
Executing Distributed Applications on
Virtualized Infrastructures Specified with the

VXDL Language and Managed by the
HIPerNET Framework

Guilherme Koslovski", Tram Truong Huu",
Johan Montagnat", and Pascale Vicat-Blanc Prim et '

1 INRIA - University of Lyon
guilherme. koslovski~ens-lyon. fr , pascale .primet~inria .fr

2 University of Nice - 138
tram~polytech .unice .fr

3 CNR8 - 138
j ohan~i3s .unice .fr

Abstract . With th e convergence of computing and communicat ion, and
the expansion of cloud computing, new models and tools are needed
to allow users to define, create, and exploit on-demand virtual infras
tructures within wide area distributed environments . Optimally design
ing customized virtual execut ion-infrast ructure and executing them on a
physical substrat e remains a complex problem. This paper presents th e
VXDL langu age, a language for specifying and describing virtual infras
tructures and the HIPerNET framework to manage them. Based on the
example of a specific biomedical applicat ion and workflow engine, this
pap er illustrates how VXDL enables to specify different custo mized vir
tu al infrast ruct ures and the HIPerNET framework to execute them on
a distributed substrate. The pap er presents experiments of th e deploy
ment and execution of this applicat ion on different virtual infrast ructures
managed by our HlPerNet system. All the experiments are performed on
the Grid '5000 testb ed subst rate .

K eywords: Virtual Infrastructure as a service, resource virtualization,
applicat ion mapp ing, graph embedding problem , workflow language,
topology language.

1 Introduction

The convergence of communication and computat ion portrays a new vision of the
Internet. It is becoming a worldwide cloud increasingly embedding th e compu
tati onal and storage resources th at are able to meet the requirements of emerg
ing applicat ions. This resulting vision of a global facility, that brings togeth er
distributed resources to build large-scale computing environments, recalls and
extends the promising vision of Grid comput ing, enabling both data-intensive
and computing-intensive applications. In this context , the concept of virtual
ization is a powerful abst racti on. It enables an efficient sepa ration between the

D.R. Avresky et a l. (Ed s.) : Cloudcomp 2009 , LNI CST 34, p p . 3-19, 2010 .
© Inst itute for Co mputer Sciences, Social-Informatics a nd Telecom muni ca t ion s Engineering 2010

4 G. Koslovski et al.

service and application layers on one hand and the physical resources layer on
the other hand. The OS-level virtual machines paradigm is becoming a key fea
ture of servers, distributed systems , and grids. It simplifies the management of
resources and offers a greater flexibility in resource usage. Each Virtual Ma
chine (VM) a) provides a confined environment where non-trusted applications
can be run, b) allows establishing limits in hardware-resource access and us
age, through isolation techniques, c) allows adapting the runtime environment
to the application instead of porting the application to the runtime environment
(this enhances application portability) , d) allows using dedicated or optimized
as mechanisms (scheduler, virtual-memory management, network protocol) for
each application, e) enables applications and processes running within a VM to
be managed as a whole. Extending these properties to network resources (links
and equipments) through the concept of "virtual infrastructure" , the abstrac
tion of the hardware enables the creation of multiple, isolated, and protected
organized aggregates on the same set of physical resources by sharing them in
time and space. The virtual infrastructures are logically isolated by virtualiza
tion . The isolation also provides a high security level for each infrastructure.
Moreover, virtualizing routers and switching equipments enables the customiza
tion of packet routing , packet scheduling, and traffic engineering for each virtual
network crossing it.

However, programming applications on large-scale distributed environments
is difficult. Defining the optimal infrastructure to execute them is another issue.
The flexibility offered by virtual infrastructures could make the problem even
more complex. Promising work on workflow has been done in the area of ap
plication development to optimize their usage of distributed environments. This
paper proposes to explore how this work can also benefit to the composition of
virtual infrastructures.

The rest of the paper is structured as follows. In section 2, we define our
model of customized Virtual Private eXecution Infrastructures named VPXI.
To specify these VPXIs we define a description language for VPXI specification
and modeling, Virtual eXecution Description Language, VXDL. Section 3 details
the process for mapping an application on physical resources in a virtualized
infrastructure context. In section 4 we illustrate the application mapping through
an example with the Bronze Standard workflow. In section 5, we develop our
combined network and system virtualization approach embedded in the HIPer
Net software and report the experiments on a real-scale testbed using the medical
image analysis application. Section 6 discusses related works. Finally, conclusions
and perspectives are developed in section 7.

2 The Virtual Private eXecution Infrastructure Concept

2.1 The VPXI Concept

We define the Virtual Private eXecution Infrastructure (VPXI) concept as a
time-limited interconnection of virtual computing resources through a virtual
private overlay network. Ideally, any user of a VPXI has the illusion that he is

Executing Distributed Applications on Virtualized Infrastructures 5

using his own distributed system, while in reality he is using multiple systems,
part of the global system . The resulting virtual instances are kept isolated from
each others. The members of a VPXI have a consistent view of a single private
TCPl IP overlay, independently from the underlying physical topology. A VPXI
can span multiple networks belonging to disparate administrative domains . Users
can join from any location, deploying and using the same TCPl IP applications
they were using on the Internet or their intranet.

