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Abstract. In enterprises nowadays typical business-critical processes
rely on OLTP (online transaction processing) type of applications. Of­
fering such applications as hosted solutions in Clouds rises many tech­
nical and non-technical challenges, among which TCO (Total Cost of
Ownership) is one of the main considerations for most on-demand ser­
vice/Cloud providers. In order to reduce TCO, a first step would be to
analyze and study its cost components in depth. In this paper we adopt
a quantitative approach and model two tangible cost factors , namely,
server hardware and server power consumption. For server hardware, on
one hand , a pricing model for CPU is proposed as a function of per-core
performance and the number of cores, which also manifests the current
multi- / many-core trend . Server power consumption, on the other hand,
is modeled as a function of CPU utilization (as a main indication of sys­
tem activity) . By using published results from both vendor-specific and
industry-standard benchmarks such as TPC-C, we show that a family
of Power functions is successfully applied in deriving a wide range of
cost models. Such analytic cost models, in turn , prove to be useful for
the Cloud providers to specify the Service Level Agreements (SLAs) and
optimize their service/infrast ructure landscapes .

1 Introduction

Cloud computing represents the next wave of IT industry transformation by
delivering services and computing as utilities over the Internet [1]. When the
services and infrastructure are available in a pay-as-you-go manner to the general
public, it is called a Public Cloud. The Private Cloud, on the other hand , refers to
the internal services and resources ofITO (IT Organization) in a business which
arc not available to the public. Public cloud, such as Amazon Web Services,
proves to be a sustaining business model for applications such as Web 2.0, testing
and development, and certain data-intensive /Hl'C applications. ITOs can also
outsource some of its non-critical processes from its Private Cloud to a Public
one for elasticity and cost-saving considerations.

Despite the success of on-demand solutions for certain functionalities such
as HR and CRM, business/mission critical applications remain largely to be
deployed on-premise, especially for large organizations. For small and medium
enterprises (SMEs), however, there is a market that the whole suite of business
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applications be offered as hosted solutions. Apart from the challenges arise from
security and multi-tenancy, TCO (Total Cost of Ownership) is one of the main
considerations for anyon-demand provider for such applications. This applies
to both SaaS/Public Clouds for general offerings and Private Clouds that serve
the LoBs (Line of Business).

For the Cloud providers to specify the Service Level Agreements (SLAs) and
optimize their service/infrastructure landscapes [4], it is of crucial importance to
analyze, understand, and model cost components within the TCO. This paper
focuses on the cost modeling for hosted OLTP applications on both public and
private Clouds. TCO is intrinsically complex and involves a great deal of tangi­
ble/intangible factors . Rather than providing a comprehensive TCO model, this
paper focuses mainly on the quantitative aspects and models two tangible cost
components, namely, server hardware and server power consumption . Firstly, a
pricing model for CPU is proposed as a function of per-core performance and
the number of cores. The per-core performance is based on the published results
of industry-standard OLTP benchmark TPC-C [11] on Intel DP/MP platforms .
The fitted CPU pricing model also manifests the current multi-/many-core trend.
Secondly, server power consumption is modeled as a function of CPU utilization
using a customized Power function. By combining the fitted models for both
CPU costs and power consumption, we have developed a simplified analytic
model for hosted OLTP applications that incorporates hardware and operation
costs.

The rest of the paper is organized as follows: Section 2 develops a CPU cost
model based on the certified results of TPC-C benchmarks on Intel DP/ MP plat­
forms. Section 3 conducts customized performance tests and models the server
power consumption in relationship to the CPU utilization as the main indicator
for system activity. Section 4 presents the combined cost model for OLTP ap­
plications in a hosted environment, and discusses its context and applicability.
Conclusions and future work are presented in Section 5.

