
AppScale: Scalable and Open AppEngine
Application Development and Deployment

Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz,
Nagy Mostafa, Sunil Soman, and Rich Wolski

Computer Science Department
University of California, Santa Barbara

Abstract. We present the design and implementation of AppScale, an
open source extension to the Google AppEngine (GAE) Platform-as
a-Service (PaaS) cloud technology. Our extensions build upon the GAE
SDK to facilitate distributed execution of GAE applications overvirtual
ized cluster resources, including Infrastructure-as-a-Service (IaaS) cloud
systems such as Amazon's AWS/EC2 and EUCALYPTUS. AppScale pro
vides a framework with which researchers can investigate the interaction
betweenPaaS and IaaS systems as well as the inner workings of, and new
technologies for, PaaS cloud technologies using real GAE applications.

Keywords: Cloud Computing, PaaS, Open-Source, Fault Tolerance,
Utility Computing, Distributed Systems.

1 Introduction

Cloud Computing is a term coined for a recent trend toward service-oriented
cluster computing based on Service-Level Agreements (SLAs). Cloud comput
ing simplifies the use of large-scale distributed systems through transparent and
adaptive resource management. It provides simplification and automation for
the configuration and deployment of an entire software stack. Moreover, cloud
technology enables arbitrary users to employ potentially vast numbers of multi
core cluster resources that are not necessarily owned, managed, or controlled by
the users themselves. Specific cloud offerings differ, but extant infrastructures
share two common characteristics: they rely on operating system virtualization
(e.g., Xen, VMWare, et c.) for functionality and/or performance isolation and
they support per-user or per-application customization via a service interface
typically implemented using high-level language technologies, APIs, and web
services.

The three prevailing classes of cloud computing are Software-as-a-Service
(SaaS), Platform-as-a-Service (PaaS), and Infrastructure-as-a-Service (IaaS).
SaaS describes systems in which high-level functionality (e.g., SalesForce.com
[24], which provides customer relationship management software as an on
demand service) is hosted by the cloud and exported to thin clients via the
network. The main feature of SaaS systems is that the API offered to the cloud
client is for a complete software service and not programming abstractions or

D.R. Avresky et aI. (Eds.) : C loudcom p 2009 , LNICST 34, pp. 57-70 , 2010 .
© Institute for Computer Sciences, Soci al-Informatics and Telecommunications Engineering 2010

58 N. Chohan et al.

resources. Commercial SaaS systems typically charge according to the number
of users and application features.

PaaS refers to the availability of scalable abstractions through an interface
from which restricted (e.g., HTTP(s)-onlycommunication, limited resource con
sumption), network-accessible, applications written in high-level languages (e.g.
Python, JavaScript, JVM and .Net languages) can be constructed. Two popular
examples of PaaS systems are Google App Engine (GAE) [13] and Microsoft
Azure [3]. Users typically test and debug their applications locally using a non
scalable development kit and then upload their programs to a proprietary, highly
scalable PaaS cloud infrastructure (runtime services, database, distribution and
scheduling system, etc.). Commercial offerings for both PaaS and IaaS systems
charge a low pay-as-you-go price that is directly proportional to resource use
(CPU, network bandwidth, and storage); these providers typically also offer trial
or capped resource use options, free of charge.

IaaS describes a facility for provisioning virtualized operating system in
stances, storage abstractions, and network capacity under contract from a service
provider. Clients fully configure and control their instances as root via ssh. The
Amazon Web Services (AWS) which includes the Elastic Compute Cloud (EC2),
Simple Storage System (S3), Elastic Block Store (EBS) and other APls [1] is, at
present, the most popular example of an IaaS-style computational cloud. Amazon
charges per instance occupancy hour and for storage options at very competitive
rates. Similar to those for PaaS systems , these rates are typically significantly
less than the cost of owning and maintaining even a small subset of the resources
that these commercial entities make available to users for application execution .

EUCALYPTUS [20] is an open-source IaaS system that implements the AWS
interface. EUCALYPTUS is compatible with AWS to the extent that commercial
tools designed to work with EC2 (e.g., Rightscale [22], Elastra [11], etc.) cannot
differentiate between an Amazon and a EUCALYPTUS installation. EUCALYPTUS
allows researchers to deploy, on their own cluster resources, an open-source web
service-based software infrastructure that presents a faithful reproduction of
the AWS functionality in its default configuration . Furthermore, EUCALYPTUS
provides a research framework for investigation of IaaS cloud technologies.

