
Dynamic Load Management of Virtual Machines
in Cloud Architectures

Mauro Andreolini, Sara Casolari, Michele Colajanni, and Michele Messori

Depar tment of Information Engineering
University of Modena and Reggio Emilia , It aly

{mauro. andr eol i ni, sara . casol ari,mi chel e .col aj anni,
michele . messori}~unimore . it

Abstract. Cloud infrastructures must accommodat e changing demands
for different types of processing with heterogeneous workloads and time
const raints. In a similar context, dynamic management of virtualized
applicat ion environments is becoming very important to exploit com
puting resources, especially with recent virtualization capabilities that
allow live sessions to be moved transparently between servers. This pa
per proposes novel management algorithms to decide about reallocat ions
of virt ual machines in a cloud context charac terized by large numb ers of
hosts. The novel algorithms identify just th e real crit ical instances and
take decisions without recurring to typical th resholds. Moreover, th ey
consider load trend behavior of the resources instead of instant aneous or
average measures. Experiment al results show that prop osed algorithms
are t ruly selective and robust even in variable contexts, t hus reducing
system instability and limit migrat ions when really necessary.

1 Introduction

Exist ing dat a centers are characterized by high operat ing costs , inefficiencies,
and by myriads of distributed and heterogeneous servers that add complexity in
terms of security and management . In order to improve dat a center efficiency,
most enterprises are going to consolidate exist ing systems through virt ualizat ion
solutions up to cloud centers. Logically pooling all system resources and centr al
izing resource management allow to increase overall utilization and lowering
management costs . There are various approaches to virtualization (hardware
virtualizat ion up to micro-partitioning, operating system virt ualization, soft
ware virtualizat ion), but consolidation and virt ualization by themselves do littl e
to improve application performance. The quest ion is whether huge increases in
terms of system utilization correspond to an actual bett er efficiency or they are
due to applications running poorly in those virt ual environments .

Consolidat ion and virtualization deliver more computing resources to the or
ganizat ions, but failure to tune applications to run on virt ualized resources means
that un-tun ed applications are wasting processing cycles. In order to avoid to
waste computing and storage resources it is necessary to optimize management

D.R . Av resky et al. (Eds .) : Cloudcomp 2009, LN ICST 34, pp. 201-214,2010 .
© Insti tute for Computer Scien ces, Soc ia l-Informa tic s and Telecommunica ti on s Eng ineering 2010

202 M. Andreolini et al.

of these novel cloud systems architectures and virtualized servers. Overall per
formance analysis and runtime management in these contexts are becoming ex
tremely complex, because they are a function not only of guest applications, but
also of their interactions with other guest machines as they contend for processing
and I/O resources of their host machine. We should consider that these modern
cloud infrastructures must accommodate varying demands for different types of
processing within certain time constraints, hence dynamic management of virtu
alized application environments is becoming very important. Indeed, automated
workload management and balancing facilities can also lead to performance im
provements while greatly reducing management cost. For these reasons, all recent
virtualization management capabilities allow loads and live sessions to be moved
transparently between processors or even servers, thus allowing applications to
exploit unused computing resources regardless of whether those resources are
located on local or remote servers. Dynamic capacity management can increase
productivity but it requires continuous monitoring services and innovative run
time decision algorithms that represent the focus of this paper. In particular,
we propose quite innovative algorithms for deciding when a physical host should
migrate part of its load, which part of the load must be moved, and where should
be moved. The difficulty of answering to these questions is also due to the ob
servation that the performance measures referring to cloud system resources are
characterized by spikes and extreme variability to the event that it is impossible
to identify stable states if not for short periods.

The paper is organized as follow. Section 2 evidences main contributions to
the state of the art. Section 3 describes the operating context and outlines the
main phases of the proposed management algorithms. Section 4 considers the
problem of identifying when a host really requires a load migration because of its
critical state conditions, and proposes an innovative selection algorithm. Section
5 is devoted to the identification of the virtual machines that is convenient to
migrate and of the physical hosts that can receive them. Section 6 concludes the
paper with some final remarks and future work.

