
Virtual Distro Dispatcher: A Light-Weight
Desktop-as-a-Service Solution

S. Cristofaro, F. Bertini, D. Lamanna, and R. Baldoni

Dipartimento di Informat ica e Sistemistica "Antonio Rub erti"
"Sapienza" Universita di Roma, Italy

{cristofaro,flavio.bertini ,davide .lamanna,
roberto .baldoni}~dis.uniromal .it

http://www.vdd-project.org

Abstract. Utility computingcan occur at different levels. From Software­
as-a-Service (SaaS) par adigm, Desktop- as-a-Service (DaaS) paradigm can
be derived: desktops can be tr ansformed into a cost-effective, scalable and
comfortable subscript ion service. In VDD,desktop virtu al machines are in­
stanti at ed on a server and then provided to clients as a whole, on demand ,
across a network . Since the first release and publicat ion, new features have
been implemented and perform ance improvements achieved . As virtual­
izat ion holds a critical role in the system, research and tests have been
done for implementing the best virt ualization solution . A comprehensive
performance analysis is presented, depicting result s that encourage to go
on with th e research and towards a real-life use. Operational costs analy­
sis showed further economic and ecological advantages. Th e possibility to
project operating systems not natively support ing the Xorg XlI has been
introduced, opening the way to th e projection of widespread though pro­
prietary operating systems.

Keywords: XEN, UML, LTSP, Trashware, VDD-Project, Utility
computing.

1 Introduction

Cloud computing architect ures are rapidly spreading over the world of IT , sup­
porting the idea of provisioning various computing capabilities"as-a-service" , in
a transpar ent way for users. Information is stored in servers on a network and
cached temporarily on clients, such as desktops , entertainment centers, table
computer s, notebooks, wall computers, handhelds, etc . [7] . Reliable services are
delivered to clients from next-generat ion data centers based on virtualizat ion
technologies. Some of the most relevant issues brought about by this paradigm
are whether or not this is really feasible on a geographical scale, where network
latency matters, and, more generally, whether or not a browser can really sub­
stitute every kind of computer application . Finally, big privacy issues rise: users
data and work are given away in the hands of third parties, without any control
and any real guarantee. Without necessarily dealing with these"cloudy" aspects ,

D.R. Avresky et a I. (Eds.) : Cloudcomp 2009, LNI CST 34, pp . 247- 260, 2010 .
© Institute for Com puter Scie nces , Social-Informa t ics an d Te leco m munications Eng inee ring 2010

248 S. Cristofaro et al.

it is always possible to reason about the more general concept of Utility comput­
ing, according to which computing resources, such as computation and storage,
can be precisely metered and packaged, similarly to what happens with a tradi­
tional public utility, apart from the fact that the distribution of such a service
happens to be in "The Cloud" . Utility computing can occur at different lev­
els. As long as applications are concerned, one talks about Software-as-a-Service
(SaaS): applications are hosted as a service provided to users across a network
(e.g., the Internet) . If systems are concerned, one can talk about Desktop-as-a­
Service (DaaS): desktops can be transformed into a cost-effective, scalable and
comfortable subscription service. Desktops are instantiated on a server and then
provided to clients on demand across a network. Virtual Distro Dispatcher [1] is
a distributed system whose aim is to project virtual , fully operational operating
system instances on terminals.

z
j l

~",lt ch

XII ; va:;

I h ill
Uic' f1l

tv c:t y u hl
PC)

VD D

In t f"l
tl 1.." I

,-
/
~\ \

\ ,
\ ~

\
\

•

Fig. 1. Virtual Distro Dispatcher general scheme

The VDD architecture is represented in the Figure 1. More detailed informa­
tion of the whole system are widely discussed in [1].