2 Modeling CPU Costs for OLTP Applications on
Multi-core Platforms

Among the many components of server hardware, namely CPU, memory, stor­
age, and network, we focus on the CPU costs in this paper and make simplified
assumptions that costs of other components remain constants or scale with the
CPU costs. We are particularly interested in the price-performance relationship
on multi- yrnany-core platforms, as the general trend in processor development
has been from single-, multi-, to many cores. Our goal is to investigate and
model the relationship between the objective, namely the price per-CPU (Ccpu )

or price per-core (Ccore ) , and the two related parameters: number of cores (Ncor c )

and benchmark results per-core (Tcor e ) . Tcore also corresponds to the processing
speed of the core, and thus the resource demands of the measured OLTP ap­
plications . If we model the application system as a closed multi-station queuing
center , Tcore is theoretically bounded by 1/D, where D is the resource demand
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Fig. 1. 117 certified TPC-C benchmark results run on Intel Xeon DP/ MP platforms
within the timeframe between 7/2002 and 12/2008. TPC-C is measured in transactions
per minute (tpmC). Such a throughput measure is defined as how many New-Order
transactions per minute a system generates while executing other transactions types.

(minimum response t ime) of th e applicat ion on the server. This gives a general
idea on the relationship between the performance model and the cost model,
whose object ives are conflicting with each other. In this sect ion we focus on
modeling the CPU costs P given the number of cores and benchmark results
per-core for OLTP applications.

We examine the cert ified TPC-C [11] benchmark results on Intel DP / MP
platforms and associate them with CPU price informat ion [7], which are shown in
Figure II. As there are two independent parameters (Neore and Teore ) involved,
we study one of th em by fixing th e value of the other. and vice versa.

Fir stly let us look at th e price versus the number of cores given a similar
per-core performance. In I (a), we can see that the per-core price decreases as
the number of cores per CPU increases on the Intel Xeon DP platform. As
the per-core performance of TPC-C remains the same, th e price/performance
ratio improves by adding more cores. Generally this trend also applies to TPC­
C on Intel MP as shown in Figure I (b). We notice t hat t he per-core tpmC
decreases slightly as the number of cores increases. This is because that th e
core frequency scales down as th e number of cores scales up, which is shown
in Table 1. Nevert heless, as the chip design becomes better and more efficient,
th e per-core performance/frequency rati o (r ) improves along the evolution of
generations. From a customer perspective this does not mean that the response
time of a single application can improve as the resource demand decreases only by
increasing the core speed. The main benefit is on the much improved throughput
numbers per CPU price.

Secondly let us examine the price versus the per-core performance given th e
same number of cores. In Figure 1(c), as predicted, we can see that th e price
increases as the CPU frequency and throughput numbers increase. SOHle abnor­
mal behavior happens between 2.33 GHz and 2.83 GHz. This may be explained

1 Disclaimer: The performance in tpmC is influenced by additional factors like machine
architecture, cache sizes, memory size/latency/ bandwidth, operating system, storage
system characteristics, DBMS, TPC-C version/ sett ings as well as other factors not
mentioned here. Vendor-specific benchmarks [9] and certified results [10] are also
studied and the results are not published here.
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Table 1. CP u frequency and the performance/frequency ratio : r = Tcore/GHz

Benchmark

tpcc/DP (GHz) 3.4 3.0 3.16 -
tpcc/DP (1' ) 9.5 12.7 10.9 -

tp cc/Mf (GHz) 3.33 3.0 2.93 2.66
t pcc/ MP (1') 8.7 7.6 9.6 10.0
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Fig, 2. Fitted power function parameters are ( Cl ' C2 , C3) as appeared in Equation 1
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Fig. 3. Th e fitted cost models for price per-core (Ceore) and price per-CPU (Ccpu)

partially by the noise in the data as there is only one available measurement each
for CP U frequency at 2.33 GHz and 2.83 GHz. Nevertheless, the general trend
of price increasing with speed (core frequency) st ill holds. Figure 2 gives a bet­
ter view on the pattern of how price changes with the per-core performance for
TPC-C. On both DP and MP platforms with different cores, the per-core price
scales with the per-core throughput like a power function . We studied different
functions for curve fitting, including polynomial, exponent ial, power, and other
custom functions. It is found that t he power function , shown in Equation 1, gives
the overall best fit for different data sets.

(1 )
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Table 2. CP U cost model parameters for TPC-C on Int el Xeon DP (Equation 3)

Figure 2 also shows that the price per-core decreases like a power function while
increasing the number of cores per-CPU. T his indicates that t he power funct ion
(Equ ation 1) can be used to model the relationships between price per-core and
throughput perform ance/number of cores individually.

