
A Framework for Time-Controlled and Portable

WSN Applications

Anthony Schoofs1, Marc Aoun2, Peter van der Stok2, Julien Catalano3,
Ramon Serna Oliver4, and Gerhard Fohler4

1 CLARITY: Centre for Sensor Web Technologies, Dublin, Ireland
anthony.schoofs@ucdconnect.ie

2 Philips Research, Eindhoven, The Netherlands
{marc.aoun,peter.van.der.stok}@philips.com

3 Enensys Technologies, Rennes, France
julien.catalano@enensys.com

4 University of Kaiserslautern, Kaiserslautern, Germany
{serna oliver,fohler}@eit.uni-kl.de

Abstract. Body sensor network applications require a large amount of
data to be communicated over radio frequency. The radio transceiver is
typically the largest source of power dissipation; improvements on en-
ergy consumption can thus be achieved by enabling on-node processing
to reduce the number of packets to be transmitted. On-node process-
ing is facilitated by a timely control over process execution to sequence
operations on data; yet, the latter must be enabled while keeping high-
level software abstracted from both underlying software and hardware
intricacies to accommodate portability to the wide range of hardware
and software platforms. We investigated the challenges of implement-
ing software services for on-node processing and devised constructs and
system abstractions that integrate applications, drivers, time synchro-
nization and MAC functionality into a system software which presents
limited dependency between components and enables timely control of
processes. We support our claims with a performance evaluation of the
software tools implemented within the FreeRTOS micro-kernel.

Keywords: Wireless sensor networks, portability, temporal control.

1 Introduction

The use of low-cost and intelligent physiological sensor nodes, capable of sensing,
processing, and communicating one or more vital signs to a monitoring station
is the next step for health monitoring. Wearable health monitoring systems can
closely monitor changes and provide feedback to either the remote clinician or the
patient himself about life-threatening alerts, as well as to maintain an optimal
health status. Because of the scarce resources available on the nodes, achieving
both accurate health monitoring and long-life node activity is rendered difficult.
Indeed, accurate health monitoring requires continuous acquisition and reasoning
on sensor data. A stroke rehabilitation system is an example of sensor-based

N. Komninos (Ed.): SENSAPPEAL 2009, LNICST 29, pp. 126–144, 2010.
c© Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering 2010

A Framework for Time-Controlled and Portable WSN Applications 127

system where the amount of data and frequency at which they are transmitted
is high [5]. The direct consequence is the intensive use of the Radio Frequency
(RF) transceiver, which dominates the power consumption of a node. Power
consumption can be reduced by enabling reasoning and processing of data on
the node; this offers the opportunity to avoid the transmission of raw data and to
exchange only valuable information processed from sensor data. For this type of
applications, enabling software services for on-node processing is required. Also,
in this application where multiple nodes work together for monitoring health,
a common notion of time shared by the nodes is required to treat, correlate
and combine the different types of data. It allows collective signal processing,
accurate duty-cycling, data aggregation, and distributed sampling.

SAND nodes [1] are an example of flexible body sensor nodes with a fixed
core around which application specific sensors and actuators can be placed. An-
other motivation of this work is to support this view of flexible nodes by pro-
viding a software system with a fix core around which software components can
be seamlessly integrated, and ported to new hardware configurations. Portability
facilitates reuse of existing applications and software for on-node processing in
new execution environments. With these goals, we investigated the necessary
software services and system abstractions, and the challenges to integrate them
without depreciating the system’s performance.

Section 2 presents information essential to understand the motivation of this
work and related work. In Section 3 we present the software constructs that
we devised and the problems solved. We validate our work with a performance
evaluation of the software tools implemented within the FreeRTOS micro-kernel
in Section 4. Finally Section 5 concludes.

2 Background

2.1 Constraints with Development in Lightweight Software
Environments

The following summarizes the usual constraints associated with lightweight or
monolithic software environments.

Hardware dependent application code. This depicts a situation where di-
rect accesses to hardware low-level details are included into application soft-
ware (e.g. writing hardware registers for peripheral control). When hardware
interfaces are changed or not fully compatible, additional effort to adapt code
deviates application developers from their main application development task,
forcing them to dive deep into the hardware details.

No separation of independent processes. One single thread for the program
execution forces the application developper to combine independent application
processes. For the envisioned application scenario, data acquisition, data pro-
cessing, and time synchronization would end up correlated, making the code
unclear and difficult to debug.

128 A. Schoofs et al.

No control on timing. By combining different application processes in one
single thread, it becomes difficult to keep accurate control on timing. Changes
in one part of the code involve new time delays for other processes that require
new timing calculations at each occurrence.

No prioritization of processes. One single thread executes sequentially the
different application processes and no priority can be given to a process.

Limited portability. With application specific code, written for a specific hard-
ware configuration and intricated within different processes, very little can be
reused directly.

2.2 Challenges to Enabling Temporal Control over Processes and
System Abstraction

Timely control over processes on the node requires a clear separation of inde-
pendent software processes and means of scheduling these processes according
to their priority and timing deadlines. Global or distributed timely control over
processes additionally requires that a common notion of time is shared by the
nodes. That way, they are able to locally schedule and execute processes in global
synchrony. A first challenge is then to enable accurate execution of processes on
the node, contingently based on a global time knowledge.

Sequencing operations on data requires a close interaction with the underlying
system services. This aspect contrasts with the portability needs of algorithms
and applications, that should be favored to accommodate the wide range of
hardware and software platforms. A second challenge is then to ensure that
providing timely control over processes to high-level software does not prevent
portability.