Client terminals can be obsolete PCs or energy saving thin clients (such as
mini-I'I'X) managed by a powerful, multiprocessor (and possibly clustered) cen­
tral system. The previous version of VDD, presented in [1], has got many limita­
tions: Performances were still weak; Virtualization was performed only through
UML[2] instances ; Only Linux kernel based distributions could be projected on
terminals. The new implementation of VDD hereby presented has focused in
particular on performance improvements (as described in Section V). Moreover,
operating systems other than Linux (e.g., Open Solaris, ReactOS , Microsoft
Windows®...) can be accessed from terminals, thanks to the introduction of
XEN [3] virtualization system . VDD gives users the possibility to enjoy their own
favorite operating systems, including those that are not Open Source, possibly

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 249

at the same time , on each single thin client. It is important to remember (see
[1] for details) that thin clients are interfaces to proper and isolated machines,
that can be made to measure for whatever need and in whatever number (within
server limits, of course). This is completely transparent to users, who, even from
an obsolete machine, can select a particular machine with certain characteristics
and then do absolutely everything they would do on such a machine as if it was
physical and with its performance . Another dutiful remark regards licensing.
Virtual Distro Dispatcher uses Open Source/GPL software and free communi­
cation protocols and it is released as Free Software. The infrastructure allows
to run proprietary operating systems as guests and this is regulated by specific
licenses, costs and limitations, that should be taken into account by VDD users.

2 Related Work

Using the taxonomy in [6], it is possible to identify three types of virtualized
client computing (VCC):

1. Application: Encapsulating and isolating a specific application from its
underlying host operating system and running it in the client environment,
isolated from other applications running locally. Examples: Citrix Presenta­
tion Server (version 4.5+) , Altiris Software Virtualization Suite, Thinstall,
Microsoft SoftGrid, Trigence AE, Endeavors ;

2. Desktop: Using virtualization to decouple the client environment (includ­
ing operating system, application and data) from its host hardware and
isolating it from other software or systems running on the client. It can be
server-hosted or client-hosted . Server-hosted examples: VMware VDI, Vir­
tual Iron VDI, Citrix XenDesktop , Qumranet Solid ICE. Client-hosted exam­
ples: VMware ACE/Player/Workstation/Fusion, SWsoft Parallels, Kidaro
Managed Workspace, Sentillion;

3. Virtual user session: Creating multiple user sessions on the server, within
a single operating system , that can be accessed concurrently. Examples:
Citrix Presentation Server, Microsoft Terminal Services, Sun Secure Global
Desktop Software.

Within these three types of VCC, two delivery models can be adopted (again in
[6]):

- Remote interaction: I/O operations between a client device and a server
through specific (and sometimes proprietary) protocols and software;

- Remote streaming: delivering executable blocks of data from a server to a
client device, through specific (and sometimes proprietary) protocols and/or
software.

VDD is in between type 2 and 3, as desktop virtualization software is used to
host multiple unique and isolated client environments aboard a single server (or
a group of servers in a cluster). Interaction with these remote virtual desktops
is performed through virtual user (graphical) sessions. VDD exploits network

250 S. Cristofaro et al.

transparency of X-Window-System: the machine where an application program
(the client application) runs can differ from the user's local machine (the display
server). X-Window-System clients run on virtual servers and create multiple user
sessions within multiple virtual environments. X-Window-System display servers
run on thin clients (terminals) . VNC protocols can be used for OSs which lack
of Xll server (e.g. Windows and ReactOS) , so both delivery models listed above
are available.

The need for multiple development environments, especially in research lab­
oratories, but also in teaching or developing circumstances, made the study of
heterogeneous systems integration quite important . The availability of different
operating systems at the same time , give users the possibility to develop soft­
ware applications and to test them in several environments directly from their
terminal , pursuing software portability. Other products supplying for this kind
of service started to be developed. For example, an interesting DaaS system,
Cendio Thin Line", that is a LTSP based architecture like VDD, allows users
to access remote desktops from everywhere/. Another example is NoMachine
NX3 , which virtualizes desktops over the Internet too. VDD's main advant age is
that only FreejOpenSource Software has been used, this being one requirement
of our research. Another advant age is the extreme lightness, as highlighted in
Section V. Development of virtualization systems plays a fundamental role in
our research, mainly for performance issues. This is highlighted in section III ,
where more related work on this matter is cited.