Such a framework is key to advancing the state of the art in scalable cloud com
puting software architectures and to enabling users to employ cloud technologies
easily on their own local clusters . Yet, despite the popularity and wide-spread
use of PaaS systems, there are no open-source implementations of PaaS systems
or APls . To address this need, we have designed and implemented an open
source PaaS cloud research framework, called AppScale. AppScale emulates the
functionality of the popular GAE commercial cloud. Specifically, AppScale im
plements the Google App Engine open APls and provides an infrastructure and
toolset for distributed execution of GAE applications over virtualized clusters
and IaaS systems (including EC2 and EUCALYPTUS). Moreover, by building on
existing cloud and web-service technologies, AppScale is easy to use and able to
execute real GAE applications using local and private cluster resources.

AppScale: Scalable and Open AppEngine Application Development 59

AppScale consists of multiple components that automate deployment, man
agement, scaling, and fault tolerance of a GAE system. AppScale integrates,
builds upon, and extends existing web service, high-level language, and cloud
technologies to provide a system that researchers and developers can employ to
investigate new cloud technologies or the behavior and performance of extant
applications. Moreover, AppScale deployment requires no modifications to GAE
applications. AppScale is not meant to compete with, outperform, or scale as well
as, proprietary cloud systems, including GAB. Our intent is to provide a frame
work that enables researchers to investigate how such cloud systems operate,
behave, and scale using real applications. Moreover, by facilitating application
execution over important, lower-level cloud offerings such as EUCALYPTUS and
EC2, AppScale also enables investigation of the interoperation and behavior of
multiple cloud fabrics (PaaS and IaaS) in a single system. In the sections that
follow, we describe the design, implementation, and a preliminary evaluation of
AppScale.

2 Google App Engine

In April 2008, Google released a software framework for developing and hosting
complete web service applications. This framework, called Google App Engine
(GAE) , enables users to write applications written in high-level programming
languages and to deploy them on Google's proprietary and vast computing re
sources. The framework restricts the libraries that the application can use and
limits the resources consumed by the program . This sandbox execution model
limits application functionality in order to protect system stability, guarantee
performance, and achieve scalability. The restrictions include communication
limited to HTTP(S) , program response to web requests within 30 seconds, no
file system access except for files uploaded with the application, and persistent
storage via simple in-memory or distributed key-value storage across requests .

Deployed GAE applications gain access to a high-quality, professionally main
tained, and extremely scalable software infrastructure. This infrastructure is
closed proprietary and includes the Google File System (GFS) [12], BigTable [8],
MapReduce [9], Chubby [5] and Paxos [7] . GFS is a distributed, scalable, and
reliable file system optimized for very large files and throughput-oriented appli
cations . BigTable offers a distributed and highly available schema-free key-value
store for fast access to structured data via a simple Datastore API. BigTable
also integrates MapReduce for highly scalable concurrent execution of embarass
ingly parallel computations, such as data indexing and crunching for Google
PageRank [4], Google Earth, and other applications. Chubby is a highly avail
able naming service for GFS (that was originally designed as a locking service);
the content of GFS are agreed upon using an optimized version of the original
Paxos algorithm [15] .

Google applications access these services through well-defined interfaces en
abling the cloud to manage and controll resource usage very efficiently and seal
ably. GAE applications interoperate with other hosts via HTTP(S) using the

60 N. Chohan et al.

URL-Fetch API , manipulate images via the Images API, cache and store data
via t he Memcache and Datastore API , and access other Google applicat ions via
the Mail API and Accounts API. The web frontend of an application commu
nicates via Remote Procedure Calls (RPC) with the datastore backend using
protocol buffers [21] for fast and portable data serialization .

GAE developers write their web applicat ions (webpage frontend, response
computation, and dat a access) in Python using the GAE APIs, a subset of the
Python libraries appr oved by Google, and the Django web framework [10] (or
other similar and approved Python web framework). These frameworks signif
icantly simplify and expedite common web development act ivities. Developers
modify the data model in their programs to access the GAE Datastore API.
In April 2009, Google made available a Java-based GAE framework. Develop
ers employ the Java Servlet and Data Objects APIs and a subset of the Java
libraries approved by Google to implement JVM-based GAE web applicat ions.