Drivers and applications are often provided by different developers, and ei-
ther need to be developed or ported to the hardware platform. As the software
development grows, it is important to bring all the software parts together.
Merging implementations exposes the software system to code redundancy and
bugs. Therefore, a consistent and reliable system abstraction on which to write
high-level software is advocated. A third challenge is to devise an abstraction
that enables an optimal usage of the platform (possibly specific) hardware and
software mechanisms, while presenting a uniform top application programmer
interface (API) hiding those various intricacies.

2.3 Related Work

On the software side little consensus exists about the basic functionalities that
should be at the disposal of the application developer. In a sense the situation
for software is worse than the situation for the hardware. Where the hardware
goals are more or less clear: smaller and lighter with less energy consumption,
the software goals are undefined. Many people experiment in isolation with their
favoured software paradigm to create answers to isolated problems. Identified
problems centre around software constructs, which give access to the hardware

A Framework for Time-Controlled and Portable WSN Applications 129

with a low consumption in memory. We aim at providing a software platform on
which a given class of applications can be developed, removing the problems of
synchronization and many hardware intricacies from the application, as well as
enabling on-node processing to lower the overall energy consumption.

Event-based and preemptive multithreading are two approaches to program-
ming resource constrained systems. Event-based operating systems are efficient
as they require little memory and processing resources. TinyOS is a very famous
open source component-based operating system and platform targeted to wire-
less sensor networks [10]. It is designed to incorporate rapid innovation as well as
operate within the severe memory constraints inherent in sensor networks. It is
largely written in C and NesC, a component-based programming language and
an extension to the C programming language. Multithreading is not provided
in the original version to prevent excessive stack usage and the system bases its
operation on run-to-completion semantics. The efficiency comes at the cost of
additional programming overhead; connecting results of software modules, keep-
ing track of execution flow, and determining when a specific function ends is
the programmer’s responsibility. Later work introduced TinyThread, a library
for TinyOS that enables true multi-threading on a mote [11]. Task preemption
required to meet temporal requirements is not provided, but has been enabled
with low memory overhead by Duffy et al. [12]. A second event-driven embedded
operating system is Contiki [13]. Contiki uses protothreads, a lightweight form of
cooperative threading, implemented as pre-processor macros. Protothreads pro-
vide the programmers with a more natural way of formulating their code. Contiki
implements implicit network time synchronization. No explicit time synchroniza-
tion messages are sent: the module relies on the underlying network device driver
to timestamp all radio messages, both outgoing and incoming. An average syn-
chronization error of 1.4 ticks was achieved in single-hop network, with one tick
equal to 2ms [14]. A high time synchronization accuracy is needed to be able
to synchronize the execution of events on separate nodes, and to be able to
time-stamp precisely events and sampled data. While TinyOS and Contiki lack
native real-time support, FreeRTOS provides pre-emptive scheduling based on
task priorities. FreeRTOS is a portable, open source, micro Real Time Kernel
[2]. It is responsible for managing system resources, processor, memory and I/O
peripherals. FreeRTOS code base is small, and is mostly written in standard C.
Each task is assigned a priority and tasks with the same priority share the CPU
time in a round-robin fashion. FreeRTOS scheduler is configured as preemp-
tive to answer the real-time behaviour required by the system. FreeRTOS queue
mechanism is priority aware for real-time treatment. Tasks and Interrupt Service
Routines (ISR) can also communicate using queues, and binary semaphores are
implemented as a special case of queues. Similar to Contiki, FreeRTOS does not
provide a native 802.15.4 MAC implementation.

In this work we have strong requirements on temporal execution of processes
for on-node and distributed processing. We also favor the integration of a generic
and standard compliant MAC protocol, as the presented framework should fit the
needs of multiple applications scenarios and different hardware configurations.

130 A. Schoofs et al.

The aforementioned OS and micro-kernels do not natively provide the software
for supporting those requirements. A choice of micro-kernel as the core of our
software environment was made. Our choice of adopting FreeRTOS, instead of an
event-based OS such as Contiki, has a number of reasons. Application program-
mers are usually more familiar with traditional multi-threaded programming, in
comparison with an event-based environment where an explicit differentiation
might exist between requesting operations in one phase, and processing notifi-
cations in a second phase. This is in contrast with traditional multi-threaded
environments, where the execution flow of individual tasks is easier to follow.
Additionally, in an event-based programming model, when combined with run-
to-completion semantics, it becomes the responsibility of the application pro-
grammer to carefully divide long-running tasks into multiple smaller entities to
ensure a timely flow of execution of the system as a whole.

Software portability is achieved with a consistent and extensive abstraction
of the underlying system: abstraction of the microcontroller hardware details
and system resources. Much work has been done in researching portability for
application development in wireless sensor networks. The authors of [15] have
successfully achieved with the MAC Layer Architecture (MLA) a component-
based approach for developing MAC protocols. Code is reused and intricacies of
hardware platforms are hidden to the developer. Our objective is different; we
aim at facilitating the development of applications, device drivers and middle-
ware. MAC protocols are generally modeled as a communicating state machine,
where each state represents a different phase in the communication protocol. The
execution of the state machine is supported by the underlying software system.
Our work on the MAC does not aim at producing hardware dependent code
reused by different MAC protocols; we aim at breaking the influence of software
constructs, supporting the MAC state machine execution, on higher layer pro-
cesses’ timing control and portability. In [16], a three-layer hardware abstraction
architecture has been introduced with the objective of increasing portability and
simplifying application development. Although such design facilitates the build-
ing of platform independent applications, abstraction of hardware intricacies
needs to be conjugated with an abstraction of the underlying software system.

2.4 Software Architecture Overview

In the presented framework, timely control over processes is enabled via the use
of micro-kernel services, time synchronization, and a task-based IEEE-802.15.4
MAC implementation. Software portability is achieved with a hardware periph-
eral abstraction and an operating system (OS) API, built around the micro-kernel.
Figure 1 depicts the devised software framework architecture. The 6LoWPAN
adaptation layer and UDP/IP protocol stack are described in [8]. The task syn-
chronization component enables synchronized execution of processes on multiple
nodes. We show in Section 4 how this service for distributed node processing has
been integrated within the framework.

