault tolerant
data management. The AppController is responsible for setup, initialization, and
tear down of AppScale instances, as well as cross component interaction. In ad-
dition, the AppController facilitates deployment of and authentication for GAE
applications. The ALB serves as the head node of an AppScale deployment and
initiates connections to GAE applications running in ASs. The AC of the head
node also monitors and manages the resource use and availability of the deploy-
ment. All communications across the system are encrypted via the secure socket
layer (SSL).

A GAE application developer interacts with an AppScale instance (cloud) re-
motely using the AppScale Tools. Developers use these tools to deploy AppScale,
to submit GAE applications to deployed AppScale instances, and to interact
with and administer AppScale instances and deployed GAE applications. We
distinguish developers from users; users are the clients/users of individual GAE
applications.

An AppScale deployment consists of one or more virtualized operating system
instances (guestVMs). GuestVMs are Linux systems (nodes) that execute over
the Xen virtual machine monitor, the Kernel Virtual Machine (KVM) [25] or
IaaS systems such as Amazon’s EC2 and EUCALYPTUS. For each AppScale de-
ployment, there is a single AppLoadBalancer (ALB) which we consider the head

62 N. Chohan et al.

node, one or more AppServers (AS), one Database Master (DBM) and one or
more Database Slaves (DBSs). A node can implement any individual component
as well as any combination of these components; the AppScale configuration can
be specified by the developer via command line options of an AppScale tool.

We next detail the implementation of each of these components. To facilitate
this implementation we employ and extend a number of existing, successful, web
service technologies and language frameworks.

3.1 AppController (AC)

The AppController (AC) is a SOAP client/server daemon written in Ruby. The
AC executes on every node and starts automatically when the guestVM boots.
The AC on the head node starts the ALB first and initiates deployment and boot
of any other guestVM. This AC then contacts the ACs on the other guestVMs
and spawns the components on each node. The head node AC first spawns the
DBM (which then starts the DBSs) and then spawns the AppServers, configuring
each with the IP of the DBM (to enable access to the database via HT'TPS).

The AC on the head node also monitors the AppScale deployment for failed
nodes and for opportunities to grow and shrink the AppScale deployment ac-
cording to system demand and developer preferences. The AC periodically polls
(currently every 10 seconds) the AC of every other node for a “heartbeat” and to
collect per-application behavior and resource use (e.g. CPU and memory load).
When a component fails, the AC restarts the component, respawning a node if
necessary.

Although in this paper we evaluate the static default deployment of AppScale,
we can also use this feedback mechanism to spawn and kill individual nodes of a
deployment to respond to system load and performance. Killing nodes reduces
resource consumption (and cost of resources are being paid for) and consists
of stopping the components within a node and destroying the guestVM. We
spawn nodes to add more AppServers or Database Slaves to the system. We are
currently investigating various scheduling policies, feedback mechanisms, and
capability to interact with the underlying cloud fabric to modify service level
agreements. AppScale currently supports starting and stopping of any compo-
nent in a node and automatic spawning and destroying nodes.

3.2 AppLoadBalancer (ALB)

The AppLoadBalancer is a Ruby on Rails [23] application that employs a simple
HTTP server (nginx [19]) to select between three replicated Mongrel application
servers [16] (for head-node load balancing). The ALB distributes initial requests
from users to the AppServers (ASs) of GAE applications. Users initially contact
the ALB to request a login to a GAE application. The ALB provides and/or
authenticates this login and then selects an AS randomly. It then redirects the
user request to the selected AS. The user, once redirected, continues to use the
AppServer to which she was routed and does not interact further with the ALB
unless she logs out or the AppServer she is using becomes unreachable.

AppScale: Scalable and Open AppEngine Application Development 63

3.3 AppServer (AS)

An AppServer is an extension to the development server distributed freely as part
of the Google AppEngine SDK for GAE application execution. Our extensions
to the development server enable fully automated execution of GAE applications
on any virtualized cluster to which the developer has access, including EC2 and
EucALYPTUS. AppServers can also be used without virtualization which requires
manual configuration. In addition, our extensions provide a generic datastore in-
terface through which any database technology can be used. Currently we have
implemented this interface to HBase and Hypertable, open-source implementa-
tions of Google’s BigTable that execute over the distributed Hadoop File System
(HDFS) [14]. We also have plugins for MySQL [17], Cassandra [6], and Volde-
mort [26].