Developers write a runtime configuration file for their applicat ion that iden
tifies the program, specifies the versioning information, and identifies the han
dlers (code to execute or files to serve) for different URL accesses. Developers
use a GAE software development kit (SDK) to test and execute their applica
tion locally and serially. The SDK implements the APIs using simple, slow, and
non-scalable versions of the internal services. In particular , the SDK implements
the Dat astor e API via a flat file (or very simple database). Once developers are
ready to deploy their application on Coogle's resources, they do so by uploading
a gzipped tar-ball of the code and configurat ion file to App Engine using an SDK
tool. The developer also specifies and builds the indexes on the dat astore for all
queries that the application code can make, as part of the upload process.

The Google runtime system auto mat ically load-balances the application ac
cording to user load. If the applicat ion exceeds its billable or fixed resource quota
within a 24-hour period or l-m inute interval, the system retu rns a HTTP 403
Forbidden stat us until the resource is replenished. Applicat ion act ivities that
are monitored by the Google system include CPU usage, network communi
cat ion (bandwidth), requests (tota l and per minute), data storage, and emails
sent .

In summary, Google App Engine provides access to vast and ext reme scale
resources for a very specific and well-defined web service applicat ion domain.
Applications can be implemented and deployed into the clould quickly and easily
using high-level languages, simple and welldocumented API's, and Google's SDK
tools. Furthermore, the Google platform monitors and scales the applications.
GAE thus enables a broad user base to develop web applications and deploy them
without owning and managing sufficient cluster resources. The GAE APIs and
the SDK carry open-source licenses but the internal, scalable, implementations
are closed-source.

3 AppScale

To provide a platform for GAE applicat ion execut ion using local and private
cluster resources, to investigate novel cloud services, and to faciliate research for

AppScale: Scalable and Open AppEngine Application Development 61

GAEApp
Developer

(App5ca1e Admin))

I

I,?: l'~·· · · ··
~

_AppSca e Tools

AppContro er (AC)

~ •.. .•.~ HTTPS

Fig . 1. Overview of the AppScale design. The AppScale cloud consists of an Appl.oad
Balancer (ALB), a Database Master (DBM), one or more Database Slaves (DBS), and
one or more AppServers (ASs) . Users of GAE applications interact with ASs; the de
veloper deploys AppScale and her GAE applications through the head node (i.e. the
node on which the ALB is located) using the AppScale Tools. AppControllers (ACs)
on each node interact with the other nodes in the system; ASs interact with the DBM
via HTTPS.

the next-generation of cloud software and applications, we have implemented
AppScale. AppScale is a multi-language, multi-component framework for exe
cut ing GAE applicat ions. Figure 1 overviews the AppScale design.

AppScale consists of a too lset (the AppScale Tools), three primary compo
nents, the AppServer (ASs), t he database management system , and the Ap
pLoadBalancer (ALB), and an AppController (AC) for inter-component
communication. AppServers are the execut ion engines for GAE applicat ions
which interact with a Database Master (DBM) via HTTPS for data storage and
access. Database Slaves (DBSs) facilitate dist ributed, scalable, and fault tolerant
data management . The AppController is responsible for setup, init ializat ion, and
tear down of AppScale instances, as well as cross component interaction. In ad
dit ion, the AppContro ller facilitates deployment of and aut hentication for GAE
applicat ions. The ALB serves as the head node of an AppScale deployment and
initiat es connections to GAE applicat ions running in ASs. The AC of the head
node also monitors and manages the resource use and availability of the deploy
ment . All communications across the syste m are encrypted via the secure socket
layer (88L).

A GAE application developer interacts with an App8cale instance (cloud) re
motely using the App8cale Tools. Developers use these tools to deploy App8cale ,
to submit GAE applicat ions to deployed AppScale instances, and to interact
with and administer AppScale instances and deployed GAE applicat ions. We
dist inguish developers from users; users are the clients/users of individu al GAE
applicat ions.