A VPXI can be formally represented as a graph in which a vertex is in charge
of active data-processing functions and an edge is in charge of moving the data
between vertices. A VPXI has a life time and can be requested online or reserved
in advance. It is described and submitted as a request by a user. Then, if accepted
by the operating framework, it exists as a descriptor and has an entry in a VPXI
table until its release time . During the activation phase, the VPXI runs in the
data plane and is represented in the control plane of each allocated equipment.

2.2 VXDL: VPXI Description Language

A VPXI specification comprises the recursive description of: a) individual end
resources or resource aggregates (clusters) involved, b) performance attributes
for each resource element (capacity) , c) security attributes, d) commercial at
tributes, e) temporal attributes, f) elementary functions , which can be attributed
to a single resource or a cluster (e.g. request of computing nodes, storage nodes,
visualization nodes, or routing nodes) , g) specific services to be provided by
the resource (software), h) the virtual-network's topology, including the perfor
mance characteristics (typically bandwidth and latency), as well as the security,
commercial, and temporal attributes of the virtual channels. Figure 1 illustrates
this concept, representing a virtual infrastructure composed by the aggregation
of virtual machines interconnected via virtual channels. It shows two virtual
routers (vertices rvA and rvB) which are used to interconnect and perform the
bandwidth control among the other virtual resources (vertices Tv I to 8). The
virtual routers can independently forward the traffic of the different virtual in
frastructures which share the same physical network. Each edge represents a
virtual link (as lvi and Iv2) with different configurations , used to interconnect a
pair of virtual resources.

To enable the specifications and the manipulation of these VPXI entities we
propose the VXDL (Virtual Infrastructure Description Language) [9]. It allows
the description not only of the end resources, but also of the virtual network's
topology, including virtual routers and timeline representation. Implemented
with the XML standard, VXDL helps users and applications to create or change
VPXI specifications". The VXDL grammar is divided in Virtual Resources de
scription, Virtual Network Topology description, and Virtual Timeline descrip
tion. A key aspect of this language is that these descriptions are partially op
tional : it is possible to specify a simple communication infrastructure (a virtual
private overlay network) or a simple aggregate of end ressources without any

1 :'vIore information about VXDL is provided on
http://wvv.ens-lyon .fr/LIP/RESO/Software/vxdl

6 G. Koslovski et al.

(Iv 1)
virtual link
bandwidth min 10Gbps
between trvA port 1. rv B port 1)

(r v A and rv B)
virt ual routers
ports 3
memoryJam min (2GB)

(rv 1 - rv 8)
funct ion: comput ing
size (5. 10)
memoryJam min (1GB)

(Iv 2)
virtual links
bandwidth min 5Gbps
between f(rv A port 2. rv 5). trv A port 3. r v 71.
trv B port 2. rv 3). trv B port 3. rv 4)J

Fig . 1. Example of a VPXI composition using graph representation

network topology description (a virtual cluster or grid). Below, we detail the key
aspects of this language.

Virtual Resources Description: This part of VXDL grammar enables users
and applications to describe, in a simple and abst ract way, all the required
end hosts and host groups. VXDL allows the basic resource parametrization
(e.g. minimum and maximum acceptable values for RAM memory and CPU
frequency). An important feature of VXDL is th at it proposes cross-layer pa
rameters. With the specificat ion of anchor and the number of virtual ma chines
allocated per physical host users can directly interact with lower layers and trans
mit applicat ion-specific information. The anchor parameters corresponds to a
physical allocation const raint of a VPXL Indeed, in theory a VPXI can be al
located anywhere in a virtualized substrate, but sometimes it is desirable th at
a virtual end host (or group) be positioned in a given physical location (e.g. a
site or a machine - URL, IP) for an applicat ion-specific reason. On the other
hand , in a virtualized subst rate , multiple virt ual machines can be allocated in
the same physical host , sharing the real resources. VXDL enables the definition
of a maximum number of virtual machines that must be allocated in a physical
host , enabling users to interact directly with the allocation algorithm.

Virtual Network Topology Description: VXDL brings two original aspects
within the network's topology description : I) the joined specificat ion of network
elements and computing elements and II) the link-organization concept , which
permits a simple and abst ract description of complex structures. Links can define
connect ions between end hosts, between end hosts and groups, inside groups, be
tween groups and VXrouters , and between VXrouters. In VXDL grammar, the
definition of source - destinat ion pairs for each link is proposed. The same link
definition can be applied to different pairs , simplifying the specificat ion of com
plex infrastructures. For example, links used to interconnect all components of
an homogeneous group , as a cluster , can all be defined in a same link description.
Each link can be defined by attributes such as latency, bandwidth, and direction.
Lat ency and bandwidth can be defined by the maximum and minimum values.

Executing Distributed Applications on Virtualized Infrastructures 7

Virtual Timeline Description: Any VPXI can be permanent, semi-permanent,
or temporary. The VPXI are allocated for a defined lifetime in time slots. Time
slot duration is specificto the substrate-management framework and consequently
this parameter is configured by the manager of the environment. Often the VPXI
components are not used simultaneously or all along the VPXI lifetime. Thus, the
specification of an internal timeline for each VPXI can help optimizing the allo
cation , scheduling, and provisioning processes. Periods are delimited by temporal
marks. A period can start after the end of another period or after an event.

2.3 VPXI Embedding Problem

Using the VXDL language, users can specify the desirable configuration and
network composition of a VPXI. A VPXI request must then be interpreted,
and the corresponding virtual resources have to be reserved and provisioned on
available physical resources. This virtual-infrastructure allocation corresponds
to a classical graph embedding problem, where the graph describing the virtual
infrastructure must be mapped the physical substrate graph.