We intercept the protocol buffer requests from the application and route them
over HTTPS to/from the DBM front-end called the PBServer. The PBServer
implements the interface to every datastore available and routes the requests to
the appropriate datastore. The interaction is simple but fully supported by a
number of different error conditions, and includes:

— Put: add a new item into the table (create table if non-existant)
— Get: retrieve an item by ID number

— Query: SQL-like query

— Delete: delete an item by ID number

Our other extensions facilitate automatic invocation of ASs and authentica-
tion of GAE users. The AC of the node sets the location of the datastore (passed
in from a request from the head node AC), upon AS start. The AS also stores
and verifies the cookie secret that we use to authenticate users and direct the
component to authenticate using the local AppController (AC).

An AS executes a single GAE application at time. To host multiple GAE
applications, AppScale uses additional ASs (one or more per GAE application)
that it isolates within their own AppScale nodes or that it co-locates within
other nodes containing other AppScale components.

3.4 Data Management

In front of the Database Master (DBM) sits the The PBServer is the front-end of
the DBM. This Python program processes protocol buffers from a GAE applica-
tion and makes requests on its behalf to read and write data to the datastore. As
mentioned previously, AppScale currently supports HBase and Hypertable data-
stores. Both execute over HDFS within AppScale which performs replication,
fault tolerance, and provides reliable service using distributed Database Slaves.
The PBServer interfaces with HBase, Hypertable, Cassandra, and Voldemort
using Thrift for cross-language interoperation.

The AC on the DBM node provides access to the datastore via these interfaces
to the other ACs and the ALB of an AppScale system. The ALB stores uploaded
GAE applications as well as user credentials in the database to authenticate the
developer and users of GAE applications.

64 N. Chohan et al.

3.5 AppScale Tools

The developer employs the AppScale tools to setup an AppScale instance and to
deploy GAE applications over AppScale. The toolset consists of a small number
of Ruby scripts that we named in the spirit of Amazon’s EC2 tools for AWS.
The tools facilitate AppScale deployment on Xen-based clusters as well as EC2
and EucALYPTUS. The latter two systems require credentials and service-level
agreements (SLAs) for the use, allocation (killing and spawning of instances) of
resources on behalf of a developer; the EC2 tools (for either IaaS system) gener-
ate, manage, distribute (to deployed instances), and authenticate the credentials
throughout the cluster. The AppScale tools sit above these commands and make
use of them for credential management in IaaS settings. In a Xen-only setting, no
credential management is necessary; the tools employ ssh keys for cluster man-
agement. The tools enable developers to start an AppScale system, to deploy and
tear down GAE applications, to query the state and performance of an AppScale
deployment or application, and to manipulate the AppScale configuration and
state. There is currently no limit on the number of uploaded applications.

3.6 Tolerating Failures

There are multiple ways in which AppScale is fault tolerant. The AppController
executes on all nodes. If the AC fails on a node with an AS, that AS can no longer
authenticate users for a particular GAE application but authenticated users
proceed unimpeded. Users that contact an ALB to re-authenticate (acquire a
cookie) are redirected to a node with a functioning AS/AC to continue accessing
the application. If the AC fails on the node with the ALB, no new users can reach
any GAE applications deployed in the AppScale instance and the developer
is not able to upload additional GAE applications; extant users however, are
unaffected. This scenario (AC on the ALB node failure) is similar to AC failure
on the DBM node. In this scenario (AC on the DBM node failure), ASs and
users are unaffected.

The database system continues to function as long as at least one DBS is
available. Similarly, the system is tolerant to failure of the PBServer (DBM front-
end). If the PBServer fails on the DBM, the ASs will temporarily be unable to
reach the database until the AC on the node restarts the PBServer. The ASs
are not able to continue to execute (GAE applications will fail) if the DBM goes
down or becomes unreachable. In this scenario, the ALB will restart the DBM
component but unless the data from the original DBM is available to restore,
the restart is similar to restarting AppScale.