3 Virtualization

Virtualization holds a critical role in VDD, as it enables the possibility to run
multiple and diverse operating system instances to be projected to each thin
client . The present piece of research focused on performance issues, hence several
considerations and tests have been done in order to choose the best virtualization
solution .

Unfortunately, the x86 architecture is more difficult to virtualize with respect
to others, due to the presence of some particular instructions, such as the ones
related to memory segmentation [5]. Even though, its large diffusion stimulated
the development of many techniques to overcome such architecture limitations.

One of the most used virtualization techniques is the binary rewriting (also
known as binary translation) which consists in scanning the code of the running
guest with the aim of intercepting and modifying privileged instructions in order
to fit in the virtualization system. Therefore, there is no need to modify the
operating system source code, since all changes are made at run-time. On the

1 http:/ /www.c endio .com/products/thinlinc
2 VDD is focused on projecting different operating system instances in the same LAN

at th e moment . Dispatching Linux on terminals over the Internet is technically
possible, but not considered as something to deal with , at the moment (see also
Section VII) .

3 http:/ /www.nomachine.com/

C3­
C4 ­
C5­
C6 -

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 251

other hand, there is a loss of performance, especially where the code contains
several privileged instructions. The most popular virtu alization syste ms using
binary rewriting are VMware" and Virtu albox'' .

Anoth er important technique is paravirtualization. It modifies privileged in­
st ruct ions, but at compile time instead of run- time. Even though modifying the
guest operatin g systems source code implies an ext ra effort, one may notice a
considerable performance increase, getting very close to an unvirtualized sys­
tem (see Sect ion V). Xen is one of the most powerful and famous virt ualizat ion
system using mainly such a technique.

A more recent solut ion is the Hardware Assisted Virtualization. The last gener­
at ion of AMD and Intel CPU s, have been developed with different virt ualization
extensions for x86 architecture", The main purp ose of these exte nsions, is to
speed up th e whole virtualization process and to make it easier for x86. Perfor­
mance are in between the binary rewriting and paravirt ualizat ion techniques.

The choice of the virtu alization syste m is fundament al to make VDD as per­
formant as possible. Since the previous version of VDD uses User Mode Linux
to dispatch Linux on termin als (for that reason, it was possible to emulate only
Linux distributions), in order to make the right choice of a valid alternative and
to add new functionaliti es, it has been useful to delineate a new list of const ra ints
for our purposes (Table 1):

Cl - Open Source Software
C2 - Support for OS guest virtu alization other than Linux (e.g. Mi-

crosoft Windows'b')
Quick and easy to restor e
Symmetric Mult i Pro cessing (SMP) OS guest support
User level kernel execution
Integrat ed VJ\C Server

Table 1. List of main VDD constraints

Cl C2 C3 C4 C5 C6
VMWare ..j ..j ..j ..j0

VirtualBox vi' ..j ..j
UML ..j ..j ..j
Qemu ..j ..j ..j ..j ..j
XEN ..j ..j1U ..j ..j ..j

4 Since the version 5.5, Vmware Workstation also supports the Hardware Assisted
Virtualization technique. The 6.0 version and above, supports also Linux guest par­
avirtualization.

5 VirtualBox also supports Hardware Assisted Virtualization.
6 AMD introduced the AMD-V extension (also known as Pacifica) whereas the tech­

nology used by Intel is called VT-x.
7 VMware supports a maximum of two virtual processors per guest. VMware ESX

Enterprise edition, supports up to four virtual processors.

252 S. Cristofaro et al.

Both Qemu and XEN satisfy most of the above main constraints, but tests
showed that XEN is absolutely more performant than Qemu, mainly due to its
use of paravirtualization for the guest OS supporting it ll .

