
HighPerformance Parallel Computing with
Clouds and Cloud Technologies

Jaliya Ekanayake and Geoffrey Fox

School of Informatics andComputing,
Indiana University, Bloomington, IN47405, USA

{jekanaya ,gcf}@indiana.edu

Abstract. Infrastructure services (Infrastructure-as-a-service), provided bycloud
vendors, allow anyuserto provision a large number of compute instances fairly
easily. Whether leased from public clouds or allocated from private clouds, uti
lizing these virtual resources to perform data/compute intensive analyses requires
employing different parallel runtimes to implement such applications. Among
many parallelizable problems, most "pleasingly parallel" applications canbe per
formed using MapReduee technologies such as Hadoop, CGL-MapReduce, and
Dryad, in a fairly easy manner. However, many scientific applications, which
have complex communication patterns, still require low latency communication
mechanisms andrichset of communication constructs offered by runtimes such
as MPI. In this paper, we first discuss large scale data analysis usingdifferent
MapReduce implementations and then, we present a performance analysis of
high performance parallel applications on virtualized resources.

Keywords: Cloud, Virtualization, MapReduce, Dryad, Parallel Computing.

1 Introduction

The introduction of commercial cloud infrastructure services such as Amazon EC2/S3
[1-2] and GoGrid[3] allow users to provision compute clusters fairly easily and
quickly by paying a monetary value only for the duration of the usage of resources.
The provisioning of resources happens in minutes as opposed to the hours and days
required in the case of traditional queue-based job scheduling systems. In addition,
the use of such virtualized resources allows the user to completely customize the
Virtual Machine (VM) images and use them with root/administrative privileges,
which is another feature that is hard to achieve with traditional infrastructures.

The availability of open source cloud infrastructure software such as Nimbus [4]
and Eucalyptus [5], and the open source virtualization software stacks such as Xen
Hypervisor[6], allows organizations to build private clouds to improve the resource
utilization of the available computation facilities. The possibility of dynamically pro
visioning additional resources by leasing from commercial cloud infrastructures
makes the use of private clouds more promising.

With all the above promising features of cloud, we can assume that the accessibili
ty to computation power is no longer a barrier for the users who need to perform large

D.R. Avreskyet al. (Eds.): Cloudcomp2009. LNICST34, pp. 20-38, 2010.
© Institutefor ComputerSciences,Social-Informatics and Telecommunications Engineering2010

High Performance Parallel Computing with Clouds and Cloud Technologies 21

scale data/compute intensive applications. However, to perform such computations,
two major pre-conditions need to be satisfied: (i) the application should be paralleliz
able to utilize the available resources; and (ii) there should be an appropriate parallel
runtime support to implement it.

We have applied several cloud technologies such as Hadoop[7], Dryad and Dryad
LINQ[8,9], and CGL-MapReduce[lO], to various scientific applications wiz: (i)
Cap3[II] data analysis; (ii) High Energy Physics(HEP) data analysis ; (iv) Kmeans
clustering[12]; and, (v) Matrix Multiplication. The streaming based MapReduce [13]
runtime - CGL-MapReduce- developed by us extends the MapReduce model to itera
tive MapReduce domain as well. Our experience suggests that although most "plea
singly parallel" applications can be performed using cloud technologies such as
Hadoop, CGL-MapReduce, and Dryad, in a fairly easy manner, scientific applica
tions, which require complex communication patterns, still require more efficient
runtime support such as MPI[14].

In order to understand the performance implications of virtualized resources on
MPI applications, we performed an extensive analysis using Eucalyptus based private
cloud infrastructure. The use of a private cloud gives us complete control over both
VMs and bare-metal nodes, a feature that is impossible to achieve in commercial
cloud infrastructures. It also assures a fixed network topology and bandwidth with the
nodes deployed in the same geographical location , improving the reliability of our
results. For this analysis, we used several MPI applications with different communica
tion/computation characteristics, namely Matrix Multiplication, Kmeans Clustering ,
and Concurrent Wave Equation Solver and performed them on several VM configura
tions. Instead of measuring individual characteristics such as bandwidth and latency
using micro benchmarks we used real applications to understand the effect of virtua
lized resources for such applications , which makes our result s unique.

In the sections that follow, we first present the work related to our research fol
lowed by a brief introduction to the data analysis applications we used. Section 4
presents the results of our evaluations on cloud technologies and a discussion . In
section 5, we discuss an approach with which to evaluate the performance implica
tions of using virtualized resources for high performance parallel computing . Section
6 presents the results of this evaluation along with a discussion of the results . In the
final section we give our conclusions and we discuss implications for future work.

2 Related Work

Traditionally, most parallel applications achieve fine grained parallelism using mes
sage passing infrastructures such as PVM [15] and MPI. Applications achieve coarse
grained parallelism using workflow frameworks such as Kepler [16] and Taverna
[17], where the individual tasks could themselves be parallel applications written in
MPI. Software systems such as Falkon [18], SWARM [19], and DAGMan [20] can be
used to schedule applications which comprise of a collection of a large number of
individual sub tasks.

Once these applications are developed, in the traditional approach, they are ex
ecuted on compute clusters, super computers, or Grid infrastructures [21] where the
focus on allocating resources is heavily biased by the availability of computational

22 J. Ekanayake and G. Fox

power. The application and the data both need to be moved to the available computa
tional power in order for them to be executed. Although these infrastructures are high
ly efficient in performing compute intensive parallel applications, when the volumes
of data accessed by an application increases, the overall efficiency decreases due to
the inevitable data movement.