2 Related Work

There are several proposals for live migration of virtual machines in clusters of
servers, and the most recent techniques aim to reduce downtime during migra
tion. For example, the solution in Clark et al. [6] is able to transfer an entire
machine with a downtime of few hundreds of milliseconds. Travostino et al. [7]
migrate virtual machines on a WAN area with just 1-2 seconds of application
downtime through lightpath [8]. Unlike these solutions that are based on a pre
copy of the state, Hines et al. [9] propose a post-copy which defers the transfer of
a machine memory contents after its processor state has been sent to the target
host. Migration techniques through Remote Direct Memory Access (RDMA)
further reduce migration time and application downtime [10]. Although these
mechanisms are rapidly improving, live migration remains an expensive opera
tion that should be applied selectively especially in a cloud context characterized

Dynamic Load Management of Virtual Machines in Cloud Architectures 203

by thousands of physical machines and about one order more of virtual machines.
The focus of this paper on decision and management algorithms differentiates
our work from literature on migration mechanisms. We evidence three main
phases of the migration management process: to decide when a dynamic redis
tribution of load is necessary; how to choose which virtual machines is convenient
to migrate; to place virtual machines to other physical machines.

Khanna et al. [4] monitor the resources (CPU and memory) of physical and
virtual machines. If a resource exceeds a predefined threshold and some SLA is at
risk, then the system migrates a virtual machine to another physical host . Sand
piper [11] is a mechanism that automates the task of monitoring and detecting
hotspots; Bobroff et al. [12] propose an algorithm for virtual machine migra
tion that aims to guarantee probabilistic SLAs. All these works decide when a
dynamic redistribution of load is necessary through some threshold-based algo
rithms. We propose a completely different approach that decides about migra
tion by avoiding thresholds on the server load, but considering the load profile
evaluated through a CUSUM-based stochastic model [1].

The issues about to choose which virtual machines is convenient to migrate
and where to place virtual machines have been often addressed through some
global optimization approach . Entropy [13] decides about a dynamic placement
of virtual machines on physical machines with the goal of minimizing the number
of active physical servers and the number of migrations to reach a new configu
ration. Nguyen Van et al. [14] use the same approach but they integrate SLAs.
Sandpiper [11] proposes two algorithms: a black-box approach that is agnostic
about operating system and application; a gray-box approach that exploits op
erating system and application level statistics. It monitors CPU, memory and
network resources to avoid SLA violations. The gray-box can also analyze appli
cation logs. The scheme proposed by Khanna et al. [4] moves the virtual machines
with minimum utilization to the physical host with minimum available resources
that are sufficient to host that virtual machines without violating the SLA. If
there is no available host, it activates a new physical machine. Similarly, if the
utilization of a physical machine falls below a threshold, the hosted servers are
migrated elsewhere and the physical machine is removed from the pool of avail
able hosts . Stage et al. [5] consider bandwidth consumed during migration. They
propose a system that classifies the various loads and consolidate more virtual
machines on each host based on typical periodic trends, if they exist. The paper
in [12] adopts prediction techniques and a bin packing heuristic to allocate and
place virtual machines while minimizing the number of activated physical ma
chines. The authors propose also an interesting method for characterizing the
gain that a virtual machine can achieve from dynamic migration. Our proposals
differ from all these global optimization models that are applicable at runtime
when there is a small set of machines to consider, but they cannot work in a
cloud context characterized by thousands of physical machines. For these rea
sons, we analyze separately each physical host and its related virtual machines
with the main goal of minimizing migrations just to the most severe instances.
Instead of distributing the load evenly across a set of physical machines in order

204 M. Andreolini et al.

to get an optimal resource utilization, we think that in a cloud context exposed
to unpredictable demand and heterogeneous workload, a load sharing approach
for migration of virtual machine is more realistic , in that it is possible to share
the load across multiple servers, even if in an unequal way.