4 Extension of Functionalities

The aim ofVDD is to project virtual Operating Systems instances on thin clients.
Unlike LTSP-only based architectures, offering only the host operating system
to thin clients, VDD uses virtualized guest systems like sandboxes to prevent
users from breaking into the central server . The isolation conditions produce an
high security level both for the user and the overall system .

Since the beginning of the project, the utilization of UML allowed to run many
different Linux distributions in user space. The next step was to introduce XEN
as an alternative to UML. Although using XEN implies not to use completely
user space virtualized systems, it is now possible to support much more operating
systems other than Linux.

The introduction of advanced virtualization techniques made the system more
performant as a consequence of both Hardware Assisted Virtualization and par­
avirtualization support. A further advantage comes from the possibility to assign
many virtual CPUs to the guest systems, granting the symmetric multi process­
ing to CPU-bound multi-threading tasks.

In the previous VDD version, UML was the only virtualization system , so
the graphical subsystem was constituted only by Xorg Xll client/server model
as the session projecting vehicle. The possibility to project operating systems
not natively supporting the Xorg XlI, brought to the need to set up a VNC
client/server architecture. This has been possible thanks to the integration of a
native VNC server inside XEN. In fact, a custom VNC client bash script has
been added to LTSP [4] (running on Gentoo GNU/Linux) so that it could be
possible to use it on thin clients, even if they are obsolete hardware.

Another strong point of this new release ofVDD is to go over the technological
gap due to the Trashware [8]. It is now possible to run a last generation operating
system on an obsolete PC, like if it was running on a last generation computer,
with negligible performance drop . For example, granting just for the sake of
argument that it can be considered an actual bargain, it is now possible to run
Microsoft Windows Vista®on a very old PC with a few memory resources.

5 Performance Analysis

A massive number of tests have been carried out in order to stress in depth
system resources, such as CPU, memory, storage and network. For each such

8 Only for the Server Edition.
9 VirtuaIBox Open Source Edition has less functionalities respect of the closed source

edition.
10 XENneedsthe VT-xor AMD-V technology to run unmodifiable OperatingSystems.
11 For non paravirtualizable OS guests, XEN uses a customized Qemuversion.

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 253

system resource, one particularly significant test is hereby presented. The aim of
the performance analysis is to understand as deeply as possible what happens
at a system level in order to make then considerations about how this affects
the desktop level. Tests have been performed on two architectures, 32 bit and 64
bit 12 , using LMbench as the principal benchmark suite. In order to publish such
tests, the LMbench license requires that the benchmark code must be compiled
with standard gcc compilation flags . Furthermore, some standard applications,
like Linux kernel compilation or John The Ripper benchmark have been used in
tests. The testbed has got the following characteristics:

- Intel Core 2 Quad 6600
- RAM 4GB (667 Mhz Dual Channel)
- 2 SATA 500 GB Hard Disks (RAID 0)
- 2 1000Mbps Ethernet switches
- 10 diskless thin clients
- 14 1000Mbps Ethernet cards
- Cat. 6 FTP Ethernet cables

All tests have been carried out on the host system and inside the virtual ma­
chines, both for XEN and UML, in 32 and 64 bits both for the host and the
guest systems. By host, the real host system is meant, i.e. an unpatched stan­
dard Gentoo Linux distribution, without any modification. Confusion should not
be made with the XEN or the UML host , whose benchmarks are not relevant
for comparisons . Hence, all tests have been performed on the standard host and
within XEN and UML virtual machines. The following cflags have been used to
compilel'' the analyzed systems:

Table 2. CFLAGS for VDD circumstances (host , UML and XEN)

Standard host system -marcheenative -fomit-frame-pointer -pipe -02
Host and guest UML systems -march=native -fomit-frame-pointer -pipe -02
Host and guest XEN systems -marche.native -fomit-frame-pointer -pipe -02

-mno-tls-direct-seg-refs

Since the vanilla Linux kernel already includes virtualization patchesl''
(paravirt-ops) , tests have been performed both using the XEN source patches
and vanilla Linux kernel, as regards guest tests.