An AppScale deployment consists of one or more virt ualized operating system
instances (guest VMs). GuestVMs are Linux systems (nodes) th at execute over
the Xen virt ual machine monito r, t he Kernel Virtu al Machine (KVM) [25] or
IaaS systems such as Amazon's EC2 and EUCALYP TUS. For each AppScale de
ployment , there is a single AppLoadBalancer (ALB) which we consider the head

62 N. Chohan et al.

node, one or more AppServers (AS), one Database Master (DBM) and one or
more Database Slaves (DBSs). A node can implement any individual component
as well as any combination of these components ; the AppScale configurat ion can
be specified by the developer via command line options of an AppScale tool.

We next detail the implementation of each of these components . To facilitate
this implementation we employ and extend a number of exist ing, successful, web
service technologies and language frameworks .

3.1 AppController (Ae)

The AppController (AC) is a SOAP client / server daemon written in Ruby. The
AC executes on every node and starts automat ically when the guestVM boots .
The AC on the head node starts the ALB first and initiates deployment and boot
of any other guestVM. This AC then contacts the ACs on the other guestVMs
and spawns the components on each node. The head node AC first spawns the
DBM (which then starts the DBSs) and then spawns t he AppServers , configuring
each with the IP of the DBM (to enable access to the database via HTTPS) .

The AC on the head node also monitors the AppScale deployment for failed
nodes and for opportunities to grow and shrink the AppScale deployment ac
cording to system demand and developer preferences. Th e AC periodically polls
(currently every 10 seconds) the AC of every other node for a "heartbeat" and to
collect per-application behavior and resource use (e.g. CPU and memory load).
When a component fails, the AC restarts the component , respawning a node if
necessary.

Although in this paper we evaluat e the stat ic default deployment of AppScale,
we can also use this feedback mechanism to spawn and kill individual nodes of a
deployment to respond to system load and performance. Killing nodes reduces
resource consumption (and cost of resources are being paid for) and consists
of stopping the components within a node and dest roying the guestVM. We
spawn nodes to add more AppServers or Database Slaves to the system. We are
currently invest igati ng various scheduling policies, feedback mechanisms, and
capability to inter act with the underlying cloud fabric to modify service level
agreements. AppScale currently supports starting and stopping of any compo
nent in a node and automatic spawning and destroying nodes.

3.2 AppLoadBalancer (ALB)

The AppLoadBalancer is a Ruby on Rails [23] applicat ion that employs a simple
HTTP server (nginx [19]) to select between three replicated Mongrel application
servers [16] (for head-node load balancing). The ALB distr ibutes initial requests
from users to the AppServers (ASs) of GAE applications. Users initially contact
the ALB to request a login to a GAE application. The ALB provides and/or
authenticates this login and t hen selects an AS randomly. It then redirects the
user request to the selected AS. The user, once redirected, continues to use the
AppServer to which she was routed and does not interact further with the ALB
unless she logs out or the AppServer she is using becomes unreachable.

AppScale: Scalable and Open AppEngine Application Development 63

3.3 AppServer (AS)

An AppServer is an extension to the development server distributed freely as part
of the Google AppEngine SDK for GAE application execution. Our extensions
to the development server enable fully automated execution of GAE applications
on any virtualized cluster to which the developer has access, including EC2 and
EUCALYPTUS. AppServers can also be used without virtualization which requires
manual configuration. In addition , our extensions provide a generic datastore in
terface through which any database technology can be used. Currently we have
implemented this interface to RBase and Rypertable, open-source implementa
tions of Google's BigTable that execute over the distributed Radoop File System
(RDFS) [14]. We also have plugins for MySQL [17], Cassandra [6], and Volde
mort [26].

We intercept the protocol buffer requests from the application and route them
over RTTPS to/from the DBM front-end called the PBServer. The PBServer
implements the interface to every datastore available and routes the requests to
the appropriate datastore. The interaction is simple but fully supported by a
number of different error conditions, and includes:

- Put: add a new item into the table (create table if non-existant)
- Get: retrieve an item by ID number
- Query: SQL-like query
- Delete: delete an item by ID number

Our other extensions facilitate automatic invocation of ASs and authentica
tion of GAE users. The AC of the node sets the location of the datastore (passed
in from a request from the head node AC), upon AS start. The AS also stores
and verifies the cookie secret that we use to authenticate users and direct the
component to authenticate using the local AppController (AC).

An AS executes a single GAE application at time. To host multiple GAE
applications , AppScale uses additional ASs (one or more per GAE application)
that it isolates within their own AppScale nodes or that it co-locates within
other nodes containing other AppScale components.