3 Management Algorithms for Load Migration

A typical cloud architecture consists of a huge set of physical machines (host),
each of them equipped with some virtualization mechanisms, from hardware vir
tualization up to micro-partitioning, operating system virtualization, software
virtualization. These mechanisms allow each machine to host a concurrent ex
ecution of several virtual machines (guest) each with its own operating system
and applications.

To accommodate varying demands for different types of processing, the most
modern cloud infrastructures include dynamic management capabilities and vir
tual machine mobility that is, the ability to move transparently virtual machines
from one host to another. By migrating a guest from an overloaded host to an
other not critical host , it is possible to improve resource utilization and better
load sharing. Independently of the migration techniques , they share a common
management model: any decision algorithm for migration has to select one or
more sender hosts from which some virtual machines are moved to other desti
nation hosts , namely receivers. This paper addresses the main issues related to
migration decisions, that is, it aims to answer to the following questions: when
it is necessary to activate a migration, which guests of a sender host should
migrate, and where they should be moved.

We are aware that any dynamic guest migration remains an expensive opera
tion that consumes resources of the sender and receiver hosts as well as network
bandwidth because of transfers of large chunks of data representing the memory
state of the guests . In a cloud architecture with thousands of hosts, an abuse of
guest migrations would devastate system and application performance . Hence,
we should recur to migration in few severe instances during the cloud platform
operations. In other words, a good algorithm for governing of dynamic migra
tions in a cloud architecture must guarantee a reliable classification of the host
behavior (as sender, receiver and neutral) that can reduce the number of useless
guests migrations, and a selective precision in deciding which (few) guests should
migrate to another host .

The load state of a host is obtained through a periodic collection of measures
from server monitors . These measures are typically characterized by noises and
non stationary effects in the short-medium term, while there is some periodic
behavior in a long term vision (day, week) that we do not consider in this pa
per . Figure 1 shows four load profiles (concerning host CPU utilizations) in a
cloud architecture where physical machines host any type of virtual machines
and applications, such as Web sites, databases, access controls , CMSes, mail
servers, management software. In a similar context, the traditional threshold
based approach [4, 11] that classifies a host as a sender or receiver because its

Dynamic Load Management of Virtual Machines in Cloud Architectures 205

1....., ------------,

c:: 0.9'
.2

~ 0.8 '

S
:::l 0.7'
c,

o 0.6'

0.50 100 200
Samples

300

1....., - - - - - - - - - - --, 1....., ---------- --,

300100 200
Samples

c:: 0.9
.2

~ 0.8· j

5 I
:::l 0.7,
c,

u 0.6[

0,50L-----------~

c:: 0.9
.2

~ 0.8 '

S
:::l 0.7'
c.
o 0.6

,'<J
0.50L..:...-----:,....----'----,~--__::_'

Fig. 1. Load profiles of hosts in a cloud architecture

load is beyond or below some given lines cannot work. This problem is even
more serious in a cloud context with thousands of hosts where, at a checkpoint ,
a threshold may signal hundreds of senders and, at the successive checkpoint ,
the number of senders can become few dozen or, even worse, remain in the order
of hundreds but where most servers are different from those of the previous set.
The decision about which guests is useful to migrate from one server to another
is affected by similar problems if we adopt some th reshold-based method.

The primary goal of this paper is to provide robust and selective reallocations
of guests in a context of thousands of hosts, under the consideration that high
performance and low overheads are guaranteed only if we are able to limit the
number of migrations to few really necessary instances. To this purpose, we
propose novel algorithms for dynamic load management in a cloud architect ure
that take decisions without fixed thresholds and th at consider trend behavior
instead of instantaneous or average load measures.

The proposed management algorithm is act ivated periodically (typically in
the order of few minutes) and, at each checkpoint, it aims at defining three sets:
sender hosts , receiver hosts, and migrating guests , where their cardinalit ies are
denoted as S , R , and G, respectively. Let also N be the total number of hosts.
We have to guara ntee that N ~ S + R , and th at the intersection between the
set of sender hosts and of receiver hosts is null. The algorithm is based on the
following four phases.