In order to make a CPU-bound test, John The Ripper has been used. It
includes benchmarks for all supported hashing algorithms . Such benchmarks
are particularly suitable for the purpose of this investigation , since they make it
possible to precisely evaluate the overhead introduced by virtual machines. Even
though the two machines have a Core 2 Quad CPU , each test has been performed

12 Two identical PCs have been used: one system has been compiled as 32 bit code,
the other one as 64 bit code.

13 Compiled using GNU gcc version 4.2.
14 Since version 2.6.25 for 32 bit and since version 2.6.27 for 64 bit .

254 S. Cristofaro et al.

-0
10000

-0 10000
c:

9SOO c:
0 0 9500
u uv 9000 v 9000III III
'- 8SOO '-v v 8500a. a.
III 8000 III 8000c: c:
0 7500 0 7500';J

~co
7000a. 7000

a.
E 6SOO E 6500

8 0
6000 U 6000

FreeBSO I.IOS (3~ bll) FreeBSO MOS ('64bll)

F ig. 2. Benchmark results for the John The Ripper test

only without Symmetric Multi Processing, in order to make comparisons with
UML possible'".

Th anks to paravirtualization, as expected, all results are quite close to each
other. As it appears in the charts above (Figure 2), the overhead introduced by
virtualization systems is quite unimportant. In any case, 64 bit systems proved
to be far more performant .

As regards the LMbench memory mapping benchmark , an interesting differ­
ence between host and guest , especially for UML, can be noticed. The bench­
mark showed in the chart below is bui. mmap.rd , using the open2close opt ion.
This benchmark measures the bandwidth used to map a segment of a file to the
memory and read it . FUnction mm ap() belongs to a category of functions that
is one of the hardest to be managed by virtual machines. This happens because
virtu al machines can not access physical memory directly. Hence, analyzing its
behavior represents an excellent way to test system call management performed
by paravir tualized systems and , in particular , to test how efficient is the hyper­
visor in managing it . As a matter of fact , this test is one of those in which Xen
and, even more, UML loose more with respect to the host .

As a comment to the charts (Figure 3), all guest virtualized systems are
sensitive to system call management . This is true especially for UML, due to
the fact that it manages all system calls in user space, through a set of data
st ructures, and this makes it quite slower than Xen. It is then possible to state
that memory mapping management is the Achilles' heel of virt ualized systems,
even if Xen can cope with it better than others.

The next test is about filesystem latency. The test intends to verify the per­
forman ce of virtualized systems in managing loop files (as in virtualized systems
loop files act as virtual disks). In particular , the number of files created/ deleted

15 UML does not support SMP in skas4 mode. It was supported only it in TT mode,
but TT mode is no longer supported.

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 255

bw_mm apJd open2close - 32 bit bw_mmapJd open2close - 64 bit

512MB

256MB

128MB

64/4B

32/4B

16/4B

8/4B

4MB

2/AB

1 lAB

------------- .-----

512 MB -.
256MB .
128MB -
64/.B -.-32MB

16 MB -.
8MB ;-'\

4MB -.-~MB
.

1 MB .
0.00 5000,00

MBi s

10000,00 0,00 5000,00

MBls

10000,00

Fig. 3. Memory mapping benchmark results

files deleted per second - 64 bit

350000

300000

files created per second - 32 bit

160000

140000

1:10000

100000

1) 80000

'".. 60000

40000

u
sl:e

250000

200000
'!
§ 150000..

100000

50000

1k

"'"
4k

Fig. 4. Filesystem latency test results

per second is counted. The test has been repeated over files with different di­
mensions. Since guest systems are located into loop files, this may affect the test
comparisons. In order to resolve this problem and to make tests comparable, a
loop file have been generated also for the host system, which is so in exactly the
same conditions of the guest. This test requires a destination directory where
the system may create and delete files. So, each test has been performed inside
each virtual machine. For the host system, the destination directory coincides
with the loop file!".

