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Abstract. The increasing popularity of sensor network has spawned a
wide range of platforms and frameworks for sensor network development.
While in theory nodes based on different frameworks should provide radio
stack compatibility, in practice this is rarely the case. We explore this
problem by providing a case study and introduce TinySPOTComm, a
customized radio stack for the Sun SPOT platform which allows for
radio communication between IEEE 802.15.4 based TinyOS motes and
Sun SPOTs. The TinySPOTComm radio stack remains fully compatible
with the Sun SPOT radio stack and its network performance is only
marginally affected in comparison to the default Sun SPOT radio stack.
Performance tests have shown good results when communicating between
TinyOS motes and Sun SPOTs. The round trip time, when measured
between a Sun SPOT and a TinyOS mote, is affected by no more than
15%, in comparison to the RTT between two TinyOS motes. In the same
scenario an increase in throughput of more than 50% has been measured.

Keywords: Sun SPOT, TinyOS, 802.15.4, compatibility, sensor
network.

1 Introduction

Over the years sensor networks have become increasingly popular, not only as a
research topic, but also for real-life applications. Because of this, many frame-
works for sensor network development now exist, each with its own programming
language preference and supported hardware platforms. Unfortunately, commu-
nication between nodes using different sensor network frameworks is, despite
compatibility at the hardware level, generally not possible.
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This paper attempts to provide further insight into this problem by means of
a case study. More specifically, we focus on the radio stack compatibility between
two distinct types of sensor nodes: TinyOS-motes [1] and Sun SPOTs [2].

These two platforms are, amongst others, further discussed in section 2. An
introduction to the IEEE 802.15.4 [12] and LowPAN [10] protocols, which are
both commonly used in sensor networks, is provided in section 3. The radio
stacks of these two platforms are further discussed in section 4. In section 5 we
discuss the effect of the changes proposed in section 4 on the wireless networking
performance, and we conclude our paper in section 6.

2 Current Frameworks for Sensor Network Development

In this section several sensor network development frameworks are discussed.

2.1 TinyOS

TinyOS has been widely accepted as a well supported, highly usable and effi-
cient framework for sensor network development. It is, as the name suggests, a
‘Tiny’ Operating System designed for energy-constrained devices and for sen-
sor nodes in particular. Sensor nodes running TinyOS are usually referred to
as TinyOS-motes. TinyOS is written in nesC, a component-based version of the
C programming language. A nesC application consists of multiple components.
Each component is expected to both provide and use interfaces. The provided
interfaces allow other components to interact with the component, while used
interfaces define the functionality required by it. Unlike interfaces in other lan-
guages, nesC-interfaces are bidirectional since they specify both commands and
events. Commands are functions implemented by the component providing the
interface and may be invoked by other components requiring the interface. Events
work in the opposite direction. They are implemented by requiring components
and may be invoked from the component providing the interface. Commands
may therefore be regarded as the equivalent of methods while events resemble
call-back functions.

Based on this principle, TinyOS uses an event-driven asynchronous approach
to concurrency. Unlike regular programming-languages, most operations are ex-
ecuted asynchronously. When performing operations, such as sending packets, a
command is issued to initiate the operation. This command immediately returns
and does not block until the operation is complete. Instead an event is used to
signal completion. Furthermore, TinyOS does not support multithreading, since
it would require a separate stack for each thread and introduce a significant
thread-swapping overhead. Instead, so called Tasks may be submitted which are
then sequentially executed by the only available thread. As a result, TinyOS
applications have a very small memory-footprint and require very little compu-
tational power.
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Although TinyOS allows for the development of efficient, modular applica-
tions and is supported on numerous hardware platforms, it has a few major
drawbacks. One of the largest issues is that due to the structure of nesC and
the used concurrency model, writing TinyOS applications is a complex task.
Furthermore, debugging these applications is equally challenging. It either re-
quires applications to be simulated, which prevents low-level device interactions
to be tested, or requires specialized tools and hardware, such as a JTAG con-
troller, to directly interface with the mote’s microcontroller. Moreover, it is only
possible to debug the C code generated by the nesC compiler. As a result of
these restrictions, TinyOS may only reach a specific target audience. A second
problem of TinyOS is that, since nesC compiles both application-specific and
general-purpose TinyOS-originated code into a single binary, it is not possible
to update the application code without replacing the entire binary. As a result
it is generally not possible to reprogram TinyOS-motes once they have been
deployed.

