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Abstract. This work presents a framework for detecting anomalies in
servers leading to crash such as memory leaks in aging systems and
proactively rejuvenating them.

Proactive VM-rejuvenation framework has been extended with ma­
chine learning techniques. Utilization of the framework is allowing the
effec t of software failures virtually to be reduced to zero downtime. It
can be applied against internal anomalies like memory leaks in the web
servers and external as Denial of Service Attacks. The framework has
been implemented with virtual machines and a machine learning algo­
rithm has been realized for successfully determining a decision rule for
proact ively initiating the system rejuvenation. The proposed framework
has been theoretically justified and experimentally validated.

Keywords: proactive rejuvenat ion, virtualisation, machine learning
techniques, feature selection, sparsity, software aging (memory leaks),
validation.

1 Introduction

All computer systems may fail after some amount of t ime and usage. Thi s is
especia lly t rue for web serve rs. The availability is one of th e most important
characteristic of t he web servers. Computer systems, which are prone to failures
and cras hes, can be realized with a higher availability if t heir mission crit i­
cal parts are replicated . There are ma ny practical examples of such systems ­
RAID , e-ma il servers , comput ing farms. In this pap er , it is shown how th e soft­
ware replication and rejuvenation can be used for increasing th e availability of
a software applicat ion with a crit ical workload. Software replication and rejuve­
nation can be performed by virtual machines easily, cheaply and effect ively. The
vir tu alization allows us to create a layer of an abst raction between software and
hardware, which provides some independence of the underlying hardware.

Any anomalies, with a similar behavior that are leadin g to a system's crash,
can be effect ively predicted by a machine learning algorit hm. For example, mem­
ory leaks exhibit a similar behavior every t ime t hey occur, and therefore , such
behavior can be predicted wit h a high accuracy. With an accurate predict ion
and an efficient recovery mechanism, t he softwa re system's availability can be
increased significantly.
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2 Related Work

Different methods and models have been presented for estimating software aging
in web servers and resource exhaustion in operational software systems in [17],
[18] and [19]. Software rejuvenation has been introduced as an efficient technique
for dealing with this problem in [14] and further developed in [23]. Virtualization
has been effectively used in [1] for improving software rejuvenation. Virtual ma­
chines are widely used for increasing the availability of web servers [16] . In [5],
[11] and [24] different techniques for increasing availability of complex comput­
ing systems have been introduced. Recently, a comprehensive model for software
rejuvenation has been developed for proactive detection and management of soft­
ware aging ([15], [17], [20], [21] and [22]) . Different techniques for analyzing the
application performance due to anomalies for enterprise services are presented
in [6], [10], [12] and [13].

In this paper a comprehensive method for a proactive software rejuvenation
for avoiding system crashes due to anomalies, such as memory leaks, is pre­
sented. It is theoretically justified and experimentally validated. Based on the
training data, obtained by the proposed framework, a close predictor of the ac­
tual remaining time to crash of a system has been accurately estimated. Such
prediction has been used as a decision rule for initiating software rejuvenation.

3 Proactive VM-Rejuvenation Framework

The VM-REJUV framework has been developed in [1] in attempt to solve the
problem of aging and crashing web servers. Current paper proposes an extension
to the VM-REJUV framework that allows to predict the right time for activating
the rejuvenation mechanism.

The VM-REJUV framework consists of three virtual machines called for sim­
plicity VMl (VM-master), VM2(VM-slave) and VM3(VM-slave). VM1 contains
the controlling mechanism of the application. VM2 and VM3 are identical and
contain the application susceptible to anomalies. VM1 is like a mini-server to
which VM2 and VM3 are connected . They regularly send information about
their parameters to VMl. This information is analyzed and only one of VM2
and VM3 is allowed to be active. VMl activates the spare copy to become active
and to start handling the workload when the active machine will be crashing
soon or stop reporting data.
The VM-REJUV framework can be extended into Proactive VM-rejuvenation
framework to contain an arbitrary number of virtual machines with the func­
tionality of VM2 and VM3. Figure 1 shows the organization of Proactive VM­
rejuvenation framework.