Although, coupling multiple components per node reduces the number of nodes
(resource requirements) and potentially better utilizes underlying resources, it
also increases the likelihood of failure. For example, if all components are located
in a single node, node failure equals system failure. If the node containing the ALB
and DBM fails, the system fails. In these scenarios, component failure does not
equal node failure however; the AC in the head node will attempt to restart com-
ponents as described previously. The DBM issues 3 replicas of tables for DBSs to

AppScale: Scalable and Open AppEngine Application Development 65

Table 1. Benchmarks Statistics. For each benchmark, Column 2 is its description
and Column 3 is its number of lines of code (Python/JavaScript). Column 4 is the
number of transactions in the Grinder user loop that we use to load the system in our
experiments.

LOC Trans-

Python or| actions

Benchmark|Description JavaScript|in Loop
ccewiki user-defined webpage creation 289/10948 74
guestbook |presents last 10 signatures on a page; users can sign as well 81/0 9
shell an interactive Python shell via a webpage 308/6100 14
tasks to-do list manipulation 485/1248 44

store, thus user data is available on failure of any individual DBS component. We
are investigating the various failure scenarios and techniques for tolerating them
within a deployed AppScale system as part of ongoing and future work.

We distribute AppScale as a single Linux image and the AppScale Toolset.
The image contains the code for the implementation of all of the components
and a 64-bit Linux kernel and Ubuntu distribution. The system is available from
http://appscale.cs.ucsb.edu/; all new programs that we have contributed
carry the Berkeley Software Distribution (BSD) License.

4 Evaluation

We next present the basic performance characteristics of AppScale default de-
ployment. We note that we have not optimized AppScale in any way and that
this study presents a baseline from which we will work to improve the perfor-
mance and scalability of the system over time. Our goal with AppScale to provide
a research framework for the community, thus, we and others will likely iden-
tify ways to improve its performance over time. We simply provide a framework
with which to investigate existing open source GAE applications, services, and
execution characteristics using local cluster resources.

4.1 Methodology

For our experimental methodology, we investigate four open source GAE applica-
tions made available as Google AppEngine Samples (http://code.google.com/
p/google-app-engine-samples/). The applications are Python programs and
Python/JavaScript programs. We overview them and their basic characteristics
in Table 1. The ccewiki and tasks applications require the user to log in. Each
application uses the AppScale datastore for all data manipulation. We record a
user session that we replay for an increasing number of users repeatedly using
the Grinder load testing framework (http://grinder.sourceforge.net) and
its extensions [18].

For each experiment, we investigate two metrics, (i) the total number of
transactions completed over a five second interval, and (ii) the average

66 N. Chohan et al.

15000

10000 -

Number of Transactions

-
[=]
Average Response Time (mil

Time (seconds)

Fig. 2. Application performance under stress: Transactions over time (left) and average
response time (right). The x-axis is time in seconds; Grinder introduces three additional
users for load every 5 seconds. In the left graph each point is the number of transactions
that completed in that interval, on average across five runs (y-axis). In the right graph,
each point is the average response time across the transactions that began in that
interval, on average across five runs (y-axis).

response time for transactions that start during the interval. Specif-
ically, each Grinder user repeatedly executes a series of transactions (Table 1
Column 3). The user repeats this loop for 160 seconds. Grinder adds three users
every five seconds to load the system.

For each five second interval in the 160 seconds of each test, we count the
number of transactions that complete in that interval (for transactions completed
per interval). For average response time, for each five second interval of the 160
seconds, we compute the average response time for the transactions that started
in that interval. We repeat each experiment five times and compute the average
and standard deviation for each interval across all of the runs.

Our cluster consists of quad-core 2.66GHz machines with 8GB RAM con-
nected via gigabit Ethernet. We employ three of these machines for Grinder
load generators. The machines are synchronized and each Grinder instance in-
troduces a single user every five seconds. We specify the number of machines we
use for the AppScale deployment with each experiment below.

4.2 Experimental Results

We first present data for each application, executed in isolation over App-
Scale, over time and increasing load. For this experiment, we employ the de-
fault AppScale configuration: one head node (ALB+DBM) and three slave nodes
(AS+DBS each) with each node/guestVM on its own machine. Each of the three
Grinder machines accesses the AS of one slave node.