The next step is to st udy per-core perform ance (Teore) and numb er of cores
(N eore) jointly and model their relat ionship with price. Since the power function
is the best fitted model for T eore and N eore indiv idually, we can extend t his
model to a multi-variable case", A power funct ion with two variables can be
formulated as follows:

C eore = g (T eore, N eore ) =
cI T~gre + c3N~~re + Cs,

(2)

where (CI' ..., cs) are t he parameters to be fit ted. The price per-CPU Cepu is
readily obtained by multiplying price per-core with t he numb er of cores:

(3)

Figure 3 shows the fitting of TPC-C/DP data with the cost models C eore and
Cepu ' A non-linear least- squares method in the Matlab Optimizat ion toolbox
is used for curve fittin g, and th e fitted parameters are shown in Table 2. We
can see that t he fitt ed model gives an overall good interpol ation of real bench­
mark result s. The trend/relationship between price and the two factors , namely
perform ance per-core and numb er of cores, is well capt ured. Although different
benchmark s on different platforms may yield different parameters'' , the model
shown in Equ ation 3 is genera l and flexible enough for est imating a wide range
of CP U cost information.

It should be noted that th e power-fun ction based model for CPU costs devel­
oped in this section depends on th e Int el pricing schemes for its multi -yrnany-core
platforms. Our cont ribution is to fit such price information with mathemat ical
models, in relationship to real OLTP benchmark results. Thi s gives the plan­
ners/ archit ects at the provider side a convenient tool for est imating hardware
costs given the desired perform ance level of their applications.

2 An informal proof for this extension can be described as follows: When x or y is
constant , either f (x) or f(y) takes the form axb+ c. This means th ere is no x or
y components of any form in th e function other th an xb or yd. So f( x ,y) can be
written as axb+cyd +e.

3 Th ere are no sufficient data for curve fittin g of TPC-C benchmark on Intel MP
platform.
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Table 3. Power consumption model parameters for a customized OLTP application
(Equation 5)

3 Modeling Power Consumption

Power consumption and associated costs become increasingly significant in mod­
ern datacenter environments [6]. In this section we analyze and model the server
power consumption of OLTP applications. We study the relationship between
system power consumption (Psy s , measured in Watts) and CPU utilization (U),
which is used as the main metric for system-level activity. Our experimental
methodology and tooling are largely similar to the ones in [5,6], except that we
focus on OLTP-like workloads. We run a customized OLTP application similar
to sales and distribution business processes, on a 64-bit Linux server with 1 Intel
dual-core CPU and 4 GB main memory. The system power is measured using a
power meter connected between the server power plug and the wall socket. The
CPU utilization data is collected using Linux utilities such as sar and iostat.
Monitoring scripts in SAP performance tools are also used for correlating power
and CPU utilization data.

Before data fitting and modeling we first perform a data pre-processing step
called normalization. Instead of directly modeling P sys we use a normalized
power unit Pn or m , which is defined as follows:

p _ P sy s - Pidle

norm - P busy - Pidle '

where the measured P idl e (U = 0) and Pbusy (U = 1) for our test system are
42W and 84W, respectively. The normalized measurement results are shown in
Figure 4.

Generally speaking the server power consumption increases as the CPU uti­
lization grows. One particular important finding from the measurement data is
the so-called power capping behavior [6], which means there are few times that
the highest power is consumed by the server. Additionally we find that such
highest power points are drawn mostly when the CPU utilization is higher than
80% and they have very similar peak values. Most of the common functions, such
as quadratic polynomial, power, exponential , and Gaussian , cannot fit such flat
curve of power values in the high-utilization interval (see the quadratic fitting
in Figure 4).

We developed a model that can fit such power-capping behavior well. The
model is inspired by the frequency response curve of a linear filter called Butter­
worth filter. It has such desired "flat" behavior in the passband of the frequency.
We replace the polynomial part of the transfer function with the following cus­
tomized power function which has two U components:

(5)
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Fig. 4. Normalized system power relates to CPU utilization. The custom function is
shown in Equation 6.

where (CI ' ..., C5) are the parameters to be fitted. The model that relates normal­
ized power (Pnorm) and CPU utilization U can be formulated as follows:

Pnorm(U) = 1 - h(U)-I . (6)

The fitting result is shown in Figure 4 and the fitted model parameters are listed
in Table 3. We can see that the proposed power model fits the measurement data
well, especially during the high utilization period. Given the measurements for
Pidle and Pbusy, the overall system power consumption Psys can be obtained by
substituting Pnorm (Equation 6) in Equation 4.