Levis et al. [3] addresses this problem by providing Maté, a byte code inter-
preter implemented on top of TinyOS. Maté is based on the observation that
many sensor network applications rely on a common set of components and
services. Maté therefore specifies a specialized instruction set containing not
only regular instructions such as arithmetic operations but also more elabo-
rate instructions such as the ‘send’ instruction which is used to transmit data.
Furthermore the Maté-instruction set provides eight ‘user’ instructions which
allow Maté to be extended with domain-specific functionality. Application code
is broken into capsules, each containing up to 24 instructions, which are then
transmitted to the individual motes and scheduled for execution. As a result,
sensor network applications may be altered in an efficient way, even after the
sensor network has been deployed.

While both Maté and TinyOS allow the development of efficient sensor network
applications, they both require a profound knowledge about low-level (nes)C or
even assembler programming. As a result both exhibit a very steep learning curve
and therefore only appeal to a specific audience.

2.2 Java Based Frameworks

To enable the use of sensor networks by a broader community, various Java vir-
tual machines for sensor nodes have been proposed. NanoVM [4], for instance,
is an open-source Java VM designed to run on the AVR ATmega8 CPU. While
it can run using only 8KB of program flash and 1KB of RAM, it only supports
a very limited subset of the Java language specification and the JDK. Ambi-
CompVM [5] an extension to NanoVM does support most of the Java specifica-
tion. In order to limit the memory footprint and CPU usage, compiled class-files
are transcoded for the target platform and then statically linked into a single
binary. VM* [6] takes this principle even further, and synthesizes a specialized
VM for each application. Since these platforms are not open-source, their benefit
for researching sensor networks is limited.
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2.3 Squawk and Sun SPOTs

In April 2007, Sun introduced their own platform for sensor network develop-
ment. Specialized sensor nodes, called Sun SPOTs [2] (Small Programmable
Object Technology), are equipped with the Squawk VM, a Java virtual machine
that was originally developed for the next generation smart cards [7] and has
been refined for sensor network usage.

While Squawk shares many characteristics with other embedded device JVMs,
such as a specialized compressed byte code format, the open source Sun SPOT
platform provides many features that greatly facilitate the development of Sun
SPOT applications. Not only is the Squawk VM fully compliant with Java ME
[2]. It also provides an extensive debugging framework and allows applications
to be migrated between devices. Furthermore, the Sun SPOT platform allows
for over-the-air deployment of Sun SPOT applications. Despite these features,
Squawk is still required to run on sensor nodes, which usually have a limited
memory capacity. Squawk therefore runs directly above the hardware and does
not require an operating system.

However, unlike most other VMs Squawk is almost entirely implemented in
Java itself [2]. This is a result of the observation that the Java language is well
suited to express most VM functionality. Therefore only the actual byte code
interpreter was written in C. All other features such as the thread scheduler and
the garbage collector have been written in Java. Consequently all device drivers
have also been written in Java and may easily be modified for domain specific
purposes. Like with other VMs the standard Java byte codes are translated
into a more compact byte code format. Furthermore Squawk uses a ”Split VM”
architecture. Instead of directly performing the loading process off the Sun SPOT
device, class files are first loaded on the host where the application is deployed
from. The internal object memory representation of these classes is serialized into
suite files which are then deserialized on the Sun SPOT, where they are placed
in predetermined memory areas. As a result both the memory footprint and the
time required to launch an application are reduced. Despite these optimizations,
the Squawk VM requires hardware that is more powerful than what is usually
found in TinyOS based sensor networks.

A Sun SPOT consists of an ARM920T processor, running at 180 MHz, 512KB
RAM- and 4MB flash memory [2], while the Crossbow TelosB mote running
TinyOS, for instance, uses a TI MSP430 micro controller with only 10KB RAM
running at 4MHz [9]. As a result, the average battery lifetime of a Sun SPOT is
a few orders of magnitudes less than is actually required for a sensor network.
Sun SPOTs are therefore most suited for rapid prototyping of sensor network
applications.