Figure 2 shows the results. The left graph is transactions over time (higher is
better), the right graph is average response time (lower is better). Each graph

AppScale: Scalable and Open AppEngine Application Development 67

Number of Transactions Completed over Time

300 | 1 T T 1 T 1 T
[appscale-guestbook
google-guestbook - -
appscale-shell
250 - google-shell +~-e-®-
LI]
[] & .
w
& 200 [
I3 .
(4]
= 150 [B _ 4
.- hd]
o e * ; e | s
‘g ol i a®
s m
€ 100f 2 .i® |
= e pi®
g “Fub . l
= 56283 e .
L & |
i]
& . I
gi”
0 ! . 1 | 1 1 L

0 20 40 60 80 100 120 140 160
Time (seconds)

Fig. 3. Transactions over time under increasing load (3 users per 5 seconds) for two
applications (guestbook and shell), when hosted by Google and AppScale

plots a point every five seconds. The x-axis is time and load: Grinder adds three
additional users every 5 seconds. In the left graph each point, is the number of
transactions that completed in that interval, on average across five runs (y-axis).
In the right graph, each point is the average response time across the transactions
that began in that interval, on average across five runs (y-axis).

All of the applications except guestbook tend to grow in the number of transac-
tions as load increases. Guestbook’s transaction count decreases after 100 seconds.
This is because each guestbook posting increases the size of the database table. Our
current (naive) implementation of database queries is to return the entire table to
the node so that we can apply any filters at the GAE client side. As the database
grows, each call is more expensive. We are currently extending our query process
to return only the individual entries required, to address this issue. Cccwiki scales
much better because each transaction only modifies an existing page, altering an
entry in the table, as opposed to creating a new entry as guestbook does.

We also evaluated the difference between executing the four guestVMs on
a single (quadcore) machine versus on individual machines. We find that we
achieve very similar results for both for transactions completed and response
time. This is interesting since it shows that the overhead of virtualization and co-
location of virtual machines on these systems is not the performance bottleneck
at this point. We find that in some cases the single machine case outperforms
the distributed case due to network communication. This indicates that it may
be beneficial to consider co-location of interoperating AppScale components for
some behaviors and applications.

68 N. Chohan et al.

Finally, we investigate how AppScale performs relative to the Google propri-
etary infrastructure to better understand our baseline performance. We consider
guestbook and shell applications since neither require the user to log in. We ex-
ecute these applications using a Google AppEngine account. Figure 3 shows the
results for transactions completed over time. AppScale transaction counts are
more variable and do not scale for guestbook as load increases. Shell over App-
Scale scales up to a time/load of 80s. Google transaction counts scale perfectly.
For response times (not shown) for guestbook Google consistently responds in
200-330ms regardless of load. For shell, Google’s response time is more variable
but still within a similar range. Shell performs more computation per request
than guestbook. Google therefore starts to deny resources to the application at
150 seconds due to resource consumption limitations.

5 Related Work

The open-source offering most similar to AppScale is AppDrop [2]. AppDrop is
a simple Ruby-on-Rails application that emulates and hosts AppEngine applica-
tions on Amazon’s EC2. AppDrop is a proof-of-concept that GAE applications
can be executed in an environment other than that of Google.

There are multiple differences between AppScale and AppDrop. First, Ap-
pDrop (and any GAE applications that execute using it) is hosted entirely
using a single guestVM image, which places significant limitations on IaaS us-
age/accounting, performance, scalability, and fault tolerance. The AppDrop pro-
genitor uses his own EC2 account to host GAE applications on behalf of GAE
developers. Thus, AppDrop is responsible for all EC2 charges and resource use
as well as any “bad behavior” by the GAE applications. Each AppScale instance
and its GAE applications is deployed and “owned” by each individual GAE
developer.

AppDrop implements the flat file database integrated in GAE SDK develop-
ment server for its datastore. This system is not distributed, scalable, or fault
tolerant. AppDrop also employs a secondary database (implemented using Rails
ActiveRecord and PostGreSQL) to store and retrieve the user’s session data.
AppScale uses the same distributed and fault tolerant database infrastructure
as it does for its GAE applications and facilitates any database to be “plugged
into” AppScale. AppScale currently integrates HBase, Hypertable, MySQL, Cas-
sandra, and Voldemort as distributed, fault tolerant datastore options.