A Framework for Time-Controlled and Portable WSN Applications 131

Applications / Middleware / Device Drivers

Hardware

Basic functions

Hardware Presentation LayerInterrupt Service Routines

Peripheral Drivers

MAC

6LoWPAN

UDP/IP

Socket API

Time
Synchro

 OS API

Task
Synchro

M
icr

o-
Ke

rn
el

M
icr

o-
Ke

rn
el

Fig. 1. Software framework architecture

3 Architecture

3.1 A Micro-kernel as the Core of the Software System

The choice of a micro-kernel is motivated by the memory and resource constraints
of low-power microprocessors and by the flexibility in term of functionalities that
are supported. Every system designer can use the same base, the micro-kernel,
and add or remove components as required by the application. For wireless sensor
networks applications, multi-threaded kernels offer the possibility to run fixed-
priority tasks which guarantee the execution of processes that need real-time be-
haviour. The type of applications devised for wireless sensor networks requires a
small number of tasks, which limits the memory and latency overhead. A multi-
thread environment helps the programmer separate unrelated code, and breaks
the timing and event dependency. By having independent applications in differ-
ent tasks, it becomes also easier to read the code and debug it. We used FreeRTOS
micro-kernel to implement and validate our software constructs. It is responsible
for managing system resources, processor, memory and I/O peripherals.

3.2 Achieving Timely Control over Processes

Reducing the MAC Influence on Application Process Execution

Motivation. The Medium Access Control (MAC) is an important piece of soft-
ware which impacts on the architecture of the total node software. The IEEE
802.15.4 standard [18] has defined a physical and MAC layer for low bit-rate and
low-power consumption, to enable communication within nodes. Transmission of

132 A. Schoofs et al.

data or command frames relies on a Carrier Sense Multiple Access with Collision
Avoidance (CSMA-CA) protocol to schedule the communication. CSMA-CA is
implemented using units of time called backoff periods, which are generated via
a periodic event (e.g. timer periodic tick) on the microcontroller. Most 802.15.4-
compliant transceivers have only a small subset of 802.15.4 features built in
hardware and MAC protocol mechanisms including CSMA-CA are implemented
in software on the node’s microcontroller. Therefore, both MAC and applica-
tions share the same processing power. Generally, 802.15.4 MAC software is
implemented as interrupt-driven, where the MAC state machine is executed
within interrupt service routines, executed every 320µs on MAC tick interrupts
(e.g. [19]). The regular backoff-slot tick and the lengthy software execution within
the ISR impose unnecessarily constraints to the whole software system. Ticks
are happening even when RF communication is not required, and thus increases
overhead. Besides, once an interrupt-based MAC implementation is adopted, the
application is often developed as one background task removing all possibilities
of independently executing tasks. A later switch to a task oriented micro-kernel
becomes very difficult. Also, when interrupt nesting is not supported by the mi-
crocontroller of a new hardware platform, an interrupt-driven implementation
becomes unusable. We propose a new architecture based on a preemptive task
execution environment. With the proposed architecture, MAC software is acti-
vated by the micro-kernel scheduler, providing a solution where MAC software
is not executed by an ISR, but by a micro-kernel task.

A task-based implementation. Micro-kernel tasks are scheduled on the basis of
the periodic tick interrupts of the micro-kernel timer. Our design takes a dual
scheduling approach, where a second timer dedicated to the MAC is started for
handling RF communication: one timer generates OS ticks for the micro-kernel
scheduling whereas a second one generates ticks for the MAC scheduling, only
when needed. With more powerful timer engines, one single timer can generate
the two ticks. The interest is to be able to adapt dynamically the tick frequency
to the application, to avoid useless overhead and reduce power consumption,
and to clear the influence of the MAC on the software system by removing the
execution of MAC software from ISRs. With this approach two timer bases are
maintained and MAC software is executed within a micro-kernel task, removing
the architecture constraints of interrupt-based implementations.

General aspects on implementation. We have implemented an 802.15.4 MAC
onto the FreeRTOS micro-kernel following the task-based architecture. In the
micro-kernel -based implementation of the MAC, the MAC is considered as an
application whose duty is to drive the transceiver chip to be compliant with the
802.15.4 standard. Accordingly, the MAC will be run by one FreeRTOS task,
which we call the FreeRTOS MAC task. Currently, the FreeRTOS MAC task has
the highest priority of all FreeRTOS tasks, in order to respect timing constraints
related to network wireless communication. Two FreeRTOS binary semaphores
have been created to control the operations for packet transmission (TX) and
packet reception (RX). Initially and repeatedly, the FreeRTOS MAC task checks
the FRTOS MAC semaphore used for controlling TX operations, as shown below:

A Framework for Time-Controlled and Portable WSN Applications 133

Application
task Init

Application code
...

Call to MAC
primitive for TX
transmission

Application code
...

MAC tick started

MAC functions
added to priority

queue

MAC tick stopped

MAC process
completed

FRTOS_MAC_
semaphore

released

MAC tick started

MAC functions
executed on each
MAC tick interrupt
in the FreeRTOS

MAC task

Fig. 2. Task-based MAC process execution for a packet transmission

portTASK_FUNCTION(FreeRTOS_MAC_Task,pvParameters){

for(;;) {

//Wait for the semaphore to become available

if(xSemaphoreTake(FRTOS_MAC_semaphore,portNO_BLOCK)){

When packet transmission is not required, the FreeRTOS MAC task can-
not take the FRTOS MAC semaphore semaphore. Next, the FreeRTOS MAC task
checks the FRTOS MAC FIFOP handle semaphore in case a RX packet is to be
retrieved, as shown below:

if (xSemaphoreTake(FRTOS_MAC_FIFOP_handle_semaphore, portBLOCK)){

In case no packets are received, and after a time defined by the portBLOCK
parameter, control returns and the FreeRTOS MAC task loops back to the first
if condition.