3 IEEE 802.15.4 and LowPAN

Sun SPOTs and many types of TinyOS-programmable sensor nodes [8] are
equipped with an IEEE 802.15.4 compliant radio to perform wireless communica-
tion. Furthermore, the network layer of the Sun SPOT stack is heavily based on
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the IETF’s LowPAN [10] specification. Therefore, in the following, we introduce
these protocols.

3.1 IEEE 802.15.4

As Akyildiz et. al [11] point out, the use of power-limited devices in wireless sen-
sor networks requires power-optimized radio protocols. Since existing protocols,
such as IEEE 802.11, consider power-consumption as a secondary concern, the
IEEE 802.15.4 standard was introduced. This standard provides both PHY and
MAC layer protocols for low-power low-bandwidth wireless networks and is used
for instance in the proprietary ZigBee radio stack. At the physical layer, IEEE
802.15.4 can operate on a variety of frequency bands, including the 2.4GHz ISM-
band in which 802.15.4 defines 16 separate channels. DSSS and OQPSK are used
to send symbols, each containing 4 bits of data, at a rate of up to 62.5 ksymbols
or 250kbits per second.

Above the physical layer, the MAC layer provides two modes of operation:
beacon-enabled mode and non-beacon-enabled mode. The beacon-enabled mode
provides many interesting features such as contention-free channel access and
polling-based frame reception. In non-beacon-enabled mode, all frames are sent
using the contention based CSMA-CA algorithm. Since neither TinyOS nor the
Sun SPOT library supports beacon-enabled mode, this paper focuses on the
non-beacon-enabled mode. For simplicity’s sake, in what follows we refer to the
non-beacon-enabled mode of the IEEE 802.15.4 MAC layer protocol as ‘the MAC
layer’.

The IEEE 802.15.4 standard specifies four different MAC frame-types: bea-
con, management, data and acknowledgement frames. For this discussion only
data and acknowledgement frames are relevant, since management frames are
used in neither TinyOS nor the Sun SPOT radio stack and beacon frames are
only relevant when using beacon-enabled mode. Data frames are used to transfer
higher-level data between nodes. The sender of a data frame may request that
frame to be acknowledged. The receiver is then required to send an acknowledge-
ment frame exactly 12 symbol periods (192 µs) after receiving the data frame.
This interval is the maximum time allowed for changing the radio between RX-
and TX-modes.

The MAC Layer divides all nodes operating on the same channel into multiple
Personal Area Networks (PANs). Each of these PANs is identified by a unique
identifier. Although this separation does not prevent communication between
nodes of different PANs, this mechanism does allow multiple networks to operate
independently on the same channel. More importantly, the communication be-
tween nodes of the same PAN may be optimized if a so called PAN-Coordinator
is present. In that case a node may request its coordinator for a temporary,
PAN-specific, 16-bit short address. When granted, this address is then used for
PAN-local communication instead of the node’s unique 64-bit extended address.
By using this mechanism, the overhead on local communication can thus be
largely reduced.
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Fig. 1. The IEEE 802.15.4 MAC Frame format. Reproduced from [13].

Fig. 2. The IEEE 802.15.4 Ack-frame format

We now explain the IEEE 802.15.4 frame format shown in figure 1. This frame
format is used by both TinyOS and the Sun SPOT library. Each MAC frame
can contain up to 127 bytes and consists of a MAC Header (MHR), the MAC
Payload and a MAC Footer (MFR) containing a 16-bit frame check sequence.
The MHR contains a 16-bit frame control field, followed by a 1-byte sequence
number and the addressing fields. The frame control field contains the following
information relevant to this paper:

– Frame type: the type of the frame being sent.
– Ack. Request: used to signal to the receiver that the frame should be

acknowledged.
– PAN ID Compression: if set, the packet is being sent between nodes with

the same PAN id and the source PAN id is not present.
– Dest. addressing mode: specifies whether the destination address is 16

bit long, 64 bit long, or not present in the frame.
– Src. addressing mode: specifies whether the source address is 16 bit long,

64 bit long, or not present in the frame.