Cloud technologies such as Google MapReduce, Google File System (GFS) [22],
Hadoop and Hadoop Distributed File System (HDFS) [7], Microsoft Dryad, and
CGL-MapReduce adopt a more data-centered approach to parallel runtimes. In these
frameworks, the data is staged in data/compute nodes of clusters or large-scale data
centers, such as in the case of Google. The computations move to the data in order to
perform data processing. Distributed file systems such as GFS and HDFS allow
Google MapReduce and Hadoop to access data via distributed storage systems built
on heterogeneous compute nodes, while Dryad and CGL-MapReduce support reading
data from local disks. The simplicity in the programming model enables better sup
port for quality of services such as fault tolerance and monitoring. Table I highlights
the features of three cloud technologies that we used.

Table 1. Comparison of features supported by different cloud technologies

Feature Hadoop Dryad& DryadLINQ CGL-MapReduce
Programming MapReduce DAGbasedexecution MapReduce with
Model flows Combine phase
DataHandling HDFS Shareddirectories/ Sharedfile system/

Localdisks Localdisks
Intermediate Data HDFS/ Files/I'Cl' pipes/Shared ContentDistribution
Communication Point-to-point via memory FIFO Network

HITP (NaradaBrokering[23])
Scheduling Data locality/ Data locality/ Network Data locality

Rackaware topology based
run timegraph
optimizations

FailureHandling Persistence via Re-execution of vertices Currently not imple-
HDFS mented
Re-execution of (Re-executing map
map and reduce tasks, redundant reduce
tasks tasks)

Monitoring Monitoring support Monitoring supportfor Programming interface
ofHDFS, execution graphs to monitorthe progress
Monitoring of jobs
MapReduce
computations

Language Implemented using Programmable via C# Implemented usingJava
Support Java DryadLINQ provides Other languages are

Other languages are LINQprogramming supported viaJava
supported via API for Dryad wrappers
HadoopStreaming

High Performance Parallel Computing with Clouds and Cloud Technologies 23

Y. Gu, et al., present Sphere [24] architecture, a framework which can be used to
execute user-defined functions on data stored in a storage framework named
Sector, in parallel. Sphere can also perform MapReduce style programs and the au
thors compare the performance with Hadoop for tera-sort application. Sphere stores
intermediate data on files, and hence is susceptible to higher overheads for iterative
applications.

All-Paris [25] is an abstraction that can be used to solve a common problem of
comparing all the elements in a data set with all the elements in another data set by
applying a given function. This problem can be implemented using typical MapRe
duce frameworks such as Hadoop, however for large data sets, the implementation
will not be efficient, because all map tasks need to access all the elements of one of
the data sets. We can develop an efficient iterative MapReduce implementation using
CGL-MapReduce to solve this problem. The algorithm is similar to the matrix multip
licationalgorithmwe will explain in section3.

Lamia Youseff, et al., presents an evaluationon the performance impact of Xen on
MPI [26]. According to their evaluations, the Xen does not imposeconsiderableover
heads for HPC applications. However, our results indicate that the applications that
are more sensitive to latencies (smaller messages, lower communication to computa
tion ratios) experience higher overheads under virtualized resources, and this over
head increases as more and more VMs are deployed per hardware node. From their
evaluations it is not clear how many VMs they deployed on the hardware nodes, or
how many MPI processes were used in each VM. According to our results, these
factors cause significant changes in results. Running 1-VM per hardware node pro
duces a VM instance with a similar number of CPU cores as in a bare-metal node.
However, our results indicate that, even in this approach, if the parallel processes
inside the node communicate via the network, the virtualization may produce higher
overheads under the current VM architectures.

C. Evangelinos and C. Hill discuss [27] the details of their analysis on the perfor
mance of HPC benchmarks on EC2 cloud infrastructure. One of the key observations
noted in their paper is that both the OpenMPIand the MPICH2-nemsisshow extreme
ly large latencies, while the LAM MPI, the GridMPI, and the MPICH2-scok show
smaller smoother latencies. However, they did not explain the reason for this behavior
in the paper. We also observed similar characteristics and a detailed explanation of
this behaviorand related issues are given in section 5.

Edward Walker presents benchmark results of performing HPC applications using
"high CPU extra large" instances providedby EC2 and on a similar set of local hard
ware nodes [28]. The local nodes are connected using infiniband switches while
AmazonEC2 networktechnology is unknown. The results indicate about40%-1000%
performance degradation on EC2 resources compared to the local cluster. Since the
differences in operating systems and the compiler versions between VMs and
bare-metal nodes may cause variations in results, for our analysis we used a cloud
infrastructure that we have complete control. In addition we used exactly similar
software environments in both VMs and bare-metal nodes. In our results, we noticed
that applications that are more susceptible to latenciesexperiencehigher performance
degradation (around 40%) under virtualized resources. The bandwidth does not seem
to be a consideration in private cloud infrastructures.

24 1.Ekanayake and G. Fox

AdaGavrilvska, et aI.,discuss several improvements over the current virtualization
architectures to support HPC applications such as HPC hypervisors (sidecore) and
self-virtualized VO devices [29] . We notice the importance of such improvements
and research. In our experimental results, we used hardware nodes with 8 cores and
we deployed and testedup to 8VMs per node in thesesystems. Our results show that
the virtualization overhead increases with the number of VMs deployed on a hard
ware node. These characteristics will have a larger impact on systems having more
CPU cores per node. A node with 32 cores running 32 VM instances may produce
verylargeoverheads under thecurrentVMarchitectures.