4 A Cost Model for Enterprise Applications

By combining the cost models for CPU and power consumption in previous
sections (equations (3), (4), and (6)), we developed a cost model for business
applications:

Cost(Tcore, Ncore' U,1) =

pO +PICcpu+P21 Psys(U(t))dt,
tEl

(7)

where t is the measurement time , I is the measurement period (t E 1), Po is an ad­
justing constant , PI, and P2 are the weighting parameters that scale the individual
model outputs. Ifduring the measurement period only average utilization is avail­
able, the output can be written as Psys(1I)! .The model in (7) uses an additive form
to combine server hardware costs and operational costs, in which parameters PI
and P2 have to be set properly to reflect different cost structures.

To summarize from a mathematical modeling perspective, we can conclude
that the power function (CIX C2 + C3) and its variants have attractive proper­
ties for fitting a wide range of curves, including both single- and multi-variable
case. Thus, the power function family represents a general and flexible modeling
library from which different cost models can be fitted and derived.
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Fig. 5. Cost model structures: For a typical "classical" data center, the ratio of fixed
cost versus operational cost (r) is set to 7 : 3. For a modern commodity-based data
center, the ratio r is set to 3 : 7

Inpractice when using the cost model for the optimization ofenterprise systems,
we need to determine the weighting parameters Pi (fixed cost) and P2 (operational
cost). These parameters are chosen in a way to reflect the real numbers obtained
in case studies in [3] . There are two situations under study in this paper. On one
hand, for a typical "classical" data center the ratio of fixed cost versus operational
cost (r) is set to 7 : 3, which indicates that the high server capital costs dominate
overall TCO by 70%. For a modern commodity-based data center, on the other
hand, the ratio r is set to 3 : 7. This means operational costs including power
consumption and cooling become the dominating factor . The cost model outputs
of (7) for these two situations are illustrated in Figure 5, where differences can
be clearly identified. For instance, the total cost increases significantly with the
increasing system utilization for the high operational cost situation (r = 3 : 7),
which is not the case for the high fixed cost counterpart(r = 7 : 3). Wealso observe
that the discontinuity of cost model outputs along the performance/core axis in
the r = 3 : 7 situation. This is because the settings of P idl e and Pbusy take discrete
values like a piecewiseconstant function. The CPU performance per core isdivided
into three ranges and the values of Pidle and Pb usy are set accordingly. For instance,
for a 2-core system from low to high performance, Pidle and Pbusy have been set
to [40,60,80] and [65, 95, 150], respectively. Such settings are made in accordance
to the CPU power consumption characteristics on Intel platforms. In the r = 7 :
3 situation, however, such effects is dramatically reduced as the operational cost
is no longer dominant. In our ongoing research we investigate both situations in
the optimization phase to see how different cost structures impact the SLA-driven
planning on the service provider side.

5 Conclusions and Future Work

In this paper we developed a analytic cost model that consists of two tangible cost
components: server hardware and power consumption. The CPU price is modeled
as a function of number of cores and per-core throughput performance for OLTP
applications. The server power consumption is modeled as a function of CPU
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utilization. Both models include Power function or its variants as components,
which indicates that Power function as a mathematical form is suitable to fit a
wide range of cost structures.

Cost modeling is one important enabling component in our ongoing work
on SLA-driven planning and optimization of hosted business applications [8].
Service-LevelAgreements (SLA) are bidding contracts between service consumer
and service provider on guarantee terms such as performance and cost. In our
view well-specified SLAs are important, even indispensable components for mak­
ing utility-driven SOA and Cloud computing a success. SLAs can also be applied
between layers and IT stacks in a provider's landscape . For enabling SLA-aware
planning and optimization studies on the provider side, practical models are
needed to encapsulate performance information , cost information , and other fac­
tors . The proposed cost model is utilized in our studies in optimizing a system
landscape running OLTP applications by taking multiple conflicting objectives
into account.
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