The address fields of the MHR consist of the PAN-id and address of the source
and destination node. Each of these fields may, depending on the frame type,
be absent from the MHR. Data frames being sent between nodes of the same
PAN-id, for instance, do not specify the destination PAN-id field. Likewise,
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acknowledgement frames, as illustrated by figure 2 contain no addressing in-
formation at all. They only contain the sequence number of the data frame
being acknowledged. As a result the length of the MHR is dependant on which
fields are present and the length of the source and destination address.

For more information about the IEEE 802.15.4 protocol, we refer to [12].

3.2 LowPAN

In order to integrate sensor networks with other networking technologies, a gen-
eral network layer such as IPv6 is required. Unfortunately this protocol cannot
be used directly on top of IEEE 802.15.4 since, amongst others, IPv6 packets
are too large to fit in a single IEEE 802.15.4 MAC frame (at most 114 bytes). To
resolve this problem, the IETF specifies an intermediate layer that provides the
needed services to support IPv6 on IEEE 802.15.4-based sensor networks [10].
This layer is commonly referred to as the LowPAN layer (or 6LowPAN when
talking about IPv6).

The first service provided by this LowPAN layer is fragmentation. As IPv6
packets may contain up to 1280 bytes and IEEE 802.15.4 frames only contain 127
bytes, fragmentation and reassembly is required to transfer IPv6 packets between
sensor nodes. Furthermore, the LowPAN specification also requires that all nodes
in a single PAN should be seen by IPv6 as being on the same network-link. As
a result the LowPAN layer also provides meshing and multihop broadcasting in
order to manage the routing of packets between nodes of the same PAN.

Furthermore, the LowPAN layer can also perform IPv6 header compression.
Due to its limited relevance to this paper, we refer to [10] for more information
about IPv6 header compression.

In order to ensure extensibility, the LowPAN specification does not define a
single ‘LowPAN-header’ but instead defines a separate header for each provided
service. In order to distinguish between headers of different services, a 1-byte
dispatch- or type-value is defined for each header. When a LowPAN frame is
sent, the relevant headers are created, prepended with their dispatch-byte and
then stored in a fixed order at the start of the payload of an IEEE 802.15.4 MAC
frame.

An example of such a frame is provided in figure 3. Not all headers need to
be present. If, for instance, an IPv6 packet is small enough to fit into a single
LowPAN frame no fragmentation header is used.

Fig. 3. Example LowPAN frame
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Fig. 4. The LowPAN layer architecture

Upon packet reception, the LowPAN headers are processed by the appropriate
services in the same order they were stored. Since each service may decide that no
further headers are to be processed, these services may be regarded as separate
’sublayers’ inside the LowPAN layer.

Figure 4 shows the resulting architecture and the flow of incoming and outgo-
ing packets. While separate headers exist for the meshing and for the multihop
broadcasting service, the broadcasting header may only appear if a meshing
header is present. We therefore regard these services as being a single layer.

As explained above, each service is assigned a separate dispatch value. While
some of these values are already in use to support the current LowPAN services,
many values remain unused to allow future extensions to the LowPAN layer. In
order to allow non LowPAN-enabled nodes to coexist with LowPAN implement-
ing nodes, a range of dispatch-values has been reserved. These special ’Not a
LowPAN’ or NALP dispatch-values indicate that the frame should be discarded
by the LowPAN layer upon packet reception.

4 Radio Stack Compatibility

We now discuss the radio stacks of both the TinyOS and the Sun SPOT platform.
These platforms both based their radio stacks on the IEEE 802.15.4 standard and
the LowPAN specification. Unfortunately both do not provide fully compliant
implementations. Consequently, their radio stacks are not compatible with each
other. The resulting issues manifest both at the MAC and the LowPAN layer.
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While these issues could be resolved by providing compliant implementations
of the IEEE 802.15.4 MAC protocol and the LowPAN specification for both
platforms, this solution would require the radio stack of both the Sun SPOT
and the TinyOS platform to be altered. Sun SPOTs are however best suited
for rapid prototyping of sensor network applications. The main application of
this paper therefore lies in integrating SunSPOTs with existing TinyOS-based
networks. Altering the TinyOS radio stack would thus require the sensor network
to be completely redeployed. A more viable solution is therefore to modify the
Sun SPOT radio stack in order to provide compatibility with the TinyOS radio
stack.