3 Data Analysis Applications

The applications we implemented using cloud technologies can be categorized into
three classes, depending on the communication topologies wiz: (i) Map-only; (ii)
MapReduce; and (iii) Iterative/Complex. In our previous papers [10,30], we have
presented details of MapReduce style applications and a Kmeans clustering applica
tion that we developed using cloud technologies, and the challenges we faced in
developing these applications. Therefore, in this paper, we simply highlight the cha
racteristics of theseapplications in table2 and present the results. The two newappli
cations that we developed, Cap3 and matrix multiplication, are explained in more
detail in this section.

Table 2. Map-Onlyand MapReduce styleapplications

Feature
Program/data
flow

More
Examples

Ma -onlv

~
!lnpui'Oata·F'iio·s...... :

-:: !(Gene sequancesj]
:.. •.••••••••••••••••••••__ ••••••..••••.•. 1

Im:po I.·1m:pO I rCap3j);og;iim":
: •••••••••H ••••••••••••••••.••••••• :=r···..6~t·p~t·fii~·~· _..~- ,

Cap3 Analysi application
implemented as a map-only
operation. Each maptask
processed a single inputdata file
and produces a set of output data
files.
Convening a collection of
document to different formats.
processing a collection of
medical images. and .
Brute force searches in
cryptography

reduce() !pertormss·iji·;;.rg·;;··"··l
'--- ---'-'- l~J:l~fl).~~.~..~~.~I~:~fl)~~ .j

HEPdata analysisapplication
implemented using MapReduce
programming model (ROOT is an object
oriented data analysis framework).

Histogramming operations.
distributed search. and di uributcd sorting.

HighPerformance Parallel Computing with Clouds andCloudTechnologies 25

3.1 Cap3

Cap3 is a sequence assembly program that operates on a collection of gene sequence
files which produce several output files. In parallel implementations, the input files
are processed concurrently and the outputs are saved in a predefined location. For our
analysis, we have implemented this application using Hadoop, CGL-MapReduce and
DryadLiNQ.

3.2 Iterative/Complex Style Applications

Parallel applications implemented using message passing runtimes can utilize various
communication constructs to build diverse communication topologies . For example, a
matrix multiplication application that implements Cannon's Algorithm [31] assumes
parallel processes to be in a rectangular grid. Each parallel process in the gird com
municates with its left and top neighbors as shown in Fig. l(left). The current cloud
runtimes, which are based on data flow models such as MapReduce and Dryad, do not
support this behavior, where the peer nodes communicate with each other. Therefore,
implementing the above type of parallel applications using MapReduce or Dryad
models requires adopting different algorithms .

~Bj .. ~
.----,,-+-------. I

1~iPO I· ·1 m,po I
ClIO 0

\ I
I reduceO I

I [EDCi

Ai
c=J

Fig. 1. Communication topology of matrix multiplication applications implemented using
Cannon'salgorithm (left)and MapReduce programming model (right)

We have implemented matrix multiplication applications using Hadoop and CGL
MapReduce by adopting a row/column decomposition approach to split the matrices.
To clarify our algorithm, let's consider an example where two input matrices A and B
produce matrix C, as the result of the multiplication process. We split the matrix B
into a set of column blocks and the matrix A into a set of row blocks. In each itera
tion, all the map tasks consume two inputs: (i) a column block of matrix B, and (ii) a
row block of matrix A; collectively, they produce a row block of the resultant matrix
C. The column block associated with a particular map task is fixed throughout the
computation while the row blocks are changed in each iteration. However , in Ha
doop's programming model (typical MapReduce model), there is no way to specify
this behavior and hence, it loads both the column block and the row block in each
iteration of the computation. CGL-MapReduce supports the notion of long running
map/reduce tasks where these tasks are allowed to retain static data in memory across

26 1.Ekanayake and G. Fox

invocations, yielding better performance for iterative MapReduce computations. The
communication pattern of this application is shown in Fig. I(right).

4 Evaluations and Analysis

For our evaluations, we used two different compute clusters (details are shown in
Table 3). DryadLINQ applications are run on the cluster Ref A while Hadoop, CGL
MapReduce, and MPI applications are run on the cluster Ref B. We measured the
performance (average running time with varying input sizes) of these applications and
then we calculated the overhead introduced by different parallel runtimes using the
following formula , in which P denotes the number of parallel processes (map tasks)
used and T denotes time as a function of the number of parallel processes used. T(1)
is the time it takes when the task is executed using a single process. T(P) denotes the
time when an application is executed using P number of parallel processes (For the
results in Fig. 2 to Fig. 5, we used 64 CPU cores and hence the P=64) . The results of
these analyses are shown in Fig. 2 -5 . Most applications have running times in mi
nutes range and we noticed that the fluctuations in running time are less than 5% for
most cloud runtimes. The average times shown in figures are calculated using the
results of 5 repeated runs of the application s. We used Hadoop release 0.20, the aca
demic release of DryadLINQ (Note: The academic release of Dryad only exposes the
DryadLINQ API for programmers. Therefore, all our implementations are written
using DryadLINQ although it uses Dryad as the underlying runtime).

Overhead = [P *T(P) -T(1)]fT(1).