Virtual and physical graphs are of the form G(V,E) where vertices V are a set of
resources interconnected by a set of links (edges represented by E) . Each resource
or link can have a capacity represented by Cv and cp for virtual and physical com
ponents respectively. Capacities can be interpreted as configuration of bandwidth
or latency for links, and as memory size or CPU speed for resources/nodes. The
information about virtual resources allocation are represented in a map notation.
Each virtual component allocated in a physical one is represented as a line of map,
containing the reserved capacity (c,) and the utilization period (Lit) . This time
notation enables the representation of different time periods in the same VPXI,
where virtual resources and links can be used in disjoined time windows, in accor
dance with the timeline description proposed by VXDL.

This embedding problem is extremely challenging and has been proved to be
NP-hard. Embedding heuristics taking into account the substrate characteristics
to simplify the allocation have been proposed [12,13] . These proposals aim at
maximizing the resources usage or at minimizing the maximum link load. To
complement these works, we examine the virtual infrastructure description and
embedding problem from the application perspective.

3 Application-Mapping Principles

In our model, the application-mapping process is separated in three steps:

I) workflow generation: the workflow is generated using information extracted
from the application, such as benchmarks results, data input description, data
transfer in each module, and the number of nodes required to perform a satis
factory execution.

II) workflow translation into VXDL: taking into account the application's
requirements (RAM configuration, CPU speed, and storage size), users can de
velop a VXDL description, asking for the desirable configuration of the VPXI.

8 G. Koslovski et al.

At this point users can also declare that some components must be allocated in
a specific location as well as define the virt ual network topology specifying the
proximity (latency configurat ion) of the components and the needed bandwidth.

III) VPXI allocation: in this step VPXI management framework will allo
cate the virtual components respecting the configurat ion expressed by the user
(such as parametrizat ions and time periods organizat ion). In a second phase, the
software configurat ion (a S, programming and communication tools), extracted
directly from the application and described using VXDL, will be deployed within
the virtual machines that compose the VPXI.

3.1 Workflow Language

Complex applications able to exploit large scale distributed environments are
generally described with workflows. These workflows are interpreted by engines
th at convert the description of work in execut ion scripts.

Several workflow languages have been proposed in the literature. On grid
based infrastructures, Directed Acyclic Graph (DAG)-based languages such as
the MA-DAG language, part of the DIET middleware [3], have often been used.
They provide a explicit , stat ic graph of all computing tasks to be performed.
To ease definition of grid applications with a complex logic to be represented,
more abstract language have been introduced. For instance, Scufl was introduced
within the myGrid project- to present dat a flows enacted through the Taverna
workflow engine [10]. It is one of the first grid-oriented data flow languages that
focuses on the applicat ion data flow rather th an on the generated graph of tasks.
The GWENDIA language" considered in this paper is a dat a-flow oriented lan
guage th at aims at easing the description of the complex application data flows
from a user point of view while ensuring good applicat ion performances and grid
resources usage. An example of a graphic representation of workflow description
is given in figure 2. In this figure Floating and Reference are representing data
unit to be processed and CrestLines, CrestMatch, PFMatchICP, PFRegister,
Yasmina and Baladin are processing units. Floating and Reference represent
groups of data items to be processed: processing units will be invoked as many
time as needed to process all data items received. The user describing the appli
cat ion focus on the dat a processing logic rather than on the execution schedule.
The structural application workflow is t ransformed into an execut ion schedule
dynamically, while the workflow engine is being executed.

GWENDIA is represented in XML using the tags and syntax defined below:

Types: values flowing through the workflow are typed. Basic types are integer,
double , string and file .

Processors: a processor is a data production unit . A regular processor invokes
a service through a known interface. Special processors are workflow input (a
processor with no inbound connectivity, delivering a list of externally defined

2 myGrid UK e-Science project: \MI . mygrid .org
3 GWENDIA is defined in the context of the ANR-06-MDCA-009 GWENDIA project:

http ://gwendia .polytech .unice .fr

Executing Distributed Applications on Virtualized Infrastructures 9

Fig. 2. Bronze Standard workflow

data values), sink (a processor with no outbound connectivity, receiving some
workflowoutput) and constant (a processor delivering a single, constant value) .

Processor ports: processor input and output ports are named and declared. A
port may be an input «in> tag), an output «out> tag) or both an input /output
value « i nout > tag) . The input ports also define iteration strategies that cont rol
the number of invocation of the processor as a function of its inputs.

A simple example is given below:
< w o r k fi o w>

< i u t e rfac e>
<c o n s t a nt n arne="pa r arneter " t yp e=" i nt er g er " >

< v a l u e > 50</ v a lu e>
< /con s t.n n t>
< s o urc e n e rneee" r e a ls " t yp e=" doubl e " / >
< si n k nerneeev r e s u Lt a " t yp e="fil e " / >

< / i n terfa c e>
< p r oc e s sor s>

<p ro c e s s or na rn e=" d o ck i ng " t y p e=" w e b s e r v i c e " >
< w s d l ur 1=" http : / /lo e a l h o st / d o ckin g . ws d l " ope ra t i o n=" d o ck " / >
< i n n arne=" pararn" t yp e=" inte ge r " / >
< :i n n arne=" input " ty pe= " fi 1 e " />
< o u t ne rueee" r e sul t " t ype="doubl e " / >
< j t e re t i o ns t r a togy >