Results on Figure 4 show that the management of loop files in virtualized
systems has reached an optimal level, especially for Xen. It is even better than
the management of loop files made by the host system. This is because special
functions have been developed in order to address such a critica l issue. The test
shown below is on memory again.

16 All filesystems are ext3 .

256 S. Cristofaro et al.

bw_mem fep - 32 bit bw_mem fcp - 64 bit

-2S6J~B

128M B

64MB

32MB -
16MB -
8MB -
4 MB

2M B

1 MB

2S6l jB

128MB

64 lAB

32MB

16MB

8ldB

41jB

2ldB

lIj B

-
-

0.00 2000 ,00 4000 ,00

MBis
6000.00 0.00 2000,00 4000.00

IA Bis
6000.00

Fig. 5. Memory read/write speed test results

This test is useful to evaluate the overhead introduced for reading and writ­
ing in memory (Figure 5), after space is allocated, hence it does not take into
account memory allocat ion, but only reading and writing speed. The test has
been repeated with segments of memory with different size, in order to evaluate
also the behavior of the system when cache is and is not functioning. Result s
show that the overhead is minimal and negligible, whatever the size iS17 •

The next test is about performance decay due to virtual network cards with
respect to physical network cards (Figure 6). The server is on a physical machine,
while the client is on a virtu alized machine. The two machines are connected via
Gigabit Ethernet switches and cables. The test shows that virtual machines, on
a physical network , do not introduce any significant overhead with respect to
physical machines connected on the same network. In the picture below, the blue
line represents the result of two physical hosts connected .

lat_tep via physical network - 32 bit

, I~B

2MB ...

4 MB

8M B

16MB

32MB

o 100 200 300 400 SOlI 600 100 BOO

mereseeones

lat_tep via physical network - 64 bit

1 MB

2MB ...

4MB

8MB

16 1AB

32 lAB

o 100 200 300 400 SOlI 600 100 eoo
microseconds

Fig. 6. Physical network latency test results

17 Because of hierarchical memory (especially the 8MB L2cache of the Q6600), results
of reading small segments of memoryare already in cache and henceobtained faster.

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 257

As it can be read in the man pages, lat.tcp is a client / server program that
measures interpro cess communicat ion latencies. The benchmark passes a mes­
sage back and forth between the two processes (this sort of benchmark is fre­
quently referred to as a "hot potato" benchmark). No other work is done in the
processes.

Another test could be the same of the previous, locally executed (i.e. both the
client and the server are located within the localhost). There are no substant ial
differences for the systems involved in this test, apart from the fact that all data
transfers are not conveyed through a physical local area network but through a
virt ualized network too. So, the whole network traffic is in the localhost .

1 MB

2M B

4 MB

8MB

16 MB

12MB

o 10 20 30 40 50 60 70 eo 90 100

microseconds

1 MB

2M B

4 MB

8 MB

16MB

32/o1B

o 10 20 30 40 50 60 70 eo 90 100

microseconds

Fig. 7. Local host network latency test results

Test results on Figure 7 shows that the overhead is minimal and hence do not
represent a bottleneck.

As a final remark , one can say that tests performed on VDD showed a negli­
gible overhead introduced by the use of virtuali zat ion. This is true in particular
for the tests hereby presented, which were selected based on the differences they
are able to show in a more remarkable way with respect to others. The overhead
may result significant only in part icular situations (e.g., 3D graphic develop­
ment) , whereas performance at a desktop level is practically not affected. This
is certainly encouraging for continuing the research, particularly if it succeed in
showing more precisely the relation between system performance and desktop
performance (see Section VII).