Table 3. Different computation clusters used for the analyses

Cluster # Nodes used CPU Memory Operating System
Ref (fotal CPU cores
Ref A 8/64 2x Intel(R) Xeon(R) 16GB Windows Server 2008

CPU L5420 - 64 bit HPC Edition
2.50GHz (Service Pack I)

RefB 8/64 2 x Intel(R) Xeon(R) 32GB Red Hat Enterprise
CPU L5420 Linux Server release
2.50GHz 5.3 - 64 bit

(1)

All three cloud runtimes work competitively well for the CAP3 application. In the
Hadoop implementation of HEP data analysis, we kept the input data in a high per
formance parallel file system rather than in the HDFS because the analysis scripts
written in ROOT could not access data from HDFS. This causes Hadoop 's map tasks
to access data remotely resulting lower performance compared to DryadLINQ and
CGL-MapReduce implementations, which access input files from local disks. Both
DryadLINQ and Hadoop show higher overheads for Kmeans clustering application ,

HighPerformance Parallel Computing withCloudsand CloudTechnologies 27

soo

en 400"c0
U
ell
~ 300
ell
E,.,
ell

'" 200l!
ell
>-c

CGL~~i,m ==F »>__/~/~'~
2s-::

" .

/;~/
100 ·······

149k59k 89k 119k

Number of genesequences

O L-----'-----~----'---------'

29k

Fig. 2. Performance of the Cap3 application

300

250

en
"c 2008
ell
~
ell 150E,.,
ell

'"l! 100
ell

~

50

CGL-MapReduce --a-
Hadoop ••..& .

DryadLlNQ/b .

.

.6 - .A...... . . •.. •- .&r •••••••••

OL---- - - - - -----------'

Amount of HEPdatain GBs

Fig. 3. Performance of HEPdata analysis applications

and Hadoop shows higher overheads for the Matrix multiplication application. CGL
MapReduce shows a close performance to the MPI for large data sets in the case of
Kmeans clustering and matrix multiplication applications, highlighting the benefits of
supporting iterative computations and the faster data communication mechanism in
the CGL-MapReduce.

From these results, it is clearly evident that the cloud runtime s perform competi
tively well for both the Map-only and the MapReduce style applications. However, for
iterative and complex classes of applications, cloud runtime s show considerably high
overheads compared to the MPI versions of the same applications, implying that, for
these types of applications, we still need to use high performance parallel runtimes or
use alternative approaches. (Note: The negative overheads observed in the matrix
multiplication application are due to the better utilization of a cache by the parallel
application than the single process version). These observat ions lead us to the next
phase of our research .

28 J. Ekanayake and G. Fox

le+007

_ • •Q ...• •_ •• ..• '.'"

..A······

······································IJs·· ···

500

.,
"D 400c

~
~

300"~
"'" 200l!!
"~

100

0

CGL-MapReduce~
Hadoop ._••& ..

DryadLlNQ/>, ••••

MPI ··· v ·· .

_..•.•......•...•........•....•-e......•...-~---..•......•..••.::::::::::.,,*:::::::. .

le+006
Number of 20 datapoints (logscale)

Fig. 4. Performance of different implementations of Kmeans Clustering application (Note: X
axis is in logscale)

to r---,..-,---,-----.,---,,-----r------,
MPI····v "

CGL-MR . .. {;...
Hadoop~

5

614451203072 4096
Dimension of a matrix

2048

2

1

o~-~--_----.:::~==~====t
-1 L-__-'--__----"== -.L======J
1024

Fig. 5. Overhead induced bydifferent parallel programming runtimes forthematrix multiplica
tionapplication (8nodes are used)

5 Performance of MPI on Clouds

After the previous observations. we analyzed the performance implications of cloud
for parallel applications implemented using MPI. Specifically. we were trying to find
the overhead of virtualized resources, and understand how applications with different
communication-to-computation (C/C) ratios perform on cloud resources. We also
evaluated different CPU core assignment strategies for VMs in order to understand
the performanceof VMs on multi-corenodes.

Commercial cloud infrastructures do not allow users to access the bare hardware
nodes, in which the VMs are deployed, a must-have requirement for our analysis.
Therefore, we used a Eucalyptus-based cloud infrastructure deployed at our university
for this analysis. With this cloud infrastructure, we have complete access to both
virtual machine instances and the underlying bare-metal nodes, as well as the help of

HighPerformance ParalIel Computing withClouds andCloud Technologies 29

the administrators; as a result, we could deploy different VM configurations allocat
ing different CPU cores to each VM. Therefore , we selected the above cloud infra
structure as our main test bed.

For our evaluations, we selected three MPI applications with different communica
tion and computation requirements, namely, (i) the Matrix multiplication , (ii) Kmeans
clustering, and (iii) the Concurrent Wave Equation solver. Table 4 highlights the key
characteristics of the programs that we used for benchmarking .

Table 4. Computation andcommunication complexities of the different MPIapplications used

Application Matrix multiplication Kmeans Clustering Concurrent WaveEguation
Description Implements Cannon's Implements Kmeans A vibrating stringis

Algorithm Clustering Algorithm decomposed(split) into
Assume a rectangular Fixednumber of points, andeachMPI
process grid iterations are process is responsiblefor
(Fig. 1- left) performed in eachtest updating the amplitude of a

number of pointsover
time.

Grain size(n) Number of pointsin a Number of datapoints Number of pointshandled
matrix blockhandled handled by a single by eachMPIprocess
by eachMPIprocess MPI process

Cornmunica- EachMPIprocess AllMPIprocesses In eachiteration, eachMPI
tionPattern communicates withits sendpartial clusters to process exchanges

neighbors in bothrow one MPIprocess (rank boundary points withits
wiseandcolumn wise 0). Rank0 distribute nearest neighbors

the newclustercenters
to alI thenodes

Computation 0((-rn)3) 0((-rn)3) O(n)
perMPI
process
Communica- 0((-rn)2) 0(1) 0(1)
tionper MPI
process
C/C o(Jn) O(~) o(~)
Message Size (-rn)2=n D - Where D is the Eachmessage contains a

number of cluster double value
centers.