- Phase 1: Selection of sender hosts. The first action requires the selection
of the set of sender hosts that require the migration of some of their guests .
We describe our strategy that is based on the CUSUM models [1] in Section 4.

206 M. Andreolini et aI.

The idea is to have a selective and robust algorithm so that the cardinality
S of the set of senders is much smaller than the total number of hosts that
is, S« N.

- Phase 2: Selection of guests. Once selected the senders, we have to evalu
ate how many and which guests it is convenient to migrate. To this purpose ,
in Section 5 we propose an algorithm that is able to select the most criti
cal guests for each server on the basis of a load trend-based model instead
of traditional approaches based on instantaneous or average load measures.
Even for this phase, the goal is to limit the number of guests for each host
that should migrate, so that G < (N - S). If this does not occur after the
first evaluation , the guest selection proceeds iteratively until the constraint
is satisfied. (It is worth to observe that no experiment required an iteration.)

- Phase 3: Selection of receiver hosts. Once selected the guests that have
to migrate, we have to define the set of receiver hosts. To this purpose, we
do not propose any specific innovative algorithm. From our past experience
in other geographically distributed architectures and initial experiments on
cloud architectures, we can conclude that the major risk we want to avoid is
a dynamic migration that tends to overload some receiver hosts so that at the
successive checkpoint a receiver may become a sender. Similar fluctuations
devastate system performance and stability. Hence, our idea is to set R = G
so that each receiver host receives at most one guest. The selected receivers
are the R hosts that exhibit the lowest load computed on the basis of the
trend model described in Section 5.

- Phase 4: Assignment of guests. The guests selected in the Phase 2 are
assigned to the receivers through a classical greedy algorithm where we begin
to assign the most onerous guests to the lowest loaded hosts. (It is worth to
observe that in actual cloud architectures there are other architectural and
application constraints that should be satisfied in the guest migration phase.
These constraints limit the combinations of possible assignments to different
sets thus reducing the computational cost of sorting .)

The most innovative contribution of this paper is on the first two phases that
represent the core of the following two sections. In the other two phases, we
adopt more traditional algorithms not deserving an accurate treatment in this
paper.

4 Selection of Sender Hosts

The identification of the set of sender hosts represents the most critical problem
for the dynamic management of a cloud architecture characterized by thousands
of machines. The fundamental idea to determine selective and robust detections
is to pass from more or less sophisticated threshold-based models, that consider
the amount of load of a host in a certain interval, to a model that analyzes the
load profile of the resources. The goal is to signal only the hosts subject to signif
icant state changes of their load, where we define a state change significant if it

Dynamic Load Management of Virtual Machines in Cloud Architectures 207

,.-,.- -
0 ..

00

005

~ 0'
~ 075

g 0 7

005

0'

(a) Profile 1

,,.
00'

00

005

§ 0',
~ O"
g 07

0 '"

0"

0 '0- - - - se-- '00 150 200
~..

(b) Profile 2

Fig . 2. CPU load in two hosts (each sample refers to an interval of 1 minute)

is intensive and persistent. To determine abrupt modifications of a host load pro
file, we propose a reliable and robust detection model especially useful when the
applicat ion context consists of large numbers of hosts subject to: many instan
taneous spikes, non-stationary effects, and unpredictable and rapidly changing
load .

As examples, Figure 2(a) and Figure 2(b) show two typical profiles of th e CP U
utilization of two hosts in a cloud architecture. The former profile is characterized
by a stable load with some spikes but there is no significant state change in terms
of th e previous definition . On the other hand , the latter profile is characterized
by some spikes and by two significant state changes around sample 180 and
sample 220. A robust detection model should arise no alarm in the former case,
and just two alarms in the latter inst ance. In a similar scenario, it is clear that
any detection algorithm that takes into consideration an absolute or average load
value as alarm mechanism tends to cause many false alarms. This is th e case of
threshold-based algorithms [4,11] that are widely adopted in several management
contexts . Just to give an example, let us set the load threshold to define a sender
host to 0.8 of its CPU utilization (done for example in [15]). In the Figures 2,
the small t riangles on the top of th e two figures denote the checkpoints where