Higher-level protocols that need to access the MAC use the 802.15.4 prim-
itives. Transmission of data happens during units of time called backoff slots.
For that purpose MAC primitives called by higher layers will add MAC requests
to one of four priority queues. The FreeRTOS MAC task executes the corre-
sponding functions by taking the oldest request from the highest priority non-
empty queue, and executes the corresponding function, starting on a backoff slot
boundary. The execution of MAC functions is state machine based on a task in-
formation structure. This structure contains information on the currently active
functions and the associated packets. As long as the priority queues are filled, the
MAC timer is active and generates interrupts every 320µs. On interrupts from
the IEEE 802.15.4 chip, the MAC timer ISR releases the FRTOS MAC semaphore
thus liberating the blocked FreeRTOS MAC task which executes the MAC func-
tions according to the contents of the task information structure, as shown in
Figure 2.

134 A. Schoofs et al.

On packet reception, the transceiver generates interrupts at the micropro-
cessor to indicate the reception of an 802.15.4 packet. The FIFOP interrupt
signals that a complete frame has been received. When the FIFOP interrupt oc-
curs, the corresponding ISR releases the FRTOS MAC FIFOP handle semaphore
that blocks the FreeRTOS MAC task. The ISR terminates and the micro-kernel
scheduler checks whether new micro-kernel tasks were enabled by the interrupt.
The semaphore released by the ISR unblocks the FreeRTOS MAC task. The
latter retrieves the payload from the transceiver.

Providing a Common Notion of Time throughout the Network

Motivation. Peer sensor nodes lack a common notion of time. Since timing is
of importance for coherently time-stamping packets in the network, perform-
ing data fusion and correlating sensory data, a time synchronization procedure
is needed to provide distributed sensor nodes with the same notion of time. In
order to synchronize the clocks in our testbeds, we integrated a time synchroniza-
tion component based on the FTSP protocol [4]. In FTSP, nodes in a network
synchronize their clocks to that of a single time master. Multihop time syn-
chronization is supported by requiring any node synchronized to the master to
assume a time master role for its unsynchronized neighboring nodes. FTSP com-
bines accurate MAC-layer time-stamping of time synchronization packets [21]
and clock drift rate estimation using linear regression [22]. With the motivation
to provide the high timing accuracy required for on-node data processing and
distributed sampling, while reducing the associated overhead, we introduced the
use of Kalman filtering for estimating the clock drift, which gave interesting
insight in the reduction of clock synchronization messages exchange [23].

General aspects on implementation. To achieve time-stamping of time synchro-
nization messages at the MAC layer, we used the Start of Frame Delimiter
(SFD) interrupt, specified in the IEEE 802.15.4 standard, as a triggering event
for time-stamping. The SFD interrupt occurs at the sender of a time synchroniza-
tion message and at the receiver of that same message. Neglecting propagation
time, these ”twin” interrupts can be considered to be simultaneous. A timestamp
made at the sender side is included in its corresponding time synchronization
message. This is achieved by writing the first part of the message’s payload to
the CC2420 transmission buffer (TxFIFO), initiating transmission, waiting for
the SFD interrupt to occur and the time-stamp to be made, and then writing
the time-stamp to the TxFIFO in time before the buffer runs out of bytes to
send and the CC2420 signals a buffer underflow. At the receiver side, a second
time-stamp, made upon the occurrence of the ”twin” SFD interrupt, is associ-
ated with the received message. As such, a pair of time-stamps related to the
same time synchronization message becomes available at the receiver side. The
latter applies linear regression on a set of n consecutive pairs of time-stamps, or
alternatively Kalman filtering, to determine the clock drift rate between sender
and receiver. Time synchronization is implemented in a FreeRTOS task, and is
an optional service available to the application developer. The interrupt sub-
scription mechanism depicted in Section 3.3 keeps time synchronization related

A Framework for Time-Controlled and Portable WSN Applications 135

code out of other components e.g. the MAC. The time synchronization task sub-
scribes to the SFD interrupt and defines code to execute whenever the interrupt
fires (at the sender and at the receiver). The code related to time-stamping and
addition of the time-stamp to the packet is then confined to the time synchro-
nization task, and makes the module non-intruding.

3.3 Achieving Portable Software

We designed a set of abstraction layers that break the application dependency
on hardware intricacies and software system.

Abstracting the Hardware Intricacies

Motivation. The motivation behind abstracting the hardware intricacies of a
microcontroller is to ease application development, enable code re-use between
different applications, optimize hardware interaction, facilitate the portability of
device drivers and applications, protect access to hardware peripherals and ease
debugging.

Challenges. Abstracting hardware should not compromise efficiency by hiding
platform features that may optimize a set of processes. For instance, the 24-bit
architecture of the NXP CoolFlux DSP equips it with a SPI interface that allows
transfers of up to three bytes per transaction, as opposed to traditional 1-byte
transactions. Making use of such feature improves process latency and accompa-
nying energy by reducing the occurrence of micro-kernel context switches on each
peripheral interrupt and lowering the overhead of fetching bytes in the memory.
Another challenge is the handling of peripheral transactions in hardware without
introducing high latency overhead. Hardware handling of peripheral transactions
in parallel to software execution prevents the use of blocking calls.

Description. We developed an hardware abstraction with a layered architecture
to present a common interface to applications for controlling the underlying
hardware. This architecture provides all the necessary functions to communicate
with the different hardware blocks. The architecture is given in Figure 3.