6 Operational Costs Analysis

VDD is an inexpensive solution born from the idea of Trashware [1],[8]. Re­
search pushed forward from considering money saving for setting up a complete
environment , to money saving for mainta ining and operating it. For example,
considering a LAN with 10 computers, three cases can be put to the test :

258 S. Cristofaro et al.

a) Buy 10 new PCs (no VDD)
b) Buy one new generation PC for the VDD server + 10 Trashware diskless

thin clients for free
c) Buy one new generation PC for the VDD server + 10 mini ITX stationsl''

Solution a is far more expensive than the others, both for initial costs and for
operational costs. In terms of initial costs, the cheapest solution is b, the only
cost being the hardware for the VDD server management station, with money
saving up to 83% with respect to a. This solution provides up to 18,5% for the
energy saving!". Replacing obsolete and maybe cumbersome thin clients with
mini-ITX terminals (solution c), money saving can be up to 72%. In this case,
energy saving can arrive up to 71 ,4% (always with respect to a).

About the cost of a system upgrade, with solution a, a global operating system
update has to be done on each PC, whereas with band c solutions , an upgrade
only involves the central server which is the VDD manager, since no operating
systems resides in any diskless thin client. In this case, the whole system will
result upgraded in one go.

A similar consideration can be done for hardware upgrade . Setting up VDD
requires the central station to be powerful enough so that no significant over­
head could influence thin clients utilization. As soon as the need for a hardware
upgrade arises and/or more client stations are required , a more powerful central
server could be needed. In regard to server-side hardware upgrade, it reflects to
performance of all thin clients in one go, similarly to software upgrade. In regard
to client-side hardware upgrade , instead , modifications for each thin client would
be required . Economic-wise, this is not relevant , thanks to the reuse of hardware
components refurbished through Trashware. This provides a practically unlim­
ited amount of hardware dismissed too early by individuals or companies, and
that are instead useful for building or upgrading VDD systems. In most cases,
companies dismiss computers that are absolutely not obsolete as they consider?".
Hardware reuse allows VDD thin clients to be upgraded and hence survive in
pretty much all failure cases, by using the massive amount of spare hardware,
produced by the current unsustainable production system, as a replacements
resource.

7 Future Works

Setting up VDD may be rather demanding for people not so familiar with
GNU/ Linux and quite a high level of experience is required to manage all spare
software components. One of the next step to further improve VDD is to de­
velop a Graphical User Interface to make virtual machines dispatching as simple

18 More generally, low energy systemssuch as mini/nano/pico-I'I'X.
19 Considerations about energy cost analysis have been done consulting the

http ://www.eu-energystar.org/it/iL007c.shtml website. Each (thin client) station
has been considered to be powered on for 6 hours per day.

20 Social enterprises exist which work in refurbishing dismissed PCs thanks to Free
Software. One of those is Binario Etico, www.binarioetico.org

Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution 259

as possible. Possible directions are: a web-based control panel, accessible from
everywhere at any time and/or a host side interface to manage the whole en­
vironment from the central station. Code in Python has started to be written
(having portability in mind).

As highlighted in Section V, it would be useful to explore more in depth
relations between system level and desktop level regarding performance. Map­
ping application requirements to system specifications would help in designing
and tuning the system for best desktop performance. Another interesting goal
is to introduce High Availability Clusterization. VDD is managed by one cen­
tral server at the moment. In [1], it was proposed to set up a HPC cluster like
OperrMosix [8] to boost the core system. Unfortunately, HPC clustering does not
have a wide interest any more, also due to the tremendous decrease of hardware
price. Research interests are now focused on High Availability Clusters instead
of HPC , in order to increase dependability and availability against failures [9].

As seen in Section 2, related work exists that consider dispatching desktops
on the Internet an important characteristic. VDD can technically do that, even
if this is not part of the research at the moment. It could be something to
look at in the future, provided that the study on mapping system and network
performance to desktop performance is carried out before. The high flexibility
offered by the VNC protocol may allow to dispatch virtual Linux distributions
over the Internet too. The only main difference is not to use obsolete computers
as clients in this case, as data compression requires more performant PCs.