We introduce the TinySPOTComm project. This project consists of a number
of modifications to the Sun SPOT stack, that allow for radio communication with
an unaltered TinyOS stack. Furthermore the TinySPOTComm stack remains
fully compatible with the default Sun SPOT stack. The changes made by the
TinySPOTComm project, as discussed below, are based on version 4.0 (blue) of
the Sun SPOT library and TinyOS version 2.1.0. Since hardware-compatibility
between the two investigated platforms is one of the key assumptions in our
research, the TelosB TinyOS-mote was used as it is based on the same RF-chip
as the Sun SPOT platform, namely the TI CC2420 RF Transceiver.

4.1 MAC Layer

As mentioned above, the radio stacks of Sun SPOTs and TinyOS-motes are both
based on the IEEE 802.15.4 specification for wireless sensor networks. Unfortu-
nately, this standard is generally not fully implemented. This is also the case for
TinyOS and the Sun SPOT library. Both provide only partial implementations,
which are not compatible with each other. The following issues were identified:

16- vs. 64-bit addressing. As mentioned in section 3, the IEEE 802.15.4 stan-
dard provides two different addressing modes. The Sun SPOT radio stack uses
the 64-bit extended addresses, while in TinyOS only 16-bit addresses are used,
without the required PAN Coordinator. Since no 64-bit to 16-bit translation is
being performed, this issue prevents communication between Sun SPOTs and
TinyOS-motes. This issue may not be resolved by the use of a PAN Coordinator
since TinyOS is to remain unaltered and lacks the functionality required to com-
municate with one. Consequently the most viable solution is to build support for
16-bit addressing into the Sun SPOT stack. In order to maintain compatibility
with unmodified Sun SPOTs, the required changes have to be as least intrusive
as possible. The usage of short addresses is therefore as much as possible hid-
den from both the MAC layer and the rest of the radio stack. For this purpose a
two-way conversion between short and extended addresses is used. Since the Sun
SPOT radio stack implementation makes use of a separate ‘RadioPacket’-class
to perform all packet-related operations, this conversion has been inserted into
this class. As a result the rest of the Sun SPOT stack is largely unaware of the
existence of 16-bit addressed hosts. By default, the conversion is implemented
by assuming a unique 48 bit prefix is shared between the extended address of
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all Sun SPOTs. In reality each extended address is comprised of a 32 bit ven-
dor specific prefix followed by a 32 bit device identifier. As all Sun SPOTs are
manufactured by Sun, the 32 bit vendor specific prefix is shared between all Sun
SPOT devices. The device identifier is uniquely coupled to each individual Sun
SPOT. As a result, this assumption fails to hold when the extended addresses of
two Sun SPOTs differ within the 16 most significant bits of the device identifier.
In order to circumvent this issue, the TinySPOTComm stack allows the address
conversion to be redefined by extending the ‘IEEEAddressHash’ class.

Secondly, the configuration of the address-recognition had to be altered. In
the unmodified Sun SPOT stack, the CC2420 chip is configured to only accept
broadcast and matching 64-bit addressed unicast frames. Since TinyOS only uses
16-bit addresses, the radio was configured to also accept frames addressed to the
16-bit representation of the Sun SPOTs extended address.

Software versus Hardware Acknowledgements. According to the IEEE
802.15.4 standard, frames with the ‘ACK’ bit set, should be acknowledged after
exactly 12 symbol periods (192 µs)