3.1 VM-Master and VM-Slave Components and Communication

VM-master needs to be always on. It creates a local server to which VM-slavesare
connected . Each VM-slave can be in one of the possible states: starting up, ready,
active and rejuvenating. All virtual machines have the following properties:
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Fig. 1. Proactive VM-rejuvenation framework

- There is at least one active VM-slave (if possible.)
- All VM-slaves are functioning according to same rules.
- If the VM-master decides that the active VM-slave will crash soon it sends

a control message to a ready VM-slave to become active. When the new
VM-slave becomes active the old one is forced to rejuvenate.

3.2 VM-Master Components

Decision rule
The decision rule is a function from the history of parameters of a VM-slave to
a binary value YES/NO. It is obtained off-line by the developed machine learning
technique and is hard-coded in the VM-master. If the value is YES then the
corresponding VM-slave needs to be rejuvenated.

Managing unit
The managing unit holds information about which VM-slaves are currently con­
nected and what is their most recent status. When the Decision Rule decides
that a VM-slave needs rejuvenation and informs the Managing unit , it starts
rejuvenation at a suitable moment.

Communication unit
The communication unit is responsible for receiving VM-slave parameters and
responding with simple commands for activating the application in a VM-slave.
The communication can be performed using either TCP-IP or VMCI protocols
(provided by VMware.)

3.3 VM-Slave Components

Probe
The probe collects system parameters of the VM-slave such as but not limited
to a memory distribution and a CPU load.
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Communication unit
The communication unit receives orders about the execution of the application
from the VM-master and follows them . This way it serves as a managing unit as
well. Another duty of the communication unit is to report the system parameters
that has been collected by the probe.

Application
The application can be virtually any legacy code. It can be an Apache web
server, a protein folding simulation or any other program.

4 Machine Learning Framework

The VM-REJUV framework presented in [1] relies simply on selecting a level
of the current CPU utilization of a VM-slave to decide whether it needs to be
rejuvenated. This has been shown to be effective for detecting memory leaks but
has some limitations and drawbacks ([10]).

First, it discards a lot of the parameters of the VM-slave system, which may
be used for further refining the decision rule. Therefore , there is no warranty
that any empirically chosen level will be good for all scenarios. Some attacks
and exploits may be keeping the CPU utilization high enough to prevent the
rejuvenation of the VM-machine.

Second, it doesn't keep any track of previous times . Some attacks are recog­
nizable only if one considers several consecutive moments in time combined.

The proposed solution in this paper is eliminating these drawbacks. The ma­
chine learning technique for deriving an adequate decision rule that has been
developed in this paper is extending the capabilities of the Proactive VM­
rejuvenation framework to predict anomalies leading to the system crash . It
is presented in Figure 2 and consists of five steps.

1. Training Data Collection
To be able to detect anomalies (memory leaks) in advance, the system needs
to have information about the symptoms of such anomalies . Such data can be
obtained by exposing the system to the anomalies several times and recording
the system parameters through the time.

2. Data Labeling
The system parameters record needs to be tagged with the remaining time
to the crash . This means for an every moment in time, in which the system
parameters are recorded, an additional parameter is added i. e., the time
remaining to crash. Note that this value cannot be known in advance. The
goal of this framework is to be able to extract a good prediction for the time
to crash from the rest of the parameters. Such prediction can be used in the
decision rule.

3. Data Aggregation
The system parameters for a certain period of time are collected and com­
bined in what is called an aggregated datapoint. To such datapoint are added
additional parameters, which describe the dynamics of the parameters dur­
ing the time period. For example, the average slope of each parameter is
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an aggregated datapoint. This aggregation increases the number of param­
eters to consider many-fold, and each parameter constitutes an additional
dimension in the representation of the problem. Considering all of them is
not the most efficient approach as some of them may be irrelevant to a cer­
tain anomaly. Also to provide convergence guarantees for a decision rule in
a certain dimension, the higher dimension, the higher number of training
points is required . By reducing the dimension of aggregated datapoints the
convergence becomes possible and tractable.

4. Feature selection
A sparse regression, also known as Lasso regularization([9]) , is performed to
reduce the number of important parameters to a certain number, which can
be controlled. Lasso regularization is explained further in the paper.