<l c r o s s >
<po r t narne=" p a r a m " / >
< p o r t n arne=" inp ut .. / >
< / el"o s s>

< / i t e ra t. Lo n s t s-ate g y >
< /ploO Ce S :5o r>
< p r o c e s s o r n e.rueee" s ta t i. s t i c e. I t es t" ty p e =" di et " >

< s e r v i c e path=" w e i g h t e d a v e r a g e " />
< i n nemeeev w e Lg h t s " t yp e::o:::::"d ouble " / >
< ~ n narne=" v a l u es " t yp e=" li st (i n t e g e r) " / >
< i n ne rneee" co e ff i cient " ty p e = " d o u b l e " />
< o u t n e m eee" res u It " t ype=" fi l e " />
<i t e rat io n st rat eg y >

< cr os s>
< po r t narne=" coeff i cie nt " / >
<mat.eh t a g=" pat i e nt " >

< p o r t n a rne="v a l ue s "/>
< p o r t nalTle=" w e i ght s " / >

10 G. Koslovski et al.

< /ma t c h>
</ c r oss>

</ Lt e r e t. i o ri s t r a t e lity >
</p r o c e s s o r >

</p r o c (} s ~o l: s>

</woi-kfl o w>

Data link: a data link is a simple connect ion between a processor output port
and a processor input port as exemplified below:
<lin k :3>

< li n k f'r-o m ee" r e e l e " t o =" s t a. t is t ica l t e s t : co e f f i c ie n t " / >
< li n k f'r-o rn ee v cl o c k Ln g r r e sult " t t"J= " s t a t i s t i c a l t es t : weig h ts " / >
< li n k f rOl'n = " s t a t i s t i c a l t e s t: r e sult " t o = " re s u l ts " / >

</ lin k s>

Workflow managers are associated with these workflow language and are in
charge of optimizing the execution of workflows. For example, MOTEUR [6]
is a data-intensive grid-interfaced workflow manager. MOTEUR can enact a
workflow represented in Scufl language or in GWENDIA language and submits
the workflow tasks to a grid infrastructure. To optimize the execution, it enables
three levels of parallelism: workflow parallelism, data parallelism and pipelining.

3.2 Workflow Translation into VXDL

A workflow description represents the input/output data, the processors (a data
processing module), and the relationship between an application's processors. In
our model, the workflow description will be translated in a VPXI description ,
specified in VXDL. Generally, to execute a complex application in a virtualized
infrastructure, one has to consider that a middleware has to supervise the exe
cution of the different tasks. In our example, the workflow engine (MOTEUR)
and a specific task scheduler are executed for every application on independent
computing resources. Input data and the intermediate results also require the
presence of a file server. Therefore the VXDL description of any VPXI execut
ing an application controled by the MOTEUR engine will contain a generic part
describing these 3 nodes.

The variable part of the VPXI description directly depends on the information
extracted from the workflow such as input data, the number of processors, and
the links between the processors. The computation time, the data volume and
the number of invocations of each module is another information that can be
extracted from the workflow. Given p the number of processors (modules) of an
application, the user can naively request n virtual computing resource and evenly
split the set of resources among the workflow processors. Each module therefore
has nip resources. This will of course be sub-optimal since the processors have
different execution times. A first variant of this naive strategy could take into
account extra information on the benchmarked execution time of each module.

4 Medical Application Example

Let us illustrate this VPXI description and embedding problem through a com
plex, real-scale medical-image analysis application known as bronze standard.

The bronze standard [7] technique tackles the difficult problem of validat
ing procedures for medical-image analysis. As there is usually no reference, or

Executing Distributed Applications on Virtu alized Infrastructures 11

gold standard, to validate the result of the computation in the field of medical
image processing, it is very difficult to objectively assess the results' quality. The
statistical analysis of images enables the quanti tative measurement of computa
tion errors. The bronze sta ndard technique statistica lly quantifies the maximal
error resulting from widely used imag e registrat ion algorithms. The larger the
sample image database and the number of registration algorithms to compare
with, the most accurate the method. This procedure is therefore very scalable
and it requires to compose a complex application workflow including different
registrat ion-computation services with data transfer inter-dependencies.

Bronze standard's workflow is enacted with the data-intensive grid-interfaced
MOTEUR workflow manager [6] designed to optimize t he execut ion of data
parallel flows. It submits the workflow tasks to the VPXI infrastructur e through
the DIET middleware [3], a scalable grid scheduler based on a hierarchy of agents
communicating through CORBA.

The est imated algorithm performance is valid for a typical dat abase image.
In the experiments reported below, we use a clinical dat abase of 32 pairs of
patient images to be registered by the different algorithms involved in the work
flow. For each run , the processing of the complete image dat abase results in the
generation of approximate ly 200 comput ing tasks. As illustr ated in figure 2, the
workflow of the application has a completely deterministic pattern. All proces
sors of this application have the same number of invocations. The execution time
and the data volume transferred of each processor have been mesured in initial
microbenchmarks reported in table 1.