The Basic functions layer is a very thin layer enabling a way to read and
write to the input and output registers of the micro-controller and to redirect
hardware interrupts to the Interrupt Service Routines (ISR) layer. The ISR layer
handles the interrupts, and can be used to free a semaphore or post data to a
queue using the micro-kernel system interface, operate on the hardware such as
acknowledging the interrupt or sending an extra byte, or simply run application
code. In order to keep the application code separate from the hardware specific
sections of the code, the ISR layer provides a subscription mechanism which
allows for applications or device drivers to perform custom actions within the
interrupt. Applications tasks, device drivers and peripheral drivers can subscribe
to a specific ISR and write some code, placed outside the hardware specific code,
to be executed when the interrupt fires. The Hardware Presentation Layer (HPL)
provides a complete and dense interface of all the hardware peripherals to the

136 A. Schoofs et al.

Hardware

Basic functions

Hardware Presentation LayerInterrupt Service Routines

Peripheral DriversMicro-
kernel

OS API

Device
Drivers

App. 1
App. 2 App. 3

Fig. 3. Hardware Abstraction Architecture

upper layer. This layer is stateless, meaning that it will not keep information
about the status of a peripheral. It executes the order from upper layers. This
layer, despite the fact that it provides standard functions, is not generic to all the
platforms as it contains platform specific options. It is meant to expose all the
functions available on the underlying hardware. Finally, the Peripheral Drivers
layer, using the HPL, provides the application or the upper device drivers with
a set of functions to use the hardware safely and in interaction with the micro-
kernel. In this layer, the state of the interface is kept in a dedicated structure and
data and/or events related to a bus or a timer are also recorded in micro-kernel
queues or semaphores. The common top interface is the peripheral driver layer
interface. The layers underneath are platform specific and should not be exposed
to the application layer for portability reasons as well as for the risk of misuse.
In order to make use of any platform specific features, the peripheral layer is
implemented such that it optimally makes use of the underlying hardware via
the HPL.

Figure 4 depicts an example where the MAC initiates a packet transmission.
In the process, the packet is transmitted to the radio transceiver via the SPI
interface before the actual physical transmission. For that purpose, the CC2420
radio driver uses the API of the SPI peripheral driver. The latter passes the first
byte of data to the HPL layer, and the remaining bytes are stored in the SPI TX
FreeRTOS queue, for later transmission. The byte is eventually transmitted via
SPI once written in the SPI data register. On SPI transfer completion, the SPI
ISR checks in the TX queue the whether other bytes need to be transmitted. If
yes, the next byte is passed to the HPL layer for immediate transmission and so
on until the last byte is transmitted.

Abstracting the Software Environment

Motivation. A subset of existing OS are widely used by the WSN community.
Porting applications among different operating systems is a time consuming
exercise which requires a deep knowledge of both application domain and OS

A Framework for Time-Controlled and Portable WSN Applications 137

Hardware

Basic functions

HPLISR

SPI DriverMicro-
kernel

CC2420 driver

RfPayload: [0xad,0xd8,…]
MAC xRadioSend(address,&RfPayload,length);

pxPort->pxTxQueue: [0xd8,…]

xSpiDeviceTransfer(SPI0,&RfPayload[0],…);

xSpiPut(SPI0, 0xad);

cf_write_reg(spi[0].data, 0xad);
cf_write_reg(cf_inthandler.status,
(1 << int_spi0));

p_cf_iomem[0x12] = 0xad;
goto void_SERIAL_ISR;

xQueueReceiveFromISR(xSPI_ISR[ePort]->pxTxQueue,…);

xSpiPut(SPI0,TxWordToSend);

Fig. 4. Example describing the Hardware Abstraction Architecture for a packet
transmission

architecture. In the case of WSN, even though most operating systems count
with a subset of similar services from an application point of view, they are
presented with a different API, thereby making portability harder.

OS Abstraction layer. The definition of proper control mechanisms for the hard-
ware platform into the software framework arise a number of portability issues.
The OS abstraction layer [25] (OSAL) exposing an abstraction of the OS API
is designed to address these issues and diminish the conflicts between different
software and hardware platforms. In particular, it addresses the discrepancies
among different OSs with respect to their functional API, hardware configura-
tion mechanisms, resource management and handling of peripherals.

Application builders are offered a common API which abstracts the under-
lying OS and hardware platform. Hence, portability among different platforms
is mostly reduced to the re-implementation of the OSAL without introducing
changes to the interface between software and hardware platforms (i.e. OSAL
API).

The OSAL API defines a subset of OS primitives which satisfies the basic
application builder’s requirements but at the same time, remain simple to match
most of the target OSs. Use of other native functionalities not covered by the
OSAL is discouraged as it violates the principles of portability.

The OSAL embraces the management of hardware configurations and access
to specific set-points which represent a major hook to performance trade-offs.
The procedure to design the OSAL covers the following steps:

– Selection of primitives done with a concrete analysis of the typical ap-
plication requirements on the WSN domain as well as further portability
considerations.

138 A. Schoofs et al.

Table 1. OSAL Profiles

Profile Description
OSAL.0: Core Basic system handling and initialization
OSAL.0.1: System System primitives
OSAL.0.2: Task and scheduler Task initialization and scheduling primitives
OSAL.0.3: Basic I/O I/O primitives

OSAL.1: Memory Dynamic Memory management
OSAL.2: Synchronization Task synchronization
OSAL.2.1: Mutexes Mutexes
OSAL.2.2: Message Queues Message Queues
OSAL.2.3: Signals Inter-task signaling

OSAL.3: Time Time handling primitives primitives
OSAL.3.1: Clock Internal clock handling
OSAL.3.2: Self-suspension Sleep and delay primitives
OSAL.3.3: Timers Handling of timers

OSAL.4: Extended I/O Non-basic I/O primitives
OSAL.5: ELF-loader Dynamic code loader

– Definition of an API to expose the set of primitives. Our design is based on
a POSIX-like1 API [26] [27] motivated by the aim of reducing the learning-
curve as well as the preference of a neutral reference which does not reflex
specific features from any platform. Hence, generality prevails over particular
features, which is a reasonable price to pay for portability.