Communica- MPCSendrecvJ eplac MPCReduce() MPCSendrecv()
tion routines eO MPCBcast()
used

6 Benchmarks and Results

The Eucalyptus (version 1.4) infrastructure we used is deployed On 16 nodes of an
iDataplex cluster, each of which has 2 Quad Core Intel Xeon processors (for a total
of 8 CPU cores) and 32 GB of memory. In the bare-metal version, each node runs a
Red Hat Enterprise Linux Server release 5.2 (Tikanga) operating system. We used
OpenMPI version 1.3.2 with gee version 4.1.2 . We then created a VM image from

30 1. Ekanayake andG. Fox

this hardware configuration, so that we have a similar software environment on the
VMs once they are deployed. The virtualization is based on Xen hypervisor (version
3.0.3). Both bare-metal and virtualized resources utilize giga-bit Ethernet connections.

When VMs are deployed using Eucalyptus, it allows configuring the number of
CPU cores assigned to each VM image. For example, with 8 core systems, the CPU
core allocation per VM can range from 8 cores to I core per VM, resulting in several
different CPU core assignment strategies. In Amazon EC2 infrastructure, the standard
instance type has Y2 a CPU per VM instance [28]. In the current version of Eucalyp
tus, the minimum number of cores that we can assign for a particular VM instance is
I; hence, we selected five CPU core assignment strategies (including the bare-metal
test) listed in Table 5.

Table 5. Different hardware/virtual machine configurations usedfor performance evaluations

Ref Description Number of CPU Amount of memo- Number of
cores accessible ry (GB)accessible virtualor bare-
to the virtual or to the virtual or metal nodes
bare-metal node bare-metal node deployed

BM Bare-metal node 8 32 16
I-VM-8- I VM instance per 8 30 (2GB is re- 16
core bare-metal node servedfor DomO)
2-VM-4- 2 VMinstances per 4 15 32
core bare-metal node
4-VM-2- 4 VMinstances per 2 7.5 64
core bare-metal node
8-VM-l- 8 VM instances per 3.75 128
core bare-metal node

We ran all the MPI tests, on all 5 hardwareNM configurations, and measured the
performance and calculated speed-ups and overheads. We calculated two types of
overheads for each application using formula (1). The total overhead induced by the
virtualization and the parallel processing is calculated using the bare-metal single
process time as T(1) in the formula (1). The parallel overhead is calculated using the
single process time from a corresponding VM as T(1) in formula (1). The average
times shown in figures are obtained using 60 repeated runs for each and every mea
surement.

In all the MPI tests we performed, we used the following invariant to select the
number of parallel processes (MPI processes) for a given application.

Number ofMPI processes = Number of CPU cores used. (2)

For example, for the matrix multiplication application, we used only half the number
of nodes (bare-metal or VMs) available to us, so that we have 64 MPI processes =64
CPU cores. (This is mainly because the matrix multiplication application expects the
MPI processes to be in a square grid, in contrast to a rectangular grid). For Kmeans
clustering, we used all the nodes, resulting in a total of 128 MPI processes utilizing all
128 CPU cores. Some of the results of our analysis highlighting different characteriz
es we observe are shown in Fig. 6 through 13.

High Performance Parallel Computing with Clouds and Cloud Techn ologies 31

70 Bare-metal ---B--
1-VM ---6---

2-VMs ·····A····

60 4·VMs -vo--
~

6-VMs --+ _.-

"c 500
u
4l
~ 404l

,§
CIl 30
Cls
4l

~ 20

10
-~-::.:=~

0
1024 2046 3072 4096 5120 6144

Dimension of a matrix

Fig. 6. Performance of the matrix multiplication application (Number of MPI processes =64)

500 r--.-~---'-------~----,
Bare-metal~

1-VM ----0··-·
2-VMs ···· ·A·· ···

400 4-VMs ·..·· 9· ·

8-VMs-..
~

~ 300
~

"i 200

(j)

100

o L-.---"--_--'-_ ----' ----' -.J

9 16 25 36 64 81

Number ofMPIprocesses =Number ofCPU cores

Fig. 7. Speed-up of the matrix multip lication application (Matrix size = 5184x5184)

4

Bare-metal -e
1·VM ---<>-••
2·VM .
4-VM ----V"'.
8-VM _._.+_._.

10 16 20 30 40
Number3D datapoints (millions)

Fig . 8. Performance of Kmeans clustering (Number of MPI Processes = 128)

32 J. Ekanayake and G. Fox

Bare-metal -B-
l -VM ----9---

2-VMsl!.

4-VMs -. .", •..
8-VMs _..+ . .

0.2

1.258-006e-006 8e-Q06

l /Grsin Size (log scale)

o l..a:::o===fl::==:=:it::::~=======1J
38-006

Fig. 9. Total overheadof the Kmeans clustering(Numberof MPI Processes= 128)

90

80

~
70

60

i= 50
"a.
" 40

I
(J)

Bsre-metal -B-
l -VM ----6---.

2-VMs l!. .
4-VMs ." .
8-VMs . •+--

32 48 64 80 96 112
Numberof MPIprocesses = Number of CPUcores

Fig. to.Speed-upof the Kmeans clustering(Number of data points = 860160)

0.5

Bare-metal-B-
l-VM ----6----

2-VMs l!. ...