Table 1. Execution time and processed data volume for each module of bronze
standard

Module ~Execution timelData volumeI
CrestLines 35s 32MB
CrestMatch 4s 36MB

PFMatchICP 14s 1O!l1B
PFRegister Is 0.5~lB

Yasmina 62s 22MB
Baladin 250s 25MB

Let us now consider a request for a VPXI composed of 35 nodes to execute
Bronze Standard's workflow. Three nodes will be dedicated to the generic part:
1 node for MOTEUR, 1 node for the middleware server and 1 node for the
database server. Th e 32 nodes left are distributed and allocated proportionally
to the execution time of the workflow processors : 3 nodes for CrestLines, 1 node
for Crest Match, 1 node for PFMatchIP, 1 node for PFRegister , 22 nodes for
Baladin , and 4 nodes for Yasmina. Then , for this same comput ing-resources
set, several variants of VPXI descriptions with different network topologies
can be expressed. We exemplify developing two different VPXI descriptions.

12 G. Koslovski et al.

Fig. 3. VPXI description of the bronze standard's workflow

The listing below presents a VXDL description of a virtual node (MOTEUR)
and a computing cluster (Baladin).

<vxd l : r e s o u r c e >
<vxdl : Id > M o t e u r < / v x d l: i d >
<vxd l r r -am Mem o ey '>

<vxdl: m i.n.>4< / v x dl : min>
<vxdl: mintJ nit >GB</vx d l : m i n U n it >

</ vxdl : ram l'vl elnory>
</v xd l: r e s o ur c e >
<v xdl : gr o u p >

<vx dl : i d >Clust er_B al ad in </vxd l : id>
< vxdl : fun cti o n>

<vxdJ : Id > c o m p u tl n g < / v x d l: id>
</vxd l: f u n c e ion>
<vxdl : s i z e >

< vx d l: m in> 22</vxdl : min>
</ vxdl: s i ze >
<vxdl : r e s o u r c e js

<vxdl: id> N o de _C l uste r_ B a la dl n </vxdl: id>
<vxd1 r r-e m M emoey'>

<vxdl : rnln>2</vxd l : 111.in>
<vxdl : rni nUnlt>GB</vx dl : mi nlJ nit>

<Iv X' d I : r e m M e m oryj»
</v xd l : r e sour c e>

</vxd] : g r o u p >

Figure 3 illustrates th e description of a VPXI using graphs. All components
and network links required to execute bronze standard's workflow are repre
sented. We developed two descriptions considering this scenario: in VPXI 1 the
network is composed by two links typ e, one with low latency intra cluster and
t he other one with a maximum latency of 10 ms to interconnect the clusters.
In VPXI 2 the network comprises three virtual links: one with a low intra
cluster latency (maximum latency of 0.200 ms), another one with a latency of
10 ms interconnecting the components except one asking for a maximum la
tency of 0.200 ms to interconnect CrestMatch (dar k blue) with the components

Executing Distributed Applications on Virtualized Infrastructures 13

VPXI 1 • Allocation I
Site 1 Site 2

Moleur CrestMatch dal ~ base Cresttmes

IB'·11 IB'·2 1 IE] rp 7 118 '0 4 1
Middleware PfRegister PfMalchlCP 18 '05 11G2J r·JI 18 r• 9 1- 1[;] ,08 1

1~'06 1
Yasmina Baladin

[EI r. 321."I~· 3~ r. J~ 1 ~ ...18 .0311

VPXI 2 - Allocat ion III
Site 1

VPXI 1 • Allocation II
Site 1

Site 2

Mlddleware

lB '031

Moleur

IBro1 1

CrestMalch
PfRegister

IB lf],.,,2

Mote ur CrestLines CreSlMatch PfReglsler

IE] roll IE) ,04 1 [B '02 1 18 ,· 91
Mlddleware [~ 'o sl Baladin

[B r03 1
- 18 r. lol..·10 r031118 r06 1

PFMatchlCP Yasmina

IE] '08 1 I~ 'o n j" · 10 '0351
data base

IE] r071

VPXI 2 • Allocation IV
Site 1 Site 2

Moteur CrestUnes

IB'·II 1[,. 4J r.4 1

Middleware 18 ro 5
1

IB '03 1 IG@ ro 6 I
PFMalchlCP

IE!] ,081

Yasmina

~0
ro21

,.,34 0
rp 22

G Virtua l node

G Physical node.

D-c=J Distributed resources

F ig . 4. Allocations of descriptions VPXI-l and VPXI-2

14 G. Koslovski et al.

PFMatchICP, Yasmina and Baladin (blue in the figure). Listing below shows
the VXDL description of this communication-intensive link.
<vx dl : l i n k >

<vx dl : id>Com m u nic a t l on Ln e e n e Lv e </vx dl : t d '>
<vxdl: di e e c t 10 n > bi </vxd l : d t r e c t i on >
< vxdl: latency>

<v xdl : m a x> O. 200<1 v x d l : max>
< v x d l : max U nit>m s</vxdl: m axUnit >

</v x.dl : t e e e n cy js
<vxd l : pai r>

< vxd l: so u rce > C l u s t e r _C r e s t M a t c h </vx d l : s our ce>
< vxd l : d est ination> C l us te r_ B a la d i n</vxd J : d e s t t n a t t o n c

</vxd l : pai r>
<vxdl: pai r>

<vxdl : s o u rce > C l u s t e r _C r e s t M a t c h </ vxd l: source>
<vxdJ : d c e e t n e t f o n > C l u e ter_ Y a e m l na</vxdJ: d e s t in a t i o n >