3.4 Data Management

In front of the Database Master (DBM) sits the The PBServer is the front-end of
the DBM. This Python program processes protocol buffers from a GAE applica
tion and makes requests on its behalf to read and write data to the datastore. As
mentioned previously, AppScale currently supports RBase and Rypertable data
stores . Both execute over RDFS within AppScale which performs replication ,
fault tolerance, and provides reliable service using distributed Database Slaves.
The PBServer interfaces with RBase, Rypertable, Cassandra, and Voldemort
using Thrift for cross-language interoperation.

The AC on the DBM node provides access to the datastore via these interfaces
to the other ACs and the ALB of an AppScale system. The ALB stores uploaded
GAE applications as well as user credentials in the database to authenticate the
developer and users of GAE applications.

64 N. Chohan et al.

3.5 AppScale Tools

The developer employs the AppScale tools to setup an AppScale insta nce and to
deploy CAE application s over AppScale. The toolset consists of a small number
of Ruby scripts that we named in the spirit of Amazon's EC2 tools for AWS.
The tools facilit ate AppScale deployment on Xen-based clusters as well as EC2
and EUCALYPTUS. The latter two systems require credent ials and service-level
agreements (SLAs) for the use, allocat ion (killing and spawning of inst ances) of
resources on behalf of a developer; the EC2 tools (for either IaaS system) gener
ate , manage, distribute (to deployed inst ances), and authenticate the credentials
throughout the cluster. The AppScale tools sit above these commands and make
use of them for credential management in IaaS settings. In a Xen-only sett ing, no
credential management is necessary; the tools employ ssh keys for cluster man
agement . The tools enable developers to start an AppScale system, to deploy and
tear down CAE applications, to query t he state and performance of an AppScale
deployment or application , and to manipu late the AppScale configuration and
sta te . There is currently no limit on the number of uploaded applicat ions.

3.6 Tolerating Failures

There are multiple ways in which AppScale is fault to lerant . The AppController
executes on all nodes. If the AC fails on a node with an AS, that AS can no longer
authenticate users for a particular CAE application but aut henticated users
proceed unimpeded. Users that contact an ALB to re-authenticat e (acquire a
cookie) are redirected to a node with a funct ioning AS/ AC to cont inue accessing
the applicat ion. If the AC fails on t he node with the ALB, no new users can reach
any CAE applicat ions deployed in the AppScale instance and the developer
is not able to upload addit ional CAE applicat ions; extant users however, are
unaffected. This scenario (AC on the ALB node failure) is similar to AC failure
on the DBM node. In this scenario (AC on the DBM node failure), ASs and
users are unaffected.

The database system continues to funct ion as long as at least one DBS is
available. Similarly, t he system is tolerant to failure of the PBServer (DBM front
end). If the PBServer fails on the DBM, t he ASs will temporarily be unable to
reach the database until the AC on the node restarts the PBServer. The ASs
are not able to cont inue to execute (CAE applications will fail) if the DBM goes
down or becomes unreachable. In this scenario , the ALB will restart the DBM
component but unless the data from the original DBM is available to restore,
the restart is similar to restarting AppScale.

Although, coupling multiple components per node reduces the number of nodes
(resource requirements) and potentially better utilizes underlying resources, it
also increases the likelihood of failure. For example, if all components are located
in a single node, node failure equals system failure. If the node containing the ALB
and DBM fails, the system fails. In these scenarios, component failure does not
equal node failure however; the AC in the head node will attempt to restart com
ponents as described previously. The DBM issues 3 replicas of tables for DBSs to

AppScale: Scalable and Open AppEngine Application Development 65

Table 1. Benchmarks Statistics. For each benchmark, Column 2 is its description
and Column 3 is its number of lines of code (Python/JavaScript). Column 4 is the
number of transactions in the Grinder user loop that we use to load the system in our
experiments.

LOC Trans-
Python or actions

Benchmark Description JavaScript in Loop
cccwiki user-defined webpage creation 289/ 10948 74
guestbook presents last 10 signatureson a page; users can sign as well 81/ 0 9
shell an interactive Python shell via a webpage 308/6100 14
tasks to-dolist manipulation 485/ 1248 44

store, thus user dat a is available on failure of any individual DBS component. We
are invest igating the various failure scenarios and techniques for tolerating them
within a deployed AppScale system as part of ongoing and future work.