208 M. Andreolini et al.

Table 1. Evaluation of ARL

h 1 2 3 4 5 6 7 8 9 10
ARLo 620 59 169 469 1286 3510 9556 25993 70674
ARL l 2 4 6 8 10 12 14 16 18 20

the threshold-based detection algorithm signals the host as a sender. There are
10 signals in the former case and 17 in the latter case instead of the expected 0
and 2. This init ial result denotes a clear problem with a crit ical consequence on
performance: we have an excessive number of guest migrations even when not
strictly necessary. If we extend this example to a cloud context characterized by
thousands of hosts, then we can understand why dynamic guest migrat ion is not
yet so popular.

Our detection model takes a quite different approach that evaluates the en
tir e load profile of a resource and aims to detect abrupt and permanent load
changes. To this purpose, we consider a stochastic model based on the CUSUM
(Cumulative Sum) algorithm [1] that works well even at runtime. Other anomaly
detection techniques based on pattern matching and data mining are preferable
for off-line approaches.

The CUSUM algorithm has been shown to be optimal in that it guarantees
minimum mean delay to detection in t he asymptot ic regime when the mean time
between false alarms goes to infinity [2]. We consider the one-sided version of
the CUSUM algorithm that is able of selecting increasing changes of the load
profile in face of variable and non-stationary charac teristics. The samples of the
loads deriving from the host monitors denote a time series {y;}, i = 1, .. . , n,
characterized by a target value Pi that is computed as the exponent ially weighted
average of prior dat a:

Pi = aYi +(1- a)Pi-l (1)

where 0 < a :::; 1 is typically set to 1/ (1 + 21l' * f) , and J is the cutoff frequency
of the EWMA model [3]. The CUSUYI algorithm detects abrupt increases from
the target value Pi by evaluating the following test stat istics:

do = 0; d, = max{O, di- 1 + Yi - (Pi + K)} (2)

which measures positive deviation s from a nominal value Pi. A counter di ac
cumulates all deviations of the measures Yi from the target value Pi th at are
great er than a pre-defined constant K ; the counter di is reset to 0 when they
become negative. The term K , which is known as the allowance or slack value,
determines the minimum deviation that the statist ics di should account for. The
suggested default value in literature is K = 4,where Ll is the minimum shift to
be detect ed [2]. A change in the load profile of a host is signaled when d, exceeds
H = ha y, where h is a design parameter and ay is the standard deviation of the
observed tim e series.

The choice of the parameter h influences the performance of the CUSUM
algorithm in terms of the so called Average Run Lengths (ARL), where ARLo

Dynamic Load Management of Virtual Machines in Cloud Architectures 209

denotes the average number of samples between false alarms when no significant
change has occurred in the load, and ARL1 denotes the average number of
samples to detect a significant change when it does occur. Ideally, ARLo should
be very large because we want to limit false alarms, while ARL1 should be
rather small because we do not want an excessive delay to signal a significant
load change. We know and show in Table 1 that both ARLo and ARL1 tend to
grow for increasing values of h, although ARLo shows an exponential increment,
and ARL1 a linear increment as a function of h. Hence, the best choice of
h is a compromise because too large values would improve ARLo but would
deteriorate ARL1 performance. As the reference value proposed in literature [2]
is h = 5, we initially consider the so called Baseline CUSUM having H = 50'y.
The performance of this algorithm is shown in Figures 3, where each small
triangle denotes a point in which a host is signaled as a sender. If we compare
the results in Figure 3 with those in Figure 2 (referring to a threshold-based
algorithm), we can appreciate that the total number of detections is significantly
reduced because it passes from 27 to 11. In particular, the Baseline CUSUM is
able to avoid detections due to load oscillations around the threshold value.
On the other hand, it is unable to address completely the issue of unnecessary

I - ...--- ... '9'- -

0 9>-

0 0

0 .. ·

oa

0 "

0"

0 ..

ee

055

0 5
0 20 40 00 00 ' 00 120 140 '00 '00

s.~.