– Implementation of the OSAL with a minimal footprint and execution over-
head, which is achieved by means of advance compilation tools and
techniques.

General aspects on implementation. This approach focuses on WSN multi-task
operating systems implemented in C/C++, which covers the majority of avail-
able OS in the field. The implementation of low-overhead wrappers for the native
OS’ primitives is achieved with the support of different programming utilities:

– Macros are very useful for renaming of functions, data types and parameter
re-ordering.

– Inline functions are similar to macros in what they can be used for, but
require support from the compiler. They introduce less risk of inconsistencies
but not always reduce the run-time overhead.

– Function level linking, when supported by the compiler, reduces the size of
executables by preventing the linkage of unused functions.

Table 1 shows a list of profiles which subdivides the set of primitives present
in the OSAL API. The categorization is done following a functional behavior
1 POSIX is a well structured standard which covers most of the features supported by

any multi-task oriented OS. It is extensively documented and used for many different
purposes. Note that one of the several POSIX profiles is defined to target embedded
systems. However, it is too complex for the average operating system running on
WSN and therefore its adoption to cover the OSAL API is not pursued.

A Framework for Time-Controlled and Portable WSN Applications 139

and based on a non-arbitrary analysis of applications in the WSN domain. This
design allows the implementation of the OSAL in a progressive manner without
loosing the integrity. Profiles are simple and contain dependent functionalities
which need to be implemented together but can be discarded as a whole if such
functionalities are not required.

4 Experimental Validation

Our software framework has been tested in multiple application scenarios with
different requirements in parallel to its development e.g. to develop an home
stroke rehabilitation application [6], an emotion sensing application [7], and a
herd monitoring application [8]. This has allowed for a validation of the differ-
ent modules and an extensive testing under various contexts, which generated
some refinements of both the architecture and the implementation, leading to a
stable and well-tested services. The following gives some details on the services
operation and performance.

4.1 Temporal Control

Process execution example. An example of an application task calling the
mcpsDataRequest MAC primitive to transmit a data packet is illustrated in the
following to depict the execution of processes within the micro-kernel environ-
ment. Figure 5 shows the challenges and benefits of multi-tasking application
tasks with the kernel task implementation of the 802.15.4 MAC. The Idle task is
scheduled whenever no other tasks are ready to run. The respective mechanisms
indicated by numbers are explained for the indicated three moments.

1. The FreeRTOS application task runs from the OS tick interrupt and initi-
ates a packet transmission by calling the mcpsDataRequest MAC primitive.
A packet transmission requires MAC functions (e.g. CSMA/CA) to be exe-
cuted on 802.15.4 backoff slots. For that purpose, mcpsDataRequest initial-
izes the MAC timer to generate ticks every 320µs and sets the FreeRTOS
MAC task as ready-to-run at the highest priority to execute MAC functions
on MAC tick interrupts. The MAC primitive, executed by the application
task, also adds the mtxScheduleTransmission function into the low priority
MAC function queue to be run by the FreeRTOS MAC task to initiate the
transmission, and blocks until the end of the transmission.

2. When the MAC tick interrupt happens, the FRTOS MAC semaphore is released.
On return from the interrupt, the FreeRTOS scheduler checks whether new
tasks have been enabled. Because the FRTOS MAC semaphore has been re-
leased, the FreeRTOS MAC task is enabled and has the highest priority.
It executes the mtxScheduleTransmission function, as shown on Figure 5.
The mtxScheduleTransmission function is a state machine function, where
each successive state is executed on MAC tick interrupts. The first state of
mtxScheduleTransmission is executed, and the FreeRTOS MAC task is sus-
pended until the next MAC tick. Because the application task is blocked, the

140 A. Schoofs et al.

Fig. 5. Process scheduling for a packet transmission within the OS-based
implementation

FreeRTOS Idle task runs. At the next MAC tick, the next state of mtxSched-
uleTransmission is executed and so on.

3. Later, when the transmission process is done, the FreeRTOS MAC task is
suspended, the MAC tick is stopped and the application task unblocked. It
will remain in this state until the application calls a new MAC primitive to
initiate a service.

Synchronized distributed processing. Multiple tasks, some of which of pe-
riodic nature, are performed by sensor nodes in a network. It can be of interest to
synchronize the execution of specific periodic tasks; synchronizing sensing tasks
can improve data correlation, and can even be an unavoidable requirement when
different signals have to be concurrently measured to deduce a global state. A
synchronized periodic on/off switching of radio transceivers would also be bene-
ficial for duty-cycling, by reducing the uncertainty period between the wake-up
time of a transmitting node and a receiving node.

The method we devised to implement distributed task synchronization is
based on synchronizing timer interrupt occurrences at different nodes to that
of a single master [24]. The synchronized interrupts are then used to launch the
execution of periodic tasks in a synchronized manner across the network. The
method builds on the time synchronization and micro-kernel framework services
and achieves task synchronization with high accuracy by specifically targeting
the timer (micro-kernel timer) used by the micro-kernel for starting task execu-
tion and switching between tasks.