We distri bute AppScale as a single Linux image and the AppScale Toolset.
The image contains the code for the implementation of all of the components
and a 54-bit Linux kernel and Ubuntu distribution. The system is available from
http ://appscale . cs .ucsb . edu/; all new progr ams that we have contributed
carry the Berkeley Software Distribution (BSD) License.

4 Evaluation

We next present the basic perform ance characterist ics of AppScale default de
ployment . We note that we have not optimized AppScale in any way and that
this st udy presents a baseline from which we will work to improve the perfor
mance and scalability of the system over tim e. Our goal with AppScale to provide
a research framework for the community, t hus, we and others will likely iden
tify ways to improve it s performance over time . We simply provide a framework
with which to investigate exist ing open source GAE applicat ions, services, and
execut ion characteristics using local cluster resources.

4.1 Met hodology

For our exper imental methodology, we invest igate four open source GAE applica
tions made available as Google AppEngine Samples (ht t p : / / code .google . com/
p/google-app-engine-samples/). The applicat ions are Python programs and
Python/ JavaScript programs. We overview them and their basic characteristics
in Tab le 1. The cccwiki and tasks applicat ions require th e user to log in. Each
app licat ion uses the AppScale da tastore for all data man ipulation. We record a
user session that we replay for an increasing number of users repeatedly using
the Grinder load testing framework (ht t p : / / gr i nder . sourceforge .net) and
its extensions [18].

For each experiment, we investigat e two metrics, (i) the t ota l number of
t ransactions complet ed over a five second int erval, and (ii) t he average

66 N. Chohan et al.

N\.mber 01Transacbons~ed 0'1''' Tme
llOO -

ca;wi1o
IlOO guos1lloo!<- .
700 I! 600

j
500 ~!

15 400
~

I 300
lc:z .
'"200 e
~
-c

100

0
0 20 40 eo eo 100 120 140 '80

r.....I._1

...
""'"-- -.... .

20000

15000

10000 -e z , :. -

5000

40 60 eo 100 120 140 180
r.....I_1

Fig. 2. Application performance under stress: Transactions over time (left) and average
response time (right) . The x-axisis time in seconds; Grinder introduces three additional
users for load every5 seconds. In the left graph each point is the number of transactions
that completed in that interval, on average across five runs (y-axis). In the right graph,
each point is the average response time across the transactions that began in that
interval, on average across five runs (y-axis).

response t ime for transactions that start during t he int erva l. Specif
ically, each Grinder user repeat edly executes a series of tr ansactions (Table 1
Column 3). The user repeat s this loop for 160 seconds. Grinder adds three users
every five seconds to load th e syste m.

For each five second interval in the 160 seconds of each test , we count the
number of transact ions that complete in th at interval (for t ransactio ns completed
per interval). For average response t ime, for each five second interval of the 160
seconds, we compute the average response t ime for the transact ions that started
in th at interval. We repeat each experiment five times and compute the average
and standard deviation for each interval across all of th e runs.

Our cluste r consists of quad-core 2.66GHz machines with 8GB RAM con
nected via gigabit Ethernet . We employ three of these machines for Grinder
load generators. The machines are synchronized and each Grinder instance in
troduces a single user every five seconds. We specify the number of machines we
use for the AppScale deployment with each experiment below.

4.2 Experimental R esults

We first present data for each appli cation , execut ed in isolation over App
Scale, over time and increasing load. For this experiment , we employ t he de
fault AppScale configuration: one head node (ALB+ DBM) and three slave nodes
(AS+DBS each) with each node/ guestVM on its own machine. Each of the three
Grinder machines accesses the AS of one slave node.

Figure 2 shows the results. The left graph is transact ions over time (higher is
bet ter), t he right graph is average response time (lower is better). Each graph

AppScale: Scalable and Open AppEngine Application Development 67

Number of Transactions Completed overTime
300 ,....--...,....---,----,--.,--...,....----,---.,- -----,

'"c:
.Q
13
~
c:
~
I-

o
Q;
.0
E
~z

250

200

150

100

50

appscale-gueslbook ... €I •
google-gueslbook ~-• . -e.

appscate-shell '. ~- ()
google·shell. " .• •. -

• •...
.. --

.. .. .:... .~ ~

.. • • . •' - _ . - 0
, 0 . 0 . i

~ ; .· ,O~ 0C~O"~ i !~
.. • :.o~ "0 ' ! ~ ~

• •• • ~ ;. <il I • • '
., - ..