4-VMs --....
8-VMs ---+ ---

i.ase-oo6e·006 6e-006
lIGrain Size (log scale)

o~===::§::======~~=====:f
38-006

Fig. 11. Paralleloverhead of the Kmeans clustering (Number of MPI Processes=128)

High Performance Parallel Computing with Clouds and Cloud Technologies 33

3

2.5

...
"C
e 28
"~
" 1.5E..
"'"~
>-c

0.5

Bare-metal -e-
1-W ·---0---

2-VMs/> ••.•

4-VMs -- v-
8-VMs - _.+ -.-

4096030720
Numberof points

20480

oL- ~ __'_ ~______'

8192 51200

Fig.12.Performance of theConcurrent Wave Solver (Number of MPI Processes = 128)

0.0160.008 0.012
1/GrainSize

0.004

~
0.8

~ 0.6

f
!';.
II 0.4

"C
co

"-E
"> 0.20

0

Bare-metal -e- ,/
1-VM ----0---- •__ v

2-VMs/> ...

J~~~-;:/%'::_- _:

Fig. 13.Total overhead of theConcurrent Wave Solver (Number of MPI Processes=128)

For the matrix multiplication, the graphs show very close performance characteris
tics in all the different hardwareNM configurations. As we expected, the bare-metal
has the best performance and the speedup values, compared to the VM configurations
(apart from the region close to the matrix size of 4096x4096 where the VM perform
better than the bare-metal. We have performed multiple tests at this point, and found
that it is a due to cache performances of the bare-metalnode). After the bare-metal, the
next best performance and speed-upsare recorded in the case of 1-VM per bare-metal
node configuration, in which the performance difference is mainlydue to the overhead
induced by the virtualization. However, as we increase the number of VMs per bare
metal node, the overheadincreases. At the 81 processes, 8-VMs per node configuration
shows about a 34% decrease in speed-upcompared to the bare-metal results.

In Kmeansclustering, the effect of virtualized resources is much clearer than in the
case of the matrix multiplication. All VM configurations show a lower performance
compared to the bare-metal configuration. In this application, the amount of data
transferred between MPI processes is extremely low compared to the amount of data
processed by each MPI process, and also, in relation to the amount of computations
performed. Fig. 9 and Fig. II show the total overhead and the parallel overhead for

34 J. Ekanayake andG. Fox

Kmeans clustering under different VM configurations. From these two calculations,
we found that, for VM configurations, the overheads are extremely large for data set
sizes of less than 10 million points, for which the bare-metal overhead remains less
than 1 (<I for all the cases). For larger data sets such as 40 million points, all over
heads reached less than 0.5. The slower speed-up of the VM configurations (shown in
Fig. 10) is due to the use of a smaller data set (-800K points) to calculate the speed
ups. The overheads are extremely large for this region of the data sizes, and hence, it
resulted in lower speed-ups for the VMs.

Concurrent wave equation splits a number of points into a set of parallel processes,
and each parallel process updates its portion of the points in some number of steps.
An increase in the number of points increases the amount of the computations per
formed. Since we fixed the number of steps in which the points are updated, we ob
tained a constant amount of communication in all the test cases, resulting in a CIC
ratio of O(l/n). In this application also, the difference in performance between the
VMs and the bare-metal version is clearer, and at the highest grain size the total over
head of 8-VMs per node is about 7 times higher than the overhead of the bare-metal
configuration. The performance differences between the different VM configurations
become smaller with the increase in grain size.

From the above experimental results, we can see that the applications with lower
CIC ratios experience a slower performance in virtualized resources. When the
amount of data transferred between MPI processes is large, as in the case of the ma
trix multiplication, the application is more susceptible to the bandwidth than the la
tency. From the performance results of the matrix multiplication, we can see that the
virtualization has not affected the bandwidth considerably. However, all the other
results show that the virtualization has caused considerable latencies for parallel ap
plications, especially with smaller data transfer requirements . The effect on latency
increases as we use more VMs in a bare-metal node.

According to the Xen para-virtualization architecture [6], domUs (VMs that run on
top of Xen para-virtualization) are not capable of performing I/O operations by them
selves. Instead, they communicate with domO (privileged OS) via an event channel
(interrupts) and the shared memory, and then the domO performs the I/O operations on
behalf of the domUs. Although the data is not copied between domUs and domO, the
domO needs to schedule the I/O operations on behalf of the domUs. Fig. l4(top) and
Fig. 14 (bottom) shows this behavior in 1-VM per node and 8-VMs per node configu
rations we used.

In all the above parallel applications we tested, the timing figures measured corres
pond to the time for computation and communication inside the applications. There
fore, all the 1/0 operations performed by the applications are network-dependent.
From Fig. 14 (bottom), it is clear that DomO needs to handle 8 event channels when
there are 8-VM instances deployed on a single bare-metal node. Although the 8 MPI
processes run on a single bare-metal node, since they are in different virtualized re
sources, each of them can only communicate via DomO. This explains the higher
overhead in our results for 8-VMs per node configuration. The architecture reveals
another important feature as well - that is, in the case of 1-VM per node configuration,
when multiple processes (MPI or other) that run in the same VM communicate with

HighPerformance ParallelComputing withClouds and CloudTechnologies 35

C¥- - -..Event Channel

DomO DornU.
...... PV Block IMP II IMPI I ..~,...... Backend PV BlockI 1 2 S

Driver Driver ~

~ Xen Hypervisor

Shared Memory

Core 11Core1 I CoreS

Event Channels 0
DomO DomU, Dorn Us

E:. PV
I M;' IS - Block

Driver

XenHypervisor

SharedMemory

Core1 Core1 CoreS

Fig. 14. Communication between domO and domU when I-VM per node is deployed (top).
Communication betweendomO and domUs when8-VMs per node are deployed (bottom).