Our time synchronization implementation yielded an average absolute time
synchronization error of 1 µs for nodes at one hop from the time master. This
average error increases by less than 0.5 µs for every additional hop further from

A Framework for Time-Controlled and Portable WSN Applications 141

the time master in a multihop scenario. The tests we conducted in a single-hop
network of 5 nodes showed that we achieved accurate task synchronization over
nodes, with an average absolute offset of 5 µs between the start of execution of
the same task at the master and a second node. 90% of the registered 1000 offset
instances were found to be smaller than 10 µs [24].

4.2 Memory Footprint

We measured the code size of the software framework on our CoolFlux DSP
port, as shown in Table 2. The current version of the MAC software includes
support for both beacon and non-beacon networks. Two buffers of length 128B
for ongoing and incoming packets are used. Improvements can be realized to
reduce the memory footprint. The first objective of the software implementation
was to validate the concept, and less effort has been put into optimizing the
coding.

Table 2. Measurements of FreeRTOS port to CoolFlux DSP

FreeRTOS code size 1757 words
(Words of 32 bits)
FreeRTOS RAM usage 160 words
(Words of 24 bits) 23 words per task + stack

26 words per queue + data
Hardware abstraction 9KB
MAC software code size 11KB
MAC software RAM usage 2.3KB

4.3 Micro-kernel Latency Overhead

The values presented in Table 3 compare the FreeRTOS context switch times
on different microcontrollers, namely NXP CoolFlux DSP, TI MSP430 and
CC2430’s 8051. A context switch is the process of storing and restoring the
state (context) of the processor such that multiple processes can share a single
processor.

These timing measurements are very dependent on the clock frequency and
the architecture of the module tested. They show that FreeRTOS (and more
generally any micro-kernels) performance and overhead are very dependent on
the platform. In order to quantify the overhead of the micro-kernel and other
software services with respect to the useful processing, we measured on the
NXP CoolFlux DSP the duration of a RF packet transmission, initiated by an
application process, as shown in Table 4. The implementation and execution of
the MAC state machine makes use of the FreeRTOS micro-kernel services and
the hardware abstraction.

During transmission, FreeRTOS context switches happen at each MAC tick
interrupt, every 320µs, and at each FreeRTOS tick interrupt, every 1ms. We
conclude that with approximately four ticks per ms, a FreeRTOS context switch
of 17µs represents an overhead of about 7% on the available processing power.

142 A. Schoofs et al.

Table 3. FreeRTOS context switch duration for several architectures. (1) corresponds
to a tick interrupt which does not wake-up any task, (2) is for a tick interrupt that
wakes up one task and (3) refers to a task yield.

Processor Tick (1) Tick (2) Yield (3)

CoolFlux (20MHz) 12.9µs 16.6µs 9.6µs
MSP430F449 (8MHz) 37µs 54.4µs 30.8µs
8051 (CC2430) (32MHz) 121µs 249µs 128µs

Table 4. Timing measurements on the CoolFlux DSP executing an 802.15.4 MAC
within a FreeRTOS task (RF channel free)

Sending 1 bytes 2.6 (ms)
Sending 100 bytes 9.4 (ms)
Receiving 1 bytes 1.9 (ms)
Receiving 100 bytes 8.4 (ms)

4.4 Portability

The implementation of the software framework has been ported in three months
to a TelosB-like node (TI MSP430 + CC2420) by a master student. The MSP430
port in itself only involved compiler adaptations, timer settings and adaptation of
the lower layers of the hardware abstraction. The FreeRTOS port for the MSP430
was already available [2]. We also ported part of the software framework on the
CC2430’s 8051 microcontroller, but the latency related to FreeRTOS context
switch (as shown in Table 3) introduced too much overhead to the system.

5 Conclusions

We proposed and evaluated a software framework dedicated to wireless sensor
nodes. Both the architecture and services ease the development of applications,
where power conservation with on-node processing is facilitated. We have pro-
vided software services, APIs, and contructs for temporal control over process
execution and portability. The software framework has been ported to different
microcontrollers, and the different modules have been validated by several ap-
plications. According to the requirements of application scenarios, a subset of
requisite modules can be chosen, with the whole system providing a complete
and efficient programming interface to the application developer.

Acknowledgments

The authors wish to thanks Albert Rietema for his work on the software imple-
mentation of the hardware abstraction and the MAC, and Nils Preusker and Tao
Xu for their efforts on porting software components to the 8051 and the MSP430.

A Framework for Time-Controlled and Portable WSN Applications 143

We would also like to thank Niek Lambert and Victor van Acht for their valuable
feedback. This work is partially financed by the European Commission under the
Framework 6 IST Project Wirelessly Accessible Sensor Populations (WASP) and
is supported by Science Foundation Ireland under grant 07/CE/I1147.

References

1. Ouwerkerk, M., Pasveer, W.F., Engin, N.: SAND: a modular application develop-
ment platform for miniature wireless sensors. In: Proc. of BSN 2006 International
Workshop on Wearable and Implantable Body Sensor Networks, pp. 166–170 (2006)

2. FreeRTOSTM Homepage, Richard Barry, http://www.freertos.org/
3. Texas Instruments CC2420 2.4 GHz IEEE 802.15.4 RF Transceiver Data Sheet,

http://focus.ti.com/docs/prod/folders/print/cc2420.html

4. Maroti, M., Kusy, B., Simon, G., Ledeczi, A.: The Flooding Time Synchronization
Protocol. In: Proceedings of the 2nd Int. Conf. On Embedded networked Sensor
systems (SenSys) Baltimore (2004)

5. Willmann, R.D., Lanfermann, G., Saini, P., Timmermans, A., te Vrugt, J., Winter,
S.: Home Stroke Rehabilitation for the Upper Limbs. In: Proc. of the 29th Annual
International Conference of the IEEE EMBS Cite Internationale, Lyon, France
(2007)