</vxd l : pair>
<vxd l : pa ir>

<vxd l : s o u rc e > C l u s t e r _ C r e s t M a t c h </vxd l: sour ce>
<vxdl : d c e tin a t 10 n > C lue te r _P F M a tc h I C P </vxd 1 : de g t i n a t i o n >

</vx d l: p ai l' >
<vx d l : p ai r>

< vxdl : s o u r c e > D a t a b a s c < / v x d l : s o u rce >
<v xdl : d estin at i on>C l u t:lter_ Cre!:l t M a tc h </vxd J: d e stina t i on>

</ vxdl : p a i l' >
</vx d l : link>

Let us now illustrate how each VPXI description can be embedded in a physical
substrate. We propose two different solutions for both VPXI, which correspond to
four different physical allocat ions as represented in figure 4. In this example, Site
1 and Site 2 represent two geographically-dist ributed-resources sets.

In VPXI 1 - Allocation I , intr a-cluster link specification enables the al
location of loosely connected resources. In this embedding solution, 1 virt ual
machine per each physical node is allocat ed.

In VPXI 1 - Allocation II each physical node in clusters CrestMatch,
PFRegister , Yasmina, and Baladin are allocated 2 virt ual machines.

The VPXI 2 - Allocation III respects the required interconnection allocat
ing corresponding resources in the same physical set of resources (such as a site
in a grid). This embedding solution explores the allocat ion of 1 virt ual machine
per physical node.

VPXI 2 - Allocation IV explores the same physical components as Alloca
tion III but allocates 2 virtual machines per physical node in the CrestMatch,
PFRegister , Yasmina, and Baladin clusters.

5 Experiments in Grid'5000

To have a better insight on the influence of VPXI description, we deploy different
virtual infrastructures for execut ing the proposed workflow in the Grid '5000
physical subst rate managed and operated by the HIPerNET framework.

5.1 HIPerNet Framework and Grid'5000 Substrate

The HIPerN'ET software" [11] aims to provide a framework to build and manage
private, dynamic, predictable and large-scale virtual computing environments,
that high-end challenging applications, like biomedical or bioinformatic applica
t ions, can use with traditional APl s: standard POSIX calls, sockets and Message

4 http :/ /www.ens-lyon.fr/LP / RESO/software/ HIPerNET

Executing Distributed Applicati ons on Virtualized Infrastructures 15

Passing (MPI, OpenMP) communicat ion libraries. With this framwork, a user
preempt and interconnect virtually, for a given t imeframe, a pool of virtual re
sources from a dist ributed physical subst rate in order to execute his application.
The originality of HIPerNet is to combine system and networking virt ualiza
t ion technologies with crypto -based security, bandwidth sharing and advance
reservation mechanisms.

The HIPerNet subst rate is transparent to all types of upper layers: upper
layer proto cols (e.g. TCP, UDP), APIs (e.g. sockets), middleware (e.g. Globus,
Diet), applicat ions, services and users. Hence, the HIPerNet model maintains
backward compatibility with existing APIs, Middlewares and Applications which
were designed for UNIX and TCP l IP APIs. Therefore, users do not need to learn
new tools, developers do not need to port applicat ions, legacy user authentication
can still be used to enroll a user into a VPXI.

The HIPerNet framework aims at partitionning a distr ibuted physical infras
tructure (computers, disks, networks) into dedicated virtual private computing
environment dynamically composed. When a new machine joins the physical
resource set, HIPerNet prepares its operating system to enable several virt ual
machines (VMs) to be instantiated dynamically when required. This set of po
tentia l virtual machines is called an HIPerSpace and it is represented in the
HIPerSpace Database. The HIPerSpace is the only entity that see the physical
ent ities. A resource, volunteer to join the resource pool, is automatically init i
ated and registered in the HIPerSpace database. The discovery of all the devices
of the physical node is also automatic. An image of the specific HIPerNet op
erating system is deployed on it. In our current HIPerNet implementation, the
operating system image contains basically the Xen Hypervisor and its domain of
administration called domain 0 (Dom 0). The HIPerSpace registrar (Operational
HIPerVisor) collects and stores persistently data and manages accounts (e.g., the
authent ication database). It is therefore hosted by a physical machine outside
of the HIPerSpace itself. For the sake of robustness and scalability, HIPerSpace
registr ar can be replicated or even distributed.

We run the application within several virtual infrastructures created and man
aged by our HIPerl\et software within the Grid '5000 testb ed[4J. Grid '5000 en
ables user to request, reconfigure and access physical machines belonging to
9 sites distributed in France. In our experiment , we reserve several Grid'5000
nodes to compose a pool of physical resources that we initialize to form an
HIPerSpace. To instanciate an HIPerSpace, specific tools provided by the hosted
Grid are used. This is the only part aware of the physical infrast ructure of the
HIPerNet Software. All the other parts are independant of the physical resources
because they use them indirectly through the services provided by HIPerN'et. In
Grid '5000, the HIPerSpace appears like a set of ordinary jobs scheduled by OAR
with the use of a specific operating system image deployed by kadeploy.