lAM·MP1 _
OpenMPI _

10----------~::=:-===_

Fig. 15. LAM vs. OpenMPI (OMPI) underdifferent VM configurations

each other via the network, all the communications must be scheduled by the domO.
This results higher latencies. We could verify this by running the above tests with
LAM MPI (a predecessor of OpenMPI, which does not have improved support for
in-node communications for multi-core nodes). Our results indicate that, with
LAM MPI, the worst performance for all the test occurred when 1-VM per node is
used. For example , Fig. 15 shows the performance of Kmeans clustering under bare
metal, 1-VM, and 8-VMs per node configurations. This observation suggests that,
when using VMs with multiple CPUs allocated to each of them for parallel
processing, it is better to utilize parallel runtimes, which have better support for in
node communication.

36 1. Ekanayake andG. Fox

7 Conclusions andFuture Work

From all the experiments we have conducted and the results obtained, we can come to
the following conclusions on performing parallel computing using cloud and cloud
technologies .

Cloud technologies work well for most pleasingly-parallel problems. Their support
for handling large data sets, the concept of moving computation to data, and the better
quality of services provided such as fault tolerance and monitoring, simplify the
implementation details of such problems over the traditional systems.

Although cloud technologies provide better quality of services such fault tolerance
and monitoring, their overheads are extremely high for parallel applications that re
quire complex communication patterns and even with large data sets, and these over
heads limit the usage of cloud technologies for such applications. It may be possible
to find more "cloud friendly" parallel algorithms for some of these applications by
adopting more coarse grained task/data decomposition strategies and different parallel
algorithms. However, for other applications, the sheer performance of MPI style
parallel runtimes is still desirable.

Enhanced MapReduce runtimes such as CGL-MapReduce allows iterative style
applications to utilize the MapReduce programming model, while incurring minimal
overheads compared to the other runtimes such as Hadoop and Dryad.

Handling large data sets using cloud technologies on cloud resources is an area that
needs more research. Most cloud technologies support the concept of moving compu
tation to data where the parallel tasks access data stored in local disks. Currently, it is
not clear to us how this approach would work well with the VM instances that are
leased only for the duration of use. A possible approach is to stage the original data in
high performance parallel file systems or Amazon S3 type storage services, and then
move to the VMs each time they are leased to perform computations .

MPI applications that are sensitive to latencies experience moderate-to-higher
overheads when performed on cloud resources, and these overheads increase as the
number of VMs per bare-hardware node increases . For example, in Kmeans cluster
ing, I-VM per node shows a minimum of 8% total overhead, while 8-VMs per node
shows at least 22% overhead. In the case of the Concurrent Wave Equation Solver,
both these overheads are around 50%. Therefore, we expect the CPU core assignment
strategies such as Y2 of a core per VM to produce very high overheads for applications
that are sensitive to latencies.

Improved virtualization architectures that support better I/O capabilities, and the
use of more latency insensitive algorithms would ameliorate the higher overheads in
some of the applications. The former is more important as it is natural to run many
VMs on future many core CPU architectures.

Applications those are not susceptible to latencies, such as applications that per
form large data transfers and/or higher Communication/Computation ratios, show
minimal total overheads in both bare-metal and VM configurations . Therefore, we
expect that the applications developed using cloud technologies will work fine
with cloud resources, because the milliseconds-to-seconds latencies that they already
have under the MapReduce model will not be affected by the additional overheads
introduced by the virtualization . This is also an area we are currently investigating .
We are also building applications (biological DNA sequencing) whose end to end

High Performance Parallel Computing with Clouds and Cloud Technologies 37

implementation from data processing to filtering (data-mining) involves an integration
of MapReduce and MPI.

Acknowledgements

We would like to thank Joe Rinkovsky and Jenett Tillotson from IV Ul'I'S for their
dedicated support in setting up a private cloud infrastructure and helping us withvari
ousconfigurations associated withourevaluations.

References

I. AmazonElastic ComputeCloud (EC2), ht tp: I l aws . amazon . com /ec2 1
2. AmazonSimpleStorage Service (S3), http : I l aws . amazon . com/ s3 I
3. GoGrid Cloud Hosting,http: / /www.gogrid.com/
4. Keahey,K., Foster, I., Freeman, T., Zhang, X.: Virtual Workspaces: Achieving Quality of

Service and Quality of Life in the Grid. Scientific Programming Journal 13(4), 265-276
(2005); Special Issue: DynamicGrids and Worldwide Computing

5. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Seman, S., Youseff, L., Zagorod
nov, D.: The EucalyptusOpen-sourceCloud-computing System. In: CCGrid 2009: the 9th
IEEE International Symposium on Cluster Computing and the Grid, Shanghai, China
(2009)

6. Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., Neugebauer, R., Pratt,
I., Warfield, A.: Xen and the art of virtualization. In: Proceedingsof the NineteenthACM
Symposiumon OperatingSystems Principles, SOSP 2003, pp. 164-177. ACM, New York
(2003), http : / /doi.acm. org /10.1145 /945445 .945462

7. ApacheHadoop,http: / /hadoop . apache. org I corel
8. Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: Distributeddata-parallel pro

grams from sequential building blocks. In: European Conference on Computer Systems
(2007)