5. Decision rule application
The solution of a Lasso regularization is a parse set of weights of the pa­
rameters in the aggregated datapoint. Application of the decision rule can
be implemented by calculating aggregated datapoint on the fly and taking
the dot product of it and the weights obtained by Lasso regularization.
More sophisticated machine learning methods with higher degree kernels can
be applied to the reduced dimensionality datapoints. These could be Sup­
port Vector Machines (SVM) and Regularized Least Squares (RLS) ([7]).
This step might not be necessary in some cases but in other it might fur­
ther boost the efficiency of the decision rule. Because Lasso regularization
only tries to find a linear regression, this step might be necessary for some
problems and anomalies that might have a non-linear behavior.
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5 Lasso Regularization

A machine learnin g tas k is equivalent to learning a function or a close approx­
imation to it , given the values of the function at some points ([3],[4]). These
values will be called training data. There could be many functions, which sat isfy
the training dat a or have a small difference. A measure of how well a function
matches the t raining data is the Empirical Risk( [2]). Therefore, a function that
minimizes the Empirical Risk might look like a good candidate function. How­
ever, such functions have the drawback that they overfit the training data i.
e., these functions adjust themselves to the training dat a for the cost of mak­
ing themselves more complicated, which leads to them having uncont rollable
and hard to predict behavior if evaluate d at other points. Therefore, a machine
learning tries to regularize such functions by assigning some penalty to their
complexity i. e., the more complicated the function, the higher is the penalty.

The most common and widely known regularizat ion technique is Tikhonov
regularizat ion([8]). It selects the function to be learned by the following rule:

(1)

In this formula H is the space of all functions that are considered (usually
some Hilbert space with a defined norm, usually L2 norm) , m is the size of the
training data, (X k , Yk ) is the format of the training dat a - X k is a vector of
parameters and Yk is a scalar or a vector of values that somehow depend on the
parameters (in th is paper Yk is the remaining time to crash), V is a loss function
th at penalizes empirical errors. A is a parameter, which controls how much to
regularize and how important is minimizing the empirical risk. Usually, the best
value for A is selected t hrough a cross-validat ion.

Lasso Regularization differs slightly from Tikhonov regularization and the
difference is that the norm on the function is not given by the Hilbert Space
the function is in, but is the L1 norm. The function select ion rule takes the
form:

f( x ) =< (3, x> (2)

where x can be any vector variable of parameters. The vector (3 is derived by:

The functions that Lasso regularization considers are restricted to linear func­
tions but it has the property that the selected weight vector (3 is sparse, i.e. the
majority of its coordinates are zeros. An intuition about this can be observed in
Figure 3:
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Fig. 3. Sparsity of Lasso regularization

At Figure 3 /31 and /32 represent the different coordinates of /3. The sloped
violet line represents space of solutions with equal empirical risk. Then, among
them, one needs to chose the solut ion that minimizes th e regularization penalty.
For Tikhonov regularization (red) the regulari zation penalty is the L2 distance
between a solution and the origin of the coordinate system. Therefore, the best
solution is at a tangent point between a circle centered at the origin and the
sloped line. For Lasso regularization the penalty is the L1 distance between a
solut ion and the origin. Therefore, the best solution is at a tangent point of Ll­
ball (green rhomboid) and the line, which will happ en to be at a some subset of
the axes i. e., therefore, it will be sparse . Similar arguments in higher dimensions
justify the sparsity of Lasso regularization in general.

6 Experimental Setup

Two laptops Dell M1530 with 4GB RAM and 2GHz Core Duo processor have
been used for performing th e experiments and th e Proactive VM-Rejuvenation
Framework has been inst alled on each of them. The operating system was Linux
(Ubunt u 8.04). The virtual machines were created and maintained with VMWare
Workstation 6.5, but this is not necessary - they could be managed with any
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other virtualization software. There was one VM-master and two VM-slaves.
They were communicating to each other via VMCI protocol, but of course other
forms of communication such as TCP-IP are possible. All the software in VM­
master and VM-slaves was self-written or built-in in Ubuntu.

In order to demonstrate the scalability of the proposed Proactive VM­
rejuvenation framework, as shown in Fig 1, it has been has implemented with
a possibility to introduce multiple VM machines, independent of the available
hardware. This approach also demonstrates the minimal hardware requirements.
Still, the Proactive VM-rejuvenation framework can scale horizontally, to many
physical machines. VM-masters and VM-slaves could be replicated multiple
times, if the VM-masters can synchronize their actions , for example with a com­
mon database.

The Managing unit in the VM-master , the Communication units in the VM­
master and VM-slaves, the Probe and a sample Application were self-written
and are in the range of few thousands lines of C code. For the decision rule were
used some freely available libraries of implementations of Lasso regularization.