(a) Profile 1

l - - - "[l-"P- - T "[l ...0 - - -

oos

0 0

0 ..

§ oa

~ 07~
g 0.' -

0"1
ee

055 ,
50

I,
" ,

,oa 150
Saorple5

(b) Profile 2

200

, ,

I ' I

250

Fig. 3. Baseline and Selective CUSUM models

210 M. Andreolini et al.

detections related to short-time spikes, such as those occurring at samples 30,
45, 55 and 90 in Figure 3(a).

To have even a more robust and selective detection algorithm suitable for
cloud contexts, we propose a modified version of the Baseline CUSUM model,
namely Selective CUSUM, that chooses h with the goal of maximizing ARLo un
der some temporal constraints X related to the average delay necessary to signal
a significant load change. From this temporal constraint X , that is expressed in
terms of samples and ARL1, we can select the upper bound for h by referring to
the Table 1. This is not the best value for X because the choice always depends
on the application context. For example, if in our platform we consider that
a maximum acceptable delay for detecting a significant load change is around
15 minutes , by considering that samples are taken every minute , we have that
X = 15. From Table 1, we can easily get that a value of h E [7,8] exhibits an
ARL1 rv 15. Hence, a good choice for characterizing the Selective CUSUM is to
set h = 7.

In Figures 3, the three small boxes on the top denote the activations signaled
by the Selective CUSUM. We can appreciate that this algorithm determines
robust and selective detections of the sender hosts : indeed, it is able to remove
any undesired signal caused by instantaneous spikes in Figure 3(a) , and to detect
only the most significant state changes at samples 55, 185, 210 in Figure 3(b),
actually just one more (at sample 55) than the optimal selection of two signals.

5 Selection of Guests

When a host is selected as a sender, it is important to determine which of its
guests should migrate to another host. As migration is expensive, our idea is to
select few guests that have contributed to the significant load change of their
host. For each host , we apply the following three steps :

1. evaluation of the load of each guest;
2. sorting of the guests depending on their loads;
3. choice of the subset of guests that are on top of the list.

The first step is the most critical , because we have several alternatives to denote
the load of a guest. Let us consider for example the CPU utilization of fivevirtual
machines (A-E) in Figure 4 obtained by the VMware monitor.

The typical approach of considering the CPU utilization at a given sample as
representative of a guest load (e.g., [4,11]) is not a robust choice here because
the load profiles of most guests are subject to spikes. For example , if we consider
samples 50, 62, 160,300 and 351, the highest load is shown by the guest B, albeit
these values are outliers of the typical load profile of this guest . Even considering
as a representative value of the guest load the average of the past values may
bring us to false conclusions. For example , if we observe the guests at sample 260,
the heaviest guest would be A followed by E. This choice is certainly preferable
to a representation based on absolute values, but it does not take into account an
important factor of the load profiles: the load of the guest E is rapidly decreasing
while that of the guest A is continuously increasing.

Dynamic Load Management of Virtual Machines in Cloud Architectures 211

400

o

35030025015010050

0.9

0.8

0.7-

~ 0.6

~ 0.5

to.•
0.3~~Wtc.e':::Jv~::::~;::;:;.~;:;:::::;dj~ib"-~L:.,;l¥~~~:::::~~
02 .Y"

0.1 -:::~~:~~~~~~~;;~~~~~~~=~~~~~ ===~:'====~;'~==~:;;= =~~00

Fig. 4. Profiles of guest machines

Our idea is th at a guest selection model should not consider just absolute or
average values, but it should also be able to est imate the behavioral trend of the
guest profile. The behavioral t rend gives a geometric interpretation of the load
behavior th at adapts itself to the non stat ionary load and that can be utilized
to evaluate whether the load state of a guest is increasing, decreasing, oscillat ing
or sta bilizing. Consequently, it is possible to generate a load representation of
each guest based on the following geometric interpretation. Between every pair
of the m consecut ive selected points in the time series {Yd , i = 1, .. . ,n, we
compute the trend coefficient aj , with 0 :S j :S m - 1, of the line that divides
the consecut ive points Yi-j l ;'i,- I and Yi-(j+l l l ;'i,- I'