Privacy issues can easily be addressed by VDD, both at a local and at a global
scale, simply by cyphering data. Although the whole system is quite safe, the
utilization of encrypted volumes as filesystem partitions (using algorithms like
AES-256), would give users the possibility to keep their data private and secure
from intruders. Not even the administrator, who is in charge of managing such
partitions, could be able to access data stored in them. This way, the well known
privacy issue raised by cloud computing can be effectively addressed.

8 ConcIusion

Intensely put to the test, VDD has proved to have wide margin to exploit as for
system and network performance. VDD can open new frontiers of virtualization
and distribution of resources by changing the way people resort to desktops.
While the present paper was about to be finished, authors received news from
NLnet foundation'" regarding a request for funds to support the project, made
by Binario Etico cooperative company/'' . NLnet decided to finance the project!

21 http: //www.nlnet.nl/NLnet foundation financially supports organizations and peo­
ple that contribute to an open information society, in particular it finances projects
based on Free Software.

22 http :/ /www.binarioetico.org/ BinarioEtico cooperative companysellsproducts and
services exclusively based on Free Software and reuse of obsolete pes. It requested
NLnet foundation for money to finance VDD project.

260 S. Cristofaro et al.

VDD emphasizes t he importance of software over hardware. By using a new
way of man aging desktop environment software, VDD offers a te chnological point
of view focused on ecology and saving , without renouncing to productivity and
performance. Hardwar e development is closed to its sat urat ion. VDD is the proof
that software, in particular Free Software, can offer real ways to st imulate people
creativity and reach new tec hnological achievements .

References

1. Bertini , F., Lamann a, D., Baldoni , R.: Virt ual Distro Dispatcher: A costless dis­
tributed virtual environment from Trashware. In : Stojmenovic, 1., Thulasiram, R.K. ,
Yang, L.T. , Jia, W., Guo, 1\1 ., de Mello, R.F. (eds.) ISPA 2007. LNCS, vol. 4742,
pp . 223-2 34. Springer, Heidelberg (2007)

2. Dike, J .: User Mode Linux, April 22. Bruce Perens' Open Source Series, p. 352.
Prent ice Hall PTR, Englewood Cliffs (2006)

3. Chisnall, D.: The Definitive Guide to the XEK Hypervisor, 1st edn., p. 320. Pren tice
Hall PTR, Englewood Cliffs (November 19, 2007)

4. Linux Terminal Server Proj ect , http://ww .ltsp . org
5. Popek, G.J. , Goldberg, R.P.: Formal Requirements for Virtu alizable Third Genera­

tion Architectures. Communications of the ACI\1 17(7), 412-421
6. Rose, 1\1 .: (Indust ry Developments and Model) - Virtualized Client Computing: A

Taxonomy (December 2007),
http://ww .idc.com/getdoc.jsp?containerId=209671

7. Hewitt , C.: ORGs for Scalable, Robust , Pr ivacy-Friendly Client Cloud Computing.
IEEE Internet Compu ting , 96-99 (September/ October 2008)

8. Russo, R., Lamanna, D., Baldoni, R.: Distributed software platforms for rehabil­
itating obsolete hardware. In: OSS 2005: Proceedings of The First International
Conference on Open Source Systems, pp. 220--224 (2005)

9. Cully, E., Lefebvre, G., Meyer, D., Feeley, M., Hutchinson, N.: Remus: High Avail­
ability via Asynchronous Virtual Machine Replication. In: Proceedings of the 5th
USENIX Symposium on Networked System design and implementation, pp. 161-174
(Awarded Best Paper)

	Virtual Distro Dispatcher: A Light-Weight Desktop-as-a-Service Solution
	1 Introduction
	2 Related Work
	3 Virtualization
	4 Extension of Functionalities
	5 Performance Analysis
	6 Operational Costs Analysis
	7 Future Works
	8 ConcIusion
	References