6 Conclusions

We present AppScale, an open source PaaS cloud computing research frame-
work that emulates the Google AppEngine-based cloud offering. AppScale is
easy to use and to extend and automatically deploys itself and GAE applica-
tions over Xen-based cluster resources and IaaS clouds such as Amazon EC2 and
EucaLYPTUS. AppScale implements a number of different components that fa-
cilitate deployment of GAE applications using local (non-proprietary resources).

AppScale: Scalable and Open AppEngine Application Development 69

Moreover, AppScale provides a framework with which cloud researchers and ap-
plication developers can investigate new techniques (services, tools, schedulers,
optimizations), and the performance and behavior of these techniques, and for
real (GAE) applications.

References

BN

10.
11.
12.

13.
14.
15.

16.

17.
18.

19.
20.

21.

. Amazon Web Services, http://aws.amnazon.con/

. AppDrop, http://jchris.mfdz.con

. Microsoft Azure Service Platform, http://www.nicrosoft.com/azure/

. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

In: Computer Networks and ISDN Systems, pp. 107-117 (1998)

. Burrows, M.: The Chubby Lock Service for Loosely-Coupled Distributed Systems.

In: OSDI 2006: Seventh Symposium on Operating System Design and Implemen-
tation (2006)

. Cassandra, http://incubator.apache.org/cassandra/
. Chandra, T., Griesemer, R., Redstone, J.: Paxos Made Live - An Engineering

Perspective. In: PODC 2007: 26th ACM Symposium on Principles of Distributed
Computing (2007)

. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Wallach, D., Burrows, M., Chandra,

T., Fikes, A., Gruber, R.: Bigtable: A Distributed Storage System for Structured
Data. In: Proceedings of 7th Symposium on Operating System Design and Imple-
mentation (OSDI), pp. 205-218 (2006)

. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clus-

ters. In: Proceedings of 6th Symposium on Operating System Design and Imple-
mentation (OSDI), pp. 137-150 (2004)

Django, http://www.djangoproject.com/

Elastra Inc., http://www.elastra.com

Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: 19th ACM
Symposium on Operating Systems Principles (2003)

Google AppEngine, http://code.google.com/appengine/

Hadoop, http://hadoop.apache.org/core/

Lamport, L.: The Part-Time Parliament. ACM Transactions on Computer Systems
(1998)

Mongrel, http://mongrel.rubyforge.org

MySQL, http://www.mysql.com

Nagpurkar, P., Horn, W., Gopalakrishnan, U., Dubey, N., Jann, J., Pattnaik, P.:
Workload characterization of selected jee-based web 2.0 applications. In: Work-
load Characterization, IISWC 2008. IEEE International Symposium on Workload
Characterization (IISWC), September 2008, pp. 109-118 (2008)

Nginx, http://www.nginx.net

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: Eucalyptus: A technical report on an elastic utility computing
architecture linking your programs to useful systems. UCSB Technical Report ID:
2008-10 (2008)

Protocol Buffers. Google’s Data Interchange Format,
http://code.google.com/p/protobuf

70

22.
23.
24.

25.

26.

N. Chohan et al.

Rightscale Inc., http://www.rightscale.com/

Ruby on Rails, http://www.rubyonrails.org

Salesforce Customer Relationships Management (CRM) System,
http://wwu.salesforce.com/

I. Sun Microsystems. White paper: Java(TM) 2 Platform Micro Edition
(J2ME(TM)) Technology for Creating Mobile Devices (May 2000),
http://java.sun.com/products/cldc/wp/KVMup.pdf

Voldemort, http://project-voldemort .com/

	AppScale: Scalable and Open AppEngine Application Development and Deployment
	1 Introduction
	2 Google App Engine
	3 AppScale
	3.1 AppController (AC)
	3.2 AppLoadBalancer (ALB)
	3.3 AppServer (AS)
	3.4 Data Management
	3.5 AppScale Tools
	3.6 Tolerating Failures

	4 Evaluation
	4.1 Methodology
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