5.2 Med ica l Imaging Application Deployment on the Testbed

For testing VPXls, a system image containing the operating system based on
a standard Linux distribut ion Debian Etch with a kernel version 2.6.18-8 for

16 G. Koslovski et al.

AMD64, t he domain-specific image processing services and the middleware com
ponents (MOTEUR and DIET) was created. The experiments on the VPXIs
described in the section 4 were performed. In each experiment, we repeated
the application 10 t imes to measure the average and standard deviation of the
application makespan, the data t ransfer and task execution t ime. The physical
infrastructure is reserved on the Grid '5000 clusters: capricorne (Lyon), bordemer
(Bordeaux) and azur (Sophia) which CPUs are 2.0 GHz dual-cores Opterons.
The distance between clusters is 500km and they are connected th rough lOGbps
links. Each VPXI is composed of 35 nodes divided in generic and variable part :
3 nodes are dedicated to generic part (MOTEUR, DIET , file server) using 1
CPU per node and the remaining 32 nodes of the variable part are allocated
dependently on the VPXIs (VPXI 1 - Allocation I and VPXI 2 - Allocation III
used 1 CPU per node while VPXl l - Allocation II and VPXI 2 - Allocation IV
used 1 CPU core per node).

Coallocating resources on one grid site: the applicat ion's makespan on the
VPXI 2 - Allocation III and VPXI 2 - Allocation IV is llmin 44s (±49s) and
12min 3s (±5 0s) respectively. This corresponds to a +3.8% makespan increase,
due to the execution overhead when there are two virtual machines collocated
on the same physical resource. Indeed, we present in the table 2 t he average
execution t ime of application services on the VPXI 2 - Allocations III and IV.
We can observe that the average execution overhead is 5.17% (10.53% in the
worst case and 1.28% in the best case).

Table 2. Executi on time on VP XI 2 - Allocations III and IV and 4

I Services II Allocat ion III IAllocati on IV Ivariationl

CrestLines 34.12 ± 0.34 36.84 ± 5.78 + 7.97%
CrestMatch 3.61 ± 0.48 3.99 ± 0.63 + 10.53%
PF~latchICF 11.93 ± 2.76 12.75 ± 5.35 +6.87%
PFRegist er 0.78 ± 0.18 0.79 ± 0.18 + 1.28%

Yasmina 59.72 ± 14.08 61.53 ± 13.98 +3.03%
Baladin 244.68 ± 16.68 247.99 ± 19.51 + 1.35%

Resources distributed over 2 sites: when porting the applicat ion from a
local infrast ructure to a large scale infrastructure, the data tr ansfer increases.
Table 3 presents the dat a t ransfer t ime (s) of the application services on VPXI 2
- Allocation IV (local) and VPXll - Allocation II (distributed over 2 sites). The
measured overhead is 150% in the worst case. Conversely, some local transfers
may be slight ly reduced. In the case of our application however, this overhead
has little impact on the applicat ion makespan since it is compensated for by the
parallel dat a t ransfer and computat ions. Indeed, the makespan is 12min (±12 s)
and 12min l l s (±2 0s) on VPXI 1 - Allocation I and VPXI 1 - Allocation II
respectively, very similar to the performance of VPXI 2 - Allocation IV.

Resources distributed over 3 sit es: furth er dist ributing comput ation al
resources causes an additional increase of the data-transfer overheads. An

Executing Distributed Applications on Virtualized Infrastructures 17

CrestLines 2 ± 0.45 3.01 ± 1.6 +50.5%
CrestMatch 1.99 ± 0.31 1.83 ± 0.36 -8.04%

PFMatchICP 1.3 ± 0.4 3.25 ± 0.13 + 150%
PFRegister 0.51 ± 0.23 0.43 ± 0.09 -15.69%

Yasmina 1.19 ± 0.27 1.16 ± 0.21 -2.52%
Baladin 1.17 ± 0.38 1.81 ± 1.03 +54.7%

Table 3. Data transfer time on the local VPXI 2 - Allocation IV and large scale VPXI
1 - Allocation II infrastructure

Services ~Allo cation IVIAllocation IIIvariationI

addit ional experiment with VPXll - Allocation II t he generic part of which is
located in Lyon while th e variable part is randoml y distributed in Lyon, Bor
deaux and Sophia leads to a makespan of 12min 13s (± 30s) with a dat a-transfer
overhead of 176% in th e worst case.

6 Related Work

In thi s section, we briefly describe related works which explore a virtual- infras
tructure composition on distributed resources, as well as th e mapping process.

In [8] the aut hors propose the use of virtual grids to simplify application
scheduling. Their descriptive language, vgDL, enables users to specify an initial
description of the desirable resources, resulting in a pre-selected virtual grid cor
responding to a simple vgDL description. vgDL proposes three aggregat ion types
to specify the interconnect ion network: LooseBag, TightB ag and Cluster. The
approach proposed in VXDL is more comprehensive and allows the definition of
the infrast ruct ure's shape through the description and configuration of virtual
links.

The approach of cont rolled virtual network infrastruct ures, running in par
allel over a shared physical network is an emerging idea offering a variety of
new features for the network . Cabo [5] proposes to exploit virtual networks for
Internet Service Providers, distinguishing th em from the physical infrastructure
providers, and giving th em end-to-end cont rol. HIPer NET shares the same vision
but focuses more on distr ibut ed comput ing application and proposes a language
to express the infrast ructure requirements in capacity, time, and space.

In [2], the authors propose VINI, a virt ual network infrast ructure that allows
severa l virtual networks to share a single physical infrastructure, in a similar way
to HIPerNET . VINI makes th e network t ransparent to the user, representing
each component of the network. This being one of our main interests, HIPer
NET provides a language, VXDL, to specify the top ology of those components.
The GENI proj ect [1] aims to build a shared infrastructure for hosting multiple
types of network experiments . VXDL can help in the description of slices and
HIPerNET is an orchest ration framework that suits GENI's requirements .