9. Yu, Y., Isard, M., Fetterly, D., Budiu, M., Erlingsson, U., Gunda, P., Currey, J.: Dryad
LINQ: A System for General-Purpose DistributedData-Parallel ComputingUsing a High
Level Language. In: Symposium on Operating System Design and Implementation (OS
01), San Diego, CA (2008)

10. Ekanayake, J., Pallickara, S., Fox, G.: MapReduce for Data Intensive Scientific Analysis.
In: Fourth IEEE International Conferenceon eScience,Indianapolis, pp. 277-284 (2008)

11. Huang, X., Madan, A.: CAP3: A DNA Sequence Assembly Program. Genome Research
9(9), 868-877 (1999)

12. Hartigan,1.: ClusteringAlgorithms. Wiley,Chichester (1975)
13. Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large clusters. ACM

Commun. 51,107-113 (2008)
14. MPI (MessagePassing Interface), http: / /www-unix .mcs. anl . gov /mpi l
15. Dongarra,J., Geist, A., Manchek, R., Sunderam, V.: IntegratedPVM framework supports

heterogeneous networkcomputing. Computersin Physics 7(2), 166-175 (1993)
16. Ludascher,B., Altintas, I., Berkley, C, Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E.,

Tao, J., Zhao, Y.: Scientific WorkflowManagement and the Kepler System. Concurrency
and Computation: Practice & Experience(2005)

38 J. Ekanayake and G. Fox

17. Hull, D., Wolstencroft, K., Stevens,R., Goble,C., Pocock,M., Li, P., Oinn, T.: Taverna: a
tool for buildingand running worktlows of services. NucleicAcids Research (Web Server
issue),W729 (2006)

18. Raicu, I., Zhao, Y., Dumitrescu, c, Foster, I., Wilde, M.: Falkon: a Fast and Light-weight
tasK executiON framework. In: Proceedings of the ACMIIEEE Conference on Supercom
puting,SC 2007, Nevada, ACM, New York (2007),
http : / /doi.acm .org/ lO.1145 /1362622 .1362680

19. Pallickara, S., Pierce, M.: SWARM: Scheduling Large-Scale Jobs over the Loosely
Coupled HPC Clusters. In: Fourth IEEE International Conference on eScience, pp. 285
292 (2008)

20. Frey, 1.:Condor DAGMan: HandlingInter-JobDependencies,
http: / /www.bo .infn.it /calcolo /condor /dagman /

21. Foster, I.: The Anatomy of the Grid: EnablingScalable VirtualOrganizations. In: Proceed
ings of the 7th international Euro-Par Conference Manchester on Parallel Processing
(2001)

22. Ghemawat, S., Gobioff, H., Leung, S.: The Google file system. SIGOPS Oper. Syst.
Rev. 37(5), 29--43 (2003), http : / /doi .acm .org/10.1145 /1165389 . 945450

23. Pallickara, S., Fox, G.: NaradaBrokering: A Distributed Middleware Framework and Ar
chitecture for Enabling Durable Peer-to-Peer Grids. In: Endler, M., Schmidt, D.C. (eds.)
Middleware 2003. LNCS, vol. 2672, pp. 41-61. Springer, Heidelberg (2003)

24. Gu, Y., Grossman, R.: Sector and Sphere: The Design and Implementation of a High Per
formance Data Cloud. Philosophical Transactions A Special Issue associated with the UK
e-ScienceAll HandsMeeting(2008)

25. Moretti, c, Bui, H., Hollingsworth, K., Rich, B., Flynn, P., Thain, D.: All-Pairs: An Ab
straction for Data Intensive Computing on Campus Grids. IEEE Transactions on Parallel
and Distributed Systems(2009)

26. Youseff, L., Wolski, R., Gorda, B., Krintz, c.: Evaluating the Performance Impact of
Xen on MPI and Process Execution For HPC Systems. In: Proceedings of the 2nd interna
tional Workshop on Virtualization Technology in Distributed Computing. IEEE Computer
Society, Washington (2006), http : / /dx .doi . org/10 . 1109 /VTDC .2006 .4

27. Constantinos, E., Hill, N.: Cloud Computingfor parallelScientificHPC Applications: Fea
sibility of Running Coupled Atmosphere-Ocean Climate Models on Amazon's EC2. In:
CloudComputing and Its Applications, Chicago, IL (2008)

28. Walker, E.: benchmarking AmazonEC2 for high-performance scientific computing,
http: / /www.usenix.org /publications /login/
2008-10 /openpdfs /walker.pdf

29. Gavrilovska, A., Kumar, S., Raj, K., Gupta, V., Nathuji, R., Niranjan, A., Saraiya, P.:
High-Performance Hypervisor Architectures: Virtualization in HPC Systems. In: 1st
Workshop on System-level Virtualization for High Performance Computing(2007)

30. Fox, G., Bae, S., Ekanayake, J., Qiu, X., Yuan, H.: Parallel Data MiningfromMulticoreto
CloudyGrids. In: High Performance Computingand Grids workshop (2008)

31. Johnsson, S., Harris,T., Mathur, K.: Matrix multiplication on the connection machine. In:
Proceedings of the 1989 ACMIIEEE Conference on Supercomputing, Supercomputing
1989, pp. 326-332. ACM,NewYork (1989),
http : / /doi .acm .org /lO .1145 /76263 .76 298

	High Performance Parallel Computing with Clouds and Cloud Technologies
	1 Introduction
	2 Related Work
	3 Data Analysis Applications
	3.1 Cap3
	3.2 Iterative/Complex Style Applications

	4 Evaluations and Analysis
	5 Performance of MPI on Clouds
	6 Benchmarks and Results
	7 Conclusions and Future Work
	References