. _ Yi-j l;'i,- I - Yi-(j+ll l ;'i,- I · O< . < - 1"
a J - 1;;'1 ' - J - m , t < m (3)

In order to quantify the degree of variat ion of the past data values, we consider
a weighted linear regression of the m tren d coefficients:

m-I

ai = I: Pjaj ;
j = O

(4)

where a D, ... , a (m- Il are the trend coefficients that are weighted by the Pj co
efficients . This is the most general formula that can pass from not weighted
Pj values to weighted coefficients obtained through some decay distributions.
In this paper, we consider a geometric distribution of the weights P th at gives
more importance to the most recent trend coefficients . The absolute value of
the j -th trend coefficient I aj I identifies the intensity of the variation between
two consecut ive measures Yi - jl ;'i,- I and Yi-(j + l ll ;'i,-I' The sign of aj denotes the
direction of the variation: a plus represents an increase between the Yi-j l;'i,- I and
Yi- (j+lll ;'i,- 1 values, while a minus denotes a decrease. A load representation of
the guest g at sample i-th, denoted by Lf (for g spanning the ent ire set of guests
hosted by the considered physical machine), is the result of a linear combination

212 M. Andreolini et al.

between the quantitative trend, ai, and the actual load value, Yo , . . . ,Yn-i, that
is:

n-i

Lf = ai +L qjYi-j;
j=O

n-i

(5)

After having obtained a load representation Lf for each guest g, we can sort
them from the heaviest to the lightest. This operation is immediate because the
total number of guests U running on the considered host is limited.

The third final step must determine which guest(s) should migrate to another
host. We recall that the idea is to select only the guests that contribute more to
the host load. To this purpose, we estimate the relative impact of the load of each

guest on the overall load and we compute 'YI = L Y~: L; for i = 1, ..., U, where U

is the total number of guests in the host i. As we have already sorted the guests
in a decreasing order based on Lf values, the order is preserved when we consider
the 'YI values. The idea is to select for migration the minimum number of guests
with the highest relative loads. This is an arbitrary choice, but we found conve
nient to consider, as an example, the guests that contribute to one-third of the
total relative load. To give an idea, let us consider two hosts Hi and H2 character
ized by the following 'YI values: (0.25,0 .21,0.14,0.12,0.11,0.10,0.03,0.02,0.01),
and (0.41,0 .22,0.20 ,0 .10,0.04,0 .02,0 .01), respectively. In Hi, we select the first
two guests because the sum of their relative loads 0.46 exceeds one-third. On the
other hand, in H2 we select just the first guest that alone contributes to more
than one-third of the total load.

As we want to spread the migrating load to the largest number of receiver
hosts, we want that no receiver should get more than one guest that is, G = R .
Hence, we have to guarantee that the number of guests we want to migrate is G <
(N - 8) . Typically, this constraint is immediately satisfied because 8 is a small
number, 8 « N, and typically G ::; 28 . However, if for certain really critical
scenarios it results that G > (N - 8), we force the choice of just one guest for
each sender host. This should guarantee a suitable solution because otherwise we
have that 8 > R that is, the entire cloud platform tends to be overloaded. Similar
instances cannot be addressed by a dynamic migration algorithm but they should
be solved through the activation of standby machines [4] that typically exist in
a cloud data center. It is also worth to observe that all our experiments were
solved through the method based on the one-third of the total relative load with
no further intervention .

6 Conclusion

Dynamic migrations of virtual machines is becoming an interesting opportunity
to allow cloud infrastructures to accommodate changing demands for different
types of processing with heterogeneous workloads and time constraints. Nev
ertheless , there are many open issues about the most convenient choice about
when to activate migration, how to select guest machines to be migrated, and
the most convenient destinations. These classical problems are even more severe

Dynamic Load Management of Virtual Machines in Cloud Architectures 213

in a cloud context characterized by a very large number of hosts. We propose
novel algorithms and models that are able to identify just the real critical host
and guest devices, by considering the load profile of hosts and the load trend
behavior of the guest instead of thresholds, instantaneous or average measures
that are typically used in literature.