6. van Acht, V., Bongers, E., Lambert, N., Verberne, R.: Miniature Wireless Inertial
Sensor for Measuring Human Motions. In: Proc. of the 29th Annual International
Conference of the IEEE EMBS Cite Internationale, Lyon, France (2007)

7. Westerink, J.H.D.M., Ouwerkerk, M., Overbeek, T.J.M., Pasveer, W.F., de Ruyter,
B. (eds.): Probing Experience - From Assessment of User Emotions and Behaviour
to Development of Products. Philips Research Book Series, vol. 8 (2008)

8. Schoofs, A., Daymand, C., Sugar, R., Mueller, U., Lachenmann, A., Kamran, S.M.,
Gefflaut, A., Thiem, L., Schuster, M.: Testbed for IP-Based Herd Monitoring. In:
The 9th ACM/IEEE International Conference on Information Processing in Sensor
Networks, The 8th ACM/IEEE International Conference on Information Process-
ing in Sensor Networks, IPSN (2009)

9. Adi Mallikarjuna, V.R., Phani Kumar, A.V.U., Janakiram, D., Ashok Kumar,
G.: Operating Systems for Wireless Sensor Networks: A Survey, Technical Report
(2007)

10. Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay,
D., Hill, J., Welsh, M., Brewer, E., Culler, D., Werner Weber, J.M.R., Aarts, E.
(eds.): TinyOS: An Operating System for Sensor Networks, pp. 115–148. Springer,
Heidelberg (2005)

11. McCartney, W.P., Sridhar, N.: Abstractions for Safe Concurrent Programming in
Networked Embedded Systems. In: Proceedings of SenSys 2006, pp. 167–180 (2006)

12. Duffy, C., Roedig, U., Herbert, J., Sreenan, C.J.: Adding Preemption to TinyOS.
In: Proceedings of the The Fourth Workshop on Embedded Networked Sensors
(EmNets 2007), Cork, Ireland (2007)

13. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a Lightweight and Flexible Operat-
ing System for Tiny Networked Sensors. In: First IEEE Workshop on Embedded
Networked Sensors (2004)

14. Chen, S.: Secure Real-time Services for Wireless Sensor Networks in Contiki (2007)
15. Klues, K., Hackmann, G., Chipara, O., Lu, C.: A Component-Based Architecture

for Power-Efficient Media Access Control in Wireless Sensor Networks. In: ACM
SenSys 2007, Sydney, Australia (2007)

http://www.freertos.org/
http://focus.ti.com/docs/prod/folders/print/cc2420.html

144 A. Schoofs et al.

16. Handziski, V., Polastre, J., Hauer, J.-H., Sharp, C., Wolisz, A., Culler, D.: Flexible
hardware abstraction for wireless sensor networks. In: Proceedings of the Second
European Workshop on Wireless Sensor Networks, EWSN (2005)

17. Fernando Friedrich, L., Stankovic, J., Humphrey, M., Marley, M., Haskins, J.: A
survey of configurable component-based operating systems for embedded applica-
tions. IEEE Micro 21(31), 54–68 (2001)

18. IEEE 802.15.4 Standard-2003, Part 15.4: Wireless Medium Access Control (MAC)
and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area
Networks (LR-WPANs), IEEE-SA Standards Board (2003)

19. Freescale Semiconductors, 802.15.4 MAC PHY Software Reference Manual Rev.
1.6, IEEE Micro 22(6) (2008),
http://www.freescale.com/files/rf_if/doc/ref_manual/802154MPSRM.pdf

20. Roeven, H., Coninx, J., Ade, M.: CoolFlux DSP - The embedded ultra low power
C-programmable DSP core. In: Proceedings of the Int. Signal Processing Conf.
(GSPx), Santa Clara (2004)

21. Ganeriwal, S., Kumar, R., Srivastava, M.B.: Timing-sync Protocol for Sensor Net-
works. In: Proceedings of the 1st ACM Conference on Embedded Networked Sensor
Systems (SenSys), Los Angeles, California (2003)

22. Elson, J., Girod, L., Estrin, D.: Fine-Grained Network Time Synchronization using
Reference Broadcasts. In: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation, Boston, Massachusetts (2002)

23. Aoun, M., Schoofs, A., van der Stok, P.: Efficient Time Synchronization for Wire-
less Sensor Networks in an Industrial Setting. In: Proceedings of the 6th ACM
Conference on Embedded Networked Sensor Systems, SenSys (2008)

24. Aoun, M., Catalano, J., van der Stok, P.: Distributed Task Synchronization in
Wireless Sensor Networks. In: Proceedings of the 6th European Conference on
Wireless Sensor Networks (2009)

25. Andree, M., et al.: Core Hardware Abstraction and Programming Model, Deliver-
able D3.2, IST-034963, WASP (2008)

26. The Open Group Base Specifications Issue 6 (cited: 2008-04-01). IEEE Std 1003.1-
2001, The IEEE and The Open Group, http://www.unix.org/online.html

27. Aldea Rivas, M., Gonzalez Harbour, M.: Evaluation of New POSIX Real-Time
Operating Systems Services for Small Embedded Platforms. In: Proceedings of
the 15th Euromicro Conference on Real-Time Systems, ECRTS, Porto, Portugal
(2003)

http://www.freescale.com/files/rf_if/doc/ref_manual/802154MPSRM.pdf
http://www.unix.org/online.html

	A Framework for Time-Controlled and Portable WSN Applications
	Introduction
	Background
	Constraints with Development in Lightweight Software Environments
	Challenges to Enabling Temporal Control over Processes and System Abstraction
	Related Work
	Software Architecture Overview

	Architecture
	A Micro-kernel as the Core of the Software System
	Achieving Timely Control over Processes
	Achieving Portable Software

	Experimental Validation
	Temporal Control
	Memory Footprint
	Micro-kernel Latency Overhead
	Portability

	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