The Sun SPOT stack implements this behavior by using the automatic ac-
knowledgement feature provided by the radio chip. Unlike the Sun SPOT library,
TinyOS handles ACKs, by default, in software rather than in hardware. This is
due to the fact that in TinyOS a received packet is not guaranteed to be trans-
ferred from the CC2420 chip to the micro controller [15]. Consequently, the use
of hardware-ACKs may result in false acknowledgements. The TinyOS devel-
opers therefore chose to handle ACKs in software. Because of this, ACKs sent
from a TinyOS-powered mote, are sent with a delay that is too large to be ac-
cepted by Sun SPOTs. By increasing the Sun SPOTs ACK timeout from 864µs
to 992µs, TinyOS-originated ACKs are accepted by Sun SPOTs. It should be
noted that increasing the ACK timeout is not entirely without risk. Since in the
IEEE 802.15.4 standard, acknowledgements do not contain the address of the
host which sent the original packet, a packet and its acknowledgement are only
related by their respective sequence number. Consequently, a false acknowledge-
ment will occur if an unrelated packet with the same sequence number is acknowl-
edged while the sender of the original packet waits for an acknowledgement. The
chance of a false acknowledgement is proportional to the ACK timeout, which
should therefore be kept as small as possible. In a TinyOS network however,
the proposed increase should not pose a problem as TinyOS requires an ACK
timeout of 8000µs. This relatively large timeout value is the result of restrictions
on the hardware level. On certain hardware platforms, such as the Crossbow
TelosB mote, the radio chip shares its bus to the microcontroller with other
peripherals. By increasing the ACK timeout value, it is no longer necessary for
the radio chip to keep the bus occupied while waiting for an acknowledgement.
As a result the other peripherals on the bus (persistent storage in the case of
the TelosB mote) may be accessed by the microcontroller while the radio is busy.
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4.2 Network Layer

As mentioned above, the Sun SPOT stack heavily relies on the LowPAN specifi-
cation to provide routing, meshing and fragmentation. Although most LowPAN
functionality is implemented, the Sun SPOT library does not support IPv6 and
instead uses the IEEE 802.15.4 extended addresses to identify nodes in the net-
work. Based on the ‘multiple header’ principle of the LowPAN specification,
the Sun SPOT library provides an extensible LowPAN implementation. It al-
lows so called ‘ProtocolHandlers’ to be coupled to specific dispatch-bytes. Upon
packet reception, a packet is relayed to the ProtocolHandler associated with the
dispatch-byte of the packet. This mechanism is, for instance, used by the radio-
gram (the equivalent of UDP) and radiostream (the equivalent of TCP) protocols
to allow Sun SPOT applications to access the network. These ProtocolHandlers
are only used for protocols which are not defined in the LowPAN specification.
If meshing, multihop broadcasting or fragmentation headers are present, these
are directly handled by the LowPAN layer itself.

In contrast, TinyOS does not seem to provide any network layer functionality.
Instead the payload of each TinyOS-originated data packet commences, by de-
fault, with a byte containing ‘0x3f’. LowPAN implementing nodes interpret this
byte as a ‘NALP’ value and consequently discard TinyOS-originated packets.
The second byte is used for multiplexing, as to allow multiple data-flows. Since

Fig. 5. The LowPAN Layer in the Sun SPOT architecture
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try {

DatagramConnection conn =

(DatagramConnection) Connector.open(

"radiogram ://0014.4 F01 .0000.116B:65");

Datagram dg = conn.newDatagram (22);

dg.writeChars("Hello World");

conn.send(dg);

} catch (IOException e) {

...

}

Fig. 6. This code sends the string ”Hello World” to SunSPOT ‘0014.4F01.0000.116B’
on port 65, using radiograms

try {

DatagramConnection conn =

(DatagramConnection) Connector.open(

"tinyos ://0014.4 F01 .0000.0001:65");

Datagram dg = conn.newDatagram (22);

dg.writeChars("Hello World");

conn.send(dg);

} catch (IOException e) {

...

}

Fig. 7. This code sends the string ”Hello World” to the TinyOS-mote with short ad-
dress ‘0001’, using 65 as multiplexing value

no alterations are to be made to the TinyOS radio stack, the best solution to
this problem would be to bypass the LowPAN layer for all TinyOS-originated
packets. Fortunately, the Sun SPOT LowPAN implementation allows for this
behavior to be implemented with only minor changes.