The Probe collects parameters about a Vvl-slave, combines them in a strictly
defined form and sends the data to the VM-master on a regular interval. In the
experiment performed this interval was set to one second. The form of the data
is the following:

Datapoint:
Memory : 515580 497916 17664 0 17056 268692
Swap: 409616 0 409616
CPU: 52.380001 0.070000 3 .090000 0.260000 0.000000 44.200001

Such datapoint contains information about the memory distribution and CPU
activity.

The Application in the VM-slaves had the capability to produce memory
leaks. Its only task was to accumulate them .

The Communication units were responsible for transmitting data between the
Probe and the Communication unit in the VM-slave and for transmitting the
commands from the Communication unit of the VM-master to the Communica­
tion unit of the VM-slave.

Besides communication with the VM-master, the Communication unit of the
VM-slave is responsible for only executing simple commands like START and STOP
the application.

The data collection per each laptop has been conducted for 63 runs, each of
them consisted of approximately 15-30 minutes of parameter history recorded
every second. That data was aggregated and labeled with a simple self-written
Python script . The Lasso regularization was performed using freely available
implementations of Lasso regularization.

Rejuvenation
For rejuvenation was used a restart of the virtual machine. Another approach
would be to simply restart the process of the application. However, this would
not completely restore the original state of the system when the application was



194 D. Simeonov and D.R. Avresky

started. For example if the application has used the swap space this would not
be cleared after a process restart but would be after a virtual machine restart.
The only way that it can be guaranteed that the system parameters will be the
same at the start of the application is through a virtual machine restart.

7 Results

Figure 4 shows some of the values of the parameters combined in the aggregation
step , change with a respect to the time before crash for one particular run. These
parameters describe the memory distribution, the swap memory distribution (on
the left) and the CPU load distribution (on the right) . These are presented for
one of 30 instances used for the aggregation, correspondingly at time 15 seconds.
The values of the parameters are in parameter units. For example, for memory
parameters the units are KB and for CPU parameters the units are %(percent) .
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Fig. 4. Variation of all parameters over time

Figure 5 shows some additional parameters(the average slopes) that were
calculated for aggregation . .For Figure 5 the values of the parameters are shown
in parameter units per time. For example, for memory parameters the units are
KB/s and for CPU parameters the units are %/s (percent per second).

However, some problems with the probes have been observed in the cases
when a certain level of memory leaks have been reached. Unfortunately, this
holds for all runs and consists of repeating the old system parameters without
a change. It can be observed at figures 4 and 5 as flattening of all parameter
plots approximately 600 seconds before the actual crash. However, this outrage
of the Probe module does not change the effectiveness of the machine learning
method. This is explained later in the paper at Figure 8.

Another specific of Lasso regularization is that the algorithm is not guaranteed
to converge to the global minimum for (3, but may end up with a local minimum
solution . This is due to the fact that Lasso regularization is a convex relaxation
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Fig. 6. Variation of the numberof non-zero parameters with respect to A

of a NP-hard problem. Yet, the solut ion that the algorithm provides is good
enough in the sense that it exhibits important properties such as a sparsity and a
good regression solution. This is illust rated in Figure 6, by showing the number
of the parameters in the sparse solut ion with respect to lambda. The general
trend is to decrease the number of parameters, even though this doesn't happen
strictly monotonous ly. After aggregating the datapoints Lasso regularization was
performed on them, and the weights selected for the parameters for few values
of A are presented in Figure 7. Many of the parameter weights are zeros, which
is expected since t he method provides a sparse solution . The spars ity of the
solution can be adjusted by the value of A.

For example, in the case A = 10, only 5 out of 39 parameters were given high
non-zero weights. All other parameters had weights smaller than 0.01. These
five parameters are shown in Table 1:
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Table 1. Most important parameters after feature selection for A = 10

WeightI
mem_used_slope -0.70
swap_used_slope 0.89
cpu_user_15sec 12.01
cpu_idle_15sec 17.52
cpu_user_30sec 9.12

IParameter name

Weightsof parameier!; sftotl assoregularizalion

"

20

"

t "

o • • •

-,
l'I'lIfft_our l...~. 1oj)I CII'ol_" .*'\.. 1ope "*'l11'llt1Cl _'~ CPW_nc4. ' 5Iec 1IW!l) .... 3OHc CPII."'iII' _3OMc:

"*'\..1IWd_,lope , • • g..',...,. CIl'ol.Id" . "OO4' ....P."'IICI.'!kec CpY_'~"USIK "*'LcecMd.3OIec CPU.OIrd.3OlK

Fig. 1. Selected weights for the parameters after Lasso regularization for severalvalues
of A

Decision Rule
When the weights of the parameters were multiplied to the values of the pa­
rameters at each datapoint and summed the result is a close predictor of the
actual remaining time to crash . For that datapoint, the calculated remaining
time to the crash is incorporated in a decision rule. Figure 8 is an example of
the correspondence between a predicted and actual remaining time on one of
the runs. The training was done over all runs , and the figure presents only one
of the runs . The ground truth is the dashed line called "Actual time" , and the
predicted remaining time for various values of A is described by the other lines
in Figure 8. The predicted times were calculated by using parameter weights, in
the format shown in Figure 7, multiplied to the parameter values in the format
shown in Figures 4 and 5 to obtain time to crash value and then summed up.
This is equivalent to taking the dot product between the weights vector wand
the parameters vector p.

w.p = tpredicted (4)
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The results are presented in Figure 8, which shows that the predicted t ime for all
values of >. is a good approximat ion of the ground trut h. The abscissa shows the
remaining t ime to crash, and the ordinate shows the predicted time in seconds.

Usually, the best value of >. is selected through cross-validation. However, in
this case, anot her property of a good solution is its sparsity. Hence, the value
of lambda can be varied to achieve a small number of parameters, which would
lead to efficiency from implementation point of view. As can be observed in
Figure 8 the quality of the solution doesn't vary greatl y as >. varies. The predicted
remaining times are for values of >. with multiplicat ive difference in the order of
1013 .

Such predictor was used as a decision rule. If the predicted remaining time is
under some safe limit (1000 seconds - more than the minimal predicted t ime),
as in Figure 8, the decision rule is activated and it informs the managing unit
of the VM-master that the corresponding VM-slave needs to be rejuvenated.
The decision rule was hard coded, since all the learning was done off-line, as it
requires the data labeling step of the ML framework, which can be performed
only after the dat a is once collected.

The framework with one V:'1-master and two VM-slaves, with properly set
a decision rule and a bug-free implementation was able to continue changing
the load from one VM-slave to anot her without a server crash. The Proactive
VM-rejuvenation framework with a properly devised decision rule flawlessly was
able to run for a couple of weeks and switch the act ivity of VM-slaves every
15-30 minutes. Additional difficulties to that aim were the varying rejuvenation
t imes. Many times all that was needed for the rejuvenat ion was simply a restart
of the virtual machine. However , in some cases was necessary the OS to perform
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a hard-disk check and this required an additional time to be taken into account
during the rejuvenation process.

8 Conclusion

Proactive VM-rejuvenation framework for selecting critical parameters for de­
tecting anomalies in web servers has been presented in the paper. The ability to
add arbitrary number of backup virtual machines and reliably to predict the re­
maining time to crash with the use of machine learning techniques is described.
An algorithm for a feature selection, based on machine learning for reducing
the complexity and dimensionality of the problem, has been developed. The
framework has been implemented with virtual machines and a machine learn­
ing algorithm has been realized for successfully determining a decision rule for
proactively initiating the system rejuvenation. The proposed framework has been
theoretically justified and experimentally validated . These are real problems for
the Internet today and the future cyber infrastructure. The proposed machine
learning method is general and can be applied for a wide range of anomalies .

9 Future Work

One opportunity for extension is to apply other machine learning techniques
on the top of Lasso Regularization. Such techniques could be Regularized Least
Squares (RLS) or Support Vector Machines (SVM). They could be used with a
non-linear kernel and learn more complicated behavior. This would reduce the
number of false positives and false negatives of the decision rule significantly.

Another opportunity for example is to learn to defend against more than one
type of anomaly. If decision rules against memory leaks and denial of service
attack can be learned, both of them can be used simultaneously. In this case,
whenever any anomaly occurs, the rejuvenation of the VM-slavewill be initiated.

Each virtual machine can implement a simplified version of the proposed
framework that includes the embedded decision rule and the probe for monitor­
ing the parameters in a real time. These virtual machines can be provided to
the clients on demand across the network.
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