18 G. Koslovski et at.

7 Conclusion and Perspectives

This paper proposed the VXDL language to specify virtual infrastructures and
the HIPerNET framework to deploy and execute them . It illustrated the usage
of these combined tools by a real application. In particular it developed the
process of translating an applicaton's workflow into a VXDL description of a
virtual private execution-infrastructure. This paper detailed the description of
several virtual infrastructures for executing the same medical applications that
require a high quality of service and a scalable infrastructure. Experimental
results of the deployment and execution of this application in different virtual
infrastructures using the HIPerNET framework within the Grid'5000 substrate
assess the pertinence of the VXDL language and of the HIPerNET framework.
Based on these promising results, our future works will explore an approach to
automate the translation of the workflow in a VXDL description , with the aim of
capitalising on the expertise of application and workflow developers to ease the
embedding process while improving end-user satisfaction as wellas infrastructure
usage.

Acknowledgments

This work has been funded by the ANR CIS HIPCAL grant (contract ANR06
CIS-005), the French ministry of Education and Research, INRIA, and CNRS,
via ACI GRID's Grid '5000 project and Aladdin ADT.

References

1. Geni design principles . Computer 39(9), 102-105 (2006)
2. Bavier, A., Feamster, N., Huang , M., Peterson, L., Rexford , J.: VINI Veritas : Real

istic and Controlled Network Experimentation. ACM SIGCOMM Computer Com
munication Review (CCR) 36(4), 3-14 (2006)

3. Caron, E., Desprez, F .: DIET: A Scalable Toolbox to Build Network Enabled
Servers on the Grid . Int . Journal of High Performance Computing Applica
tions 20(3), 335-352 (2006)

4. Cappello , F ., Primet , P., et al.: Grid 5000: A large scale and highly reconfigurable
grid experimental testbed . In: GRID 2005: Proceedings of the 6th IEEE/ ACM
International Workshop on Grid Computing, pp . 99-106 . IEEE Computer Society,
Los Alamitos (2005)

5. Feamster, N., Gao, L. , Rexford , J .: How to lease the internet in your spare time.
SIGCOMM Comput. Commun . Rev. 37(1), 61-64 (2007)

6. Glatard, T ., Montagnat, J ., Lingrand, D., Pennec, X.: Flexible and efficient work
flow deployement of data-intensive applications on grids with MOTEUR. Int . Jour
nal of High Performance Computing and Applications (UHPCA) 22(3), 347-360
(2008)

7. Glatard , T ., Pennec , X., Montagnat, J .: Performance evaluation of grid-enabled reg
istration algorithms using bronze-standards. In : Larsen, R., Nielsen, M., Sporring,
J . (eds.) MICCAI 2006. LKCS, vol. 4191, pp . 152-160 . Springer, Heidelberg (2006)

Executing Distributed Applications on Virtualized Infrastructures 19

8. Huang, R., Casanova, H., Chien, A.A.: Using virtual grids to simplify application
scheduling. In : 20th International Parallel and Distributed Processing Symposium ,
IPDPS 2006, April 2006, p. 10 (2006)

9. Koslovski, G., Primet, P.V.-B., Charao, A.S.: VXDL: Virtual Resources and Inter
connection Networks Description Language. In: GridNets 2008 (October 2008)

10. Oinn , T ., Li, P., Kell, D.B., Goble, C., Gooderis, A., Greenwood, M., Hull, D.,
Stevens, R., Turi, D., Zhao, J .: Taverna/myGrid: Aligning a WorkflowSystem with
the Life Sciences Community, ch. 19, pp. 300-319. Springer , Heidelberg (2007)

11. Primet , P.V.-B., Gelas, J.-P., Mornard, 0 ., Koslovski, G., Roca, V., Giraud, L.,
Montagnat, J., Huu, T.T.: A scalable security model for enabling dynamic virtual
private execution infrastructures on the internet. In: IEEE International Confer
ence on Cluster Computing and the Grid CCGrid 2009, Shanghai (May 2009)

12. Yu, M., Yi, Y., Rexford, J. , Chiang , M.: Rethinking virtual network embedding :
substrate support for path splitting and migration . SIGCOMM Comput. Commun.
Rev. 38(2), 17-29 (2008)

13. Zhu, Y., Ammar , M.: Algorithms for assigning substrate network resources to vir
tual network components. In: INFOCOM 2006. 25th IEEE International Confer
ence on Computer Communications. Proceedings, April 2006, pp . 1-12 (2006)

	Executing Distributed Applications on Virtualized Infrastructures Specified with the VXDL Language and Managed by the HIPer NET Framework
	1 Introduction
	2 The Virtual Private eXecution Infrastructure Concept
	2.1 The VPXI Concept
	2.2 VXDL: VPXI Description Language
	2.3 VPXI Embedding Problem

	3 Application-Mapping Principles
	3.1 Workflow Language
	3.2 Workflow Translation into VXDL

	4 Medical Application Example
	5 Experiments in Grid'5000
	5.1 HIPerNet Framework and Grid'5000 Substrate
	5.2 Medical Imaging Application Deployment on the Testbed

	6 Related Work
	7 Conclusion and Perspectives
	References