Figure 5 shows the resulting architecture. Since packets starting with a ‘NALP’
byte do not contain any meshing or fragmentation headers, the LowPAN imple-
mentation attempts to dispatch the packet to the corresponding ProtocolHandler.
Since, by default, no ProtocolHandlers are registered to handle NALP values, the
packet is discarded (as required by [10]). TinyOS originated packets may there-
fore be intercepted by registering a specialized ’TinyOSProtocolHandler’ to the
dispatch value 0x3f. This ProtocolHandler is also responsible for sending packets
to TinyOS nodes. Since the LowPAN layer normally uses 64-bit addressing, this
ProtocolHandler is responsible for creating RadioPackets using 16-bit addressing.
The created packet is then passed directly to the MAC Layer.

By extending this TinyOSProtocolHandler, new protocols being developed on
top of the TinyOS-stack may be ported to the Sun SPOT platform. The current
implementation of the TinyOSProtocolHandler is used to provide application
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level compatibility with the default TinyOS stack. This is done by translating
TinyOS’ multiplexing byte into a port number and by adding a new ‘tinyos://’
handler to the Sun SPOTs Generic Connection Framework (GCF) [14]. Using
this GCF handler, communicating with TinyOS-motes is done similar to reg-
ular communication between Sun SPOTs. An example of this is provided in
figures 6 and 7.

5 Performance

5.1 Setup

In order to establish the performance of the TinySPOTComm stack (the Sun
SPOT stack patched with the changes proposed in the previous section), the
single-hop delay and throughput between Sun SPOTs and TinyOS motes were
measured. The delay was measured by performing a ping-test from a client to a
server node and recording the round-trip time. The average round trip time was
then calculated over 200 test runs. To measure the throughput, unicast packets
with the ACK-request flag set, were continuously sent from the client node to
the server node. After the test-run had completed, throughput was derived from
the number of packets received by the server. An average value was calculated
over seven test-runs of 60 seconds. These round trip time and throughput tests
were run using only TinyOS motes, only Sun SPOTs or between a Sun SPOT
and a TinyOS mote, with the TinyOS mote acting as server and the Sun SPOT
acting as client and vice versa.

Furthermore, the network performance of the TinySPOTComm stack was
compared to that of the regular Sun SPOT stack. For this purpose the delay
and throughput tests were also performed using the TinyOS-incompatible ra-
diogram protocol provided by the Sun SPOT library. These tests were then run
between two Sun SPOTs equipped with the default Sun SPOT radio stack and
between two Sun SPOTs using TinySPOTComm stack. Unfortunately, the use
of radiograms limits the number of bytes that may be sent in an IEEE 802.15.4
frame to 123 instead of 127 bytes. This is due to the fact that the Sun SPOT li-
brary is overly cautious when calculating the number of available payload bytes.
Firstly the Sun SPOT library reserves two bytes in the MAC header to store
the source PAN id, regardless of whether that field is present or not. Secondly,
two extra bytes are reserved by the LowPAN implementation to allow for the
use of extended dispatch-fields in a LowPAN packet. Given the limited number
of ProtocolHandlers registered with the LowPAN layer, these large dispatch-
fields remain currently unused. In order to compensate for this inequality, all
throughput tests were performed using 123-byte frames.

Due to it’s limited relevance to this paper, the energy consumption of the
Sun SPOT and TinyOS radio stacks was not measured. The TinySPOTComm
project does not alter the TinyOS radio stack and therefore does not affect it’s
energy consumption. Furthermore, Sun SPOTs only have a battery lifetime of
a few hours to a few days at most and are best suited for rapid prototyping.
As a result ‘prototyped’ sensor network applications usually only need to run
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for a few hours or are deployed on a Sun SPOT connected to an external power
source.

All measurements were obtained using Crossbow TelosB motes equipped with
TinyOS 2.1.0 and Sun SPOTs running either version 4.0 (blue) of the Sun SPOT
library or our custom TinySPOTComm stack.