Experimental studies based on traces coming from a cloud platform support
ing heterogeneous applications on Linux and MS virtualized servers show sig
nificant improvements in terms of selectivity and robustness of the proposed
algorithm for sender detection and selection of the most critical guests. These
satisfactory results are encouraging us to integrate the proposed models and
algorithms in a software package for dynamic management of virtual machines
in cloud architectures. On the other hand, we should consider that a cloud ar
chitecture consists of heterogeneous infrastructures and platforms, guests that
must not migrate or that can migrate only within certain subsets of hardware
and operating systems. These real constraints are not taken into account in this
paper, but we are working to include them in a future work.

References

1. Page , E.S. : Estimating the point of change in a continuous process . Biometrika 44
(1957)

2. Montgomery, D.C.: Introduction to Statistical Quality Control
3. Kendall , M., Ord, J .: Time Series. Oxford University Press, Oxford (1990)
4. Khanna, G., Beaty, K. , Kar , G., Kochut, A.: Application Performance Manage

ment in Virtualized Server Environments. In: Proc. of Network Operations and
Management Symp . (2006)

5. Stage, A., Setzer, T .: Network-aware migration control and scheduling of differenti
ated virtual machine workloads . In: Proc. of 31st Int . Conf. on Software Engineering
(2009)

6. Clark, C., Fraser, K., Steven , H., Gorm Hansen , J ., Jul , E., Limpach , C.,
Pratt , 1., Warfield , A.: Live Migration of Virtual Machines. In: Proc. of the 2nd
ACM/USENIX Symp. on Networked Systems Design and Implementation (2005)

7. Travostino, F., Daspit, P., Gommans, L., Jog, C., de Laat , C., Marnbretti, J.,
Monga, 1., Van Oudenaarde, B., Raghunath , S., Wang, P.Y.: Seamless live mi
gration of virtual machines over the MAN/WAN . Future Gener. Computer Sys
tem 22(8) (2006)

8. DeFanti, T ., de Laat, C., Mambretti, J. , Neggers, K., St . Arnaud, B.: TransLight:
a global-scale LambdaGrid for e-science. Communications of the ACM (2003)

9. Hines, M.R., Gopalan, K .: Post-copy based live virtual machine migration using
adaptive pre-paging and dynamic self-ballooning. In: Proc. of the ACM SIGPLAN/
SIGOPS Int . Conf. on Virtual execution environments (2009)

10. Wei, H., Qi, G., Jiuxing, L., Panda, D.K.: High performance virtual machine mi
gration with RDMA over modern interconnects. In: Proc. of the IEEE Int . Conf.
on Cluster Computing (2007)

11. Wood, T ., Shenoy, P., Venkataramani, A., Yousif, M.: Black-box and Gray-box
Strategies for Virtual Machine Migration. In: Proc. of the 4th USENIX Symp, On
Networked Systems Design and Implementation (2007)

214 M. Andreolini et al.

12. Bobroff, N., Kochut , A., Beaty, K.: Dynamic Placement of Virtu al Machines for
Managing SLA Violations . In: Proc. of the 10th IFIPIIEEE International Symp.
On Integrat ed Network Management (2007)

13. Hermenier, F., Lorca, X., Menaud, J .-M., Muller, G., Lawall, J .: Entropy: a Con
solidation Manager for Cluster. In: Proc. of the Int . Conf. on Virtu al Execution
Environments (2009)

14. Nguyen Van, H., Dang Tran, F.: Autonomic virtu al resource management for ser
vice hosting platforms. In: Proc. of the Workshop on Software Engineering Chal
lenges in Cloud Computing (2009)

15. VMware Distributed Power Management Concepts and Use

	Dynamic Load Management of Virtual Machines in Cloud Architectures
	1 Introduction
	2 Related Work
	3 Management Algorithms for Load Migration
	4 Selection of Sender Hosts
	5 Selection of Guests
	6 Conclusion
	References