· o - ~ I ! '!'
... . . ~ ~ .., III • .• -.. ,
~ - _ . i ' c~ 066 . .
;- ' . c c c Ot c : 6! . - ' .. 0

W 00 100 1 ~ 1~ 1W
Time(seconds)

Fig. 3. Transactions over time under increasing load (3 users per 5 seconds) for two
applications (guestbookand shell), when hosted by Coogle and AppScale

plots a point every five seconds. The x-axis is time and load: Grinder adds three
additional users every 5 seconds. In the left graph each point , is the number of
transactions that completed in that interval, on average across five runs (y-axis).
In the right graph, each point is the average response time across the transactions
that began in that interval, on average across five runs (y-axls).

All of the applications except guestbook tend to grow in the number of transac
tions as load increases. Guestbook's transaction count decreases after 100seconds.
This is because each guestbook posting increases the size ofthe database table. Our
current (naive) implementation of database queries is to return the entire table to
the node so that we can apply any filters at the GAE client side. As the database
grows, each call is more expensive. We are currently extending our query process
to return only the individual entries required, to address this issue. Cccwiki scales
much better because each transaction only modifies an existing page, altering an
entry in the table, as opposed to creating a new entry as guestbook does.

We also evaluated the difference between executing the four guestVMs on
a single (quadcore) machine versus on individual machines. We find that we
achieve very similar results for both for transactions completed and response
time. This is interesting since it shows that the overhead of virtualization and co
location of virtual machines on these systems is not the performance bottleneck
at this point. We find that in some cases the single machine case outperforms
the distributed case due to network communication. This indicates that it may
be beneficial to consider co-location of interoperating AppScale components for
some behaviors and applications.

68 N. Chohan et al.

Finally, we investigate how AppScale performs relat ive to the Coogle propri
etary infrastructur e to bet ter understand our baseline performance. We consider
guestbook and shell applicat ions since neither require the user to log in. We ex
ecute these applications using a Coogle AppEngine account. Figure 3 shows the
results for transact ions completed over time. AppScale transaction counts are
more variable and do not scale for guestbook as load increases. Shell over App
Scale scales up to a time/ load of 80s. Coogle t ransact ion counts scale perfectly.
For response t imes (not shown) for guestboo k Coogle consistent ly responds in
290-330ms regardless of load. For shell, Coogle's response t ime is more variable
but still within a similar range. Shell performs more computation per request
th an guestbook. Coogle therefore starts to deny resources to the application at
150 seconds due to resource consumption limitations.

5 Related Work

The open-source offering most similar to AppScale is AppDrop [2]. AppDrop is
a simple Ruby-on-Rails applicat ion that emulates and hosts AppEngine applica
tions on Amazon's EC2. AppDrop is a proof-of-concept that CAE applications
can be executed in an environment other than that of Coogle.

There are multiple differences between AppScale and AppDrop. First , Ap
pDrop (and any CAE applications that execute using it) is hosted entirely
using a single guestVM image, which places significant limitations on laaS us
age/accounting, performance, scalability, and fault tolera nce. The AppDrop pro
genitor uses his own EC2 account to host CAE applicat ions on behalf of CAE
developers. Thus, AppDrop is responsible for all EC2 charges and resource use
as well as any "bad behavior" by the GAE applicat ions. Each AppScale inst ance
and its CAE applications is deployed and "owned" by each individual CAE
developer.

AppDrop implements the flat file database integrated in CAE SDK develop
ment server for its datastore. This system is not distr ibuted, scalable, or fault
tolerant. AppDrop also employs a secondary database (implemented using Rails
ActiveRecord and PostG reSQL) to store and retrieve the user's session dat a.
AppScale uses the same distributed and fault tolerant database infrastructure
as it does for its CAE applications and facilitates any database to be "plugged
into" AppScale. AppScale currently integrates HBase, Hypertable, MySQL, Cas
sandra, and Voldemort as distributed, fault tolerant dat astore opt ions.

6 Conclusions

We present AppScale, an open source PaaS cloud computing research frame
work that emulates the Google AppEngine-based cloud offering. AppScale is
easy to use and to extend and automatically deploys itself and GAE applica
tions over Xen-based cluster resources and laaS clouds such as Amazon EC2 and
EUCALYPTUS. AppScale implements a number of different components that fa
cilitate deployment of GAE applications using local (non-propr ietary resources).