5.2 Round Trip Time

Figure 8 displays the average and the standard deviation of the round trip times
measured between TinyOS motes and Sun SPOTs. The smallest average is mea-
sured when two TinyOS motes are used. When one TinyOS mote is replaced
with a Sun SPOT, the round trip time increases, and it is the largest when only
Sun SPOTs are used. This increase in round trip time is to be expected since
the Sun SPOT library provides a more advanced network layer than TinyOS.
Furthermore, different threading models are used by TinyOS and the Sun SPOT
JVM. As a result, in TinyOS a received packet is handed almost directly to the
application while the Sun SPOT radio stack requires a received packet to be
handled by several different threads before it is delivered to the application.
This may also account for the increase in delay. The tests show however that
the round trip time is increased by no more than 10% to 15%. It is therefore
unlikely to cause any major issues.

5.3 Throughput

The average and standard deviation of the throughputs that are reached when
sending data between TinyOS motes and Sun SPOTs is displayed in figure 9. In
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Fig. 8. Average Round Trip Times
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Fig. 9. Average Throughputs

contrast with the round trip time, the throughput is maximal when measured
between two Sun SPOTs and it is minimal when only TinyOS motes are used.
This is probably due to the fact that the used TelosB motes have significantly
lower hardware specifications than Sun SPOTs. Interestingly, this bottle-neck
is most prominent when the TelosB mote is used as a client node. When a
Sun SPOT is used to unicast packets to a TelosB mote, the throughput is only
slightly smaller than if two Sun SPOTs are used. Secondly, a sudden increase in
the standard deviation can be observed when only Sun SPOTs are used. This is
caused by the garbage collector of the Squawk VM interrupting the server node
test application during the performance test. This phenomenon is not visible in
the other test setups, since it only affects the Sun SPOT server node and only
when the throughput is large enough. When the garbage collector is explicitly
invoked at the end of each test-run, the standard deviation is equally large as in
the other test setups, while the average throughput remains unaltered. Do note
that the throughputs displayed in figure 9 do not approach the theoretically
possible maximum throughput of the IEEE 802.15.4 standard (250kbit/s). This
is due to the fact that power consumption is more important than throughput
in the application domain targeted by the IEEE 802.15.4 standard and the Sun
SPOT and TinyOS platforms.

5.4 Impact on Sun SPOT Performance

Figures 10 and 11 show the results of the radiogram based delay and through-
put tests. From these results, it is clear that the network performance of the
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TinySPOTComm stack is only marginally smaller than that of the default Sun
SPOT stack. The use of the TinySPOTComm stack only increased the round
trip time by 1.03%. The original Sun SPOT stack only achieves a throughput
that is 1.02% larger than the TinySPOTComm stack. As with the Sun SPOT to
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Sun SPOT throughput test in section 5.3, the relatively large standard deviation
of the measured throughputs is caused by the garbage collector.

6 Conclusion and Future Work

Wireless sensor networks are becoming increasingly popular. Despite hardware
compatibility, sensor nodes which are programmed using different frameworks
are often incapable to communicate with each other. We have investigated this
problem by focussing on the radio stacks of the Sun SPOT and TinyOS platform.
The TinySPOTComm project introduced in this paper, provides a set of mod-
ifications to the Sun SPOT stack, that allow for communication with TinyOS-
motes. The TinySPOTComm stack remains fully compatible with the default
Sun SPOT radio stack and we have shown that its network performance is only
marginally smaller than that of the default radio stack. While the TinySPOT-
Comm stack does allow for communication between Sun SPOTs and TinyOS
motes, the use of this modified radio stack would become unnecessary if both
the Sun SPOT and the TinyOS radio stack were to be made fully IEEE 802.15.4-
compliant. The Sun SPOT platform already provides a respectable but not yet
fully compliant implementation and a working group [16] has been founded to
provide an IEEE 802.15.4 compliant radio stack for TinyOS.

The TinySPOTComm stack may be improved by providing compatibility with
blip [17], a LowPAN implementation for the TinyOS platform. Unfortunately, it
is impossible to extend the functionality of the TinyOSProtocolHandler in order
to gain this compatibility as the blip stack both lacks both the ‘NALP’ byte and
the multiplexing byte used by the standard TinyOS stack. A possible solution
would be to inject IPv6 functionality into the existing LowPAN implementation.
The TinySPOTComm stack may be further improved by analyzing and reducing
the effect on the round trip time of using multiple threads to handle incoming
packets.
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