AppScale: Scalable and Open AppEngine Application Development 69

Moreover, AppScale provides a framework with which cloud researchers and ap
plication developers can investigat e new techniques (services, tools, schedulers,
optimi zation s), and t he performance and behavior of th ese techniques, and for
real (GAE) applicat ions.

References

1. Amazon Web Services, http : / / avs .amazon . com/
2. AppDrop, http ://jchris .mfdz . com
3. Microsoft Azure Service Platform, http://www .microsoft .com/azure/
4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine.

In: Compu ter Networks and ISDN Systems, pp . 107-117 (1998)
5. Burrows, M.: Th e Chubby Lock Service for Loosely-Coupled Distributed Systems.

In: OSOI 2006: Seventh Symposium on Operating System Design and Implemen
tation (2006)

6. Cassandra, http ://incubator .apache .org/cassandra/
7. Chandra , T ., Griesemer, R., Redstone, J .: Paxos Made Live - An Engineering

Perspective. In: POD C 2007: 26th ACM Symposium on Principles of Distributed
Computing (2007)

8. Chang, F. , Dean, J ., Ghemawat , S., Hsieh, W., Wallach, D., Burr ows, M., Chandra,
T., Fikes, A., Gruber, R.: Bigtable: A Distribu ted Storage System for Structured
Dat a. In: Proceedings of 7th Symposium on Operating System Design and Imple
mentation (OSOI), pp . 205-218 (2006)

9. Dean , J ., Ghemawat , S.: MapReduce: Simplified Dat a Processing on Large Clus
ters. In : Proceedings of 6th Symposium on Operating System Design and Imple
mentation (OSOI), pp.137-150 (2004)

10. Django, http://www .djangoproject.com/
11. Elastra Inc., http ://www.elastra .com
12. Ghemawat, S., Gobioff, H., Leung, S.-T.: The Google File System. In: 19th ACM

Symposium on Operating Systems Principles (2003)
13. Google AppEngine, http ://code .google .com/appengine/
14. Hadoop, http ://hadoop .apache .org/core/
15. Lampor t , L.: The Part- Time Parliament . ACM Transactions on Compute r Systems

(1998)
16. Mongrel, http ://mongrel . rubyforge . org
17. MySQL, http ://www.mysql.com
18. Nagpurkar, P., Horn , W., Gopalakrishnan , D., Dubey, N., Jann , J ., Pat tn aik, P.:

Workload characterizat ion of selected jee-based web 2.0 applicat ions. In: Work
load Character izat ion, IISWC 2008. IEEE International Symposium on Workload
Characterization (IISWC) , September 2008, pp . 109-118 (2008)

19. Nginx, http ://www.nginx .net
20. Nurmi, D., Wolski, R., Grzegorczyk, C., Obert elli, G., Soman , S., Youseff, L.,

Zagorodnov, D.: Eucalyptus: A technical report on an elastic utility computi ng
architecture linking your programs to useful systems. DCSB Technical Report ID:
2008-10 (2008)

21. Protocol Buffers. Google's Data Interchange Format ,
http ://code .google .com/p/protobuf

70 N. Chohan et al.

22. Rightscale Inc., http ://ww.rightscale .com/
23. Ruby on Rails, http ://ww.rubyonrails .or g
24. Salesforce Customer Relationships Management (CRM) System,

http ://ww.salesforce .com/
25. I. Sun Microsystems. White paper: Java(TM) 2 Platform Micro Edition

(J2ME(TM)) Technology for Creating Mobile Devices (May 2000),
http://java .sun .com/products/cldc/wp/KVMwp.pdf

26. Voldemort , http ://project-voldemort .com/

	AppScale: Scalable and Open AppEngine Application Development and Deployment
	1 Introduction
	2 Google App Engine
	3 AppScale
	3.1 AppController (AC)
	3.2 AppLoadBalancer (ALB)
	3.3 AppServer (AS)
	3.4 Data Management
	3.5 AppScale Tools
	3.6 Tolerating Failures

	4 Evaluation
	4.1 Methodology
	4.2 Experimental Results

	5 Related Work
	6 Conclusions
